参数估计和假设检验(单总体)
- 格式:ppt
- 大小:760.00 KB
- 文档页数:37
参数估计与假设检验的区别和联系统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。
(一)参数估计就是用样本统计量去估计总体的参数,它的方法有点估计和区间估计两种。
点估计是用估计量的某个取值直接作为总体参数的估计值。
点估计的缺陷是没法给出估计的可靠性,也没法说出点估计值与总体参数真实值接近的程度。
区间估计是在点估计的基础上给出总体参数估计的一个估计区间,该区间通常是由样本统计量加减估计误差得到的。
在区间估计中,由样本估计量构造出的总体参数在一定置信水平下的估计区间称为置信区间。
统计学家在某种程度上确信这个区间会包含真正的总体参数。
在区间估计中置信度越高,置信区间越大。
置信水平为1-a, a为小概率事件或者不可能事件,常用的置信水平值为99%,95%,90%,对应的a为0.01, 0.05, 0.1。
置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数。
一个总体参数的区间估计需要考虑总体分布是否正态分布,总体方差是否已知,用于估计的样本是大样本还是小样本等。
(1)来自正态总体的样本均值,不论抽取的是大样本还是小样本,均服从正态分布。
(2)总体不是正态分布,大样本的样本均值服从正态分布,小样本的服从t 分布。
(3)不论已判断是正态分布还是t 分布,如果总体方差未知,都按t 分布来处理。
(4)t 分布要比标准正态分布平坦,那么要比标准正态分布离散,随着自由度的增大越接近。
(5)样本均数服从的正态分布为N(u , a^2/n)远远小于原变量离散程度N (u, a^2) 。
(二)假设检验是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设,然后利用样本信息判断这一假设是否成立。
假设检验的基本思想:先提出假设,然后根据资料的特点,计算相应的统计量,来判断假设是否成立,如果成立的可能性是一个小概率的话,就拒绝该假设,因此称小概率的反证法。
参数估计和假设检验1.参数估计参数估计是指通过样本数据来推断总体参数的过程。
总体参数是指总体的其中一种性质,比如总体均值、总体方差等。
样本数据是从总体中随机抽取的一部分数据,用来代表总体。
参数估计的目标是使用样本数据来估计总体参数的值。
常见的参数估计方法有点估计和区间估计。
(1)点估计点估计是通过一个统计量来估计总体参数的值。
常见的点估计方法有样本均值、样本方差等。
点估计的特点是简单、直观,但是估计值通常是不准确的。
这是因为样本的随机性导致样本统计量有一定的误差。
因此,点估计通常会伴随着误差界限,即估计值的置信区间。
(2)区间估计区间估计是通过一个统计量构建总体参数的估计区间。
常见的区间估计方法有置信区间和可信区间。
置信区间是指当重复抽样时,包含真实总体参数的概率。
置信区间的计算方法是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。
可信区间是指在一次抽样中,包含真实总体参数的概率。
可信区间的计算方法同样是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。
参数估计的应用非常广泛,可以用于各个领域的数据分析和决策。
例如,经济学家可以通过样本数据估计失业率,政治学家可以通过样本数据估计选举结果,医学研究者可以通过样本数据估计药物的疗效等。
2.假设检验假设检验是指通过样本数据来判断总体参数的其中一种假设是否成立。
在假设检验中,我们先提出一个原假设(H0),然后使用样本数据来检验该假设的合理性。
在假设检验中,我们需要确定一个统计量,该统计量在原假设成立时,其分布是已知的。
然后,我们计算该统计量在样本数据下的取值,并通过比较该取值与已知分布的临界值,来判断原假设是否成立。
假设检验包含两种错误,即第一类错误和第二类错误。
第一类错误是指在原假设成立的情况下,拒绝原假设的错误概率。
第二类错误是指在原假设不成立的情况下,接受原假设的错误概率。
常见的假设检验方法有单样本假设检验、双样本假设检验、方差分析等。
概率论与数理统计实验实验3 参数估计假设检验实验目的实验内容直观了解统计描述的基本内容。
2、假设检验1、参数估计3、实例4、作业一、参数估计参数估计问题的一般提法X1, X2,…, Xn要依据该样本对参数作出估计,或估计的某个已知函数.现从该总体抽样,得样本设有一个统计总体,总体的分布函数向量). 为F(x, ),其中为未知参数( 可以是参数估计点估计区间估计点估计——估计未知参数的值区间估计——根据样本构造出适当的区间,使他以一定的概率包含未知参数或未知参数的已知函数的真?(一)、点估计的求法1、矩估计法基本思想是用样本矩估计总体矩.令设总体分布含有个m未知参数??1 ,…,??m解此方程组得其根为分别估计参数??i ,i=1,...,m,并称其为??i 的矩估计。
2、最大似然估计法(二)、区间估计的求法反复抽取容量为n的样本,都可得到一个区间,这个区间可能包含未知参数的真值,也可能不包含未知参数的真值,包含真值的区间占置信区间的意义1、数学期望的置信区间设样本来自正态母体X(1) 方差?? 2已知, ?? 的置信区间(2) 方差?? 2 未知, ?? 的置信区间2、方差的区间估计未知时, 方差?? 2 的置信区间为(三)参数估计的命令1、正态总体的参数估计设总体服从正态分布,则其点估计和区间估计可同时由以下命令获得:[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)此命令以alpha 为显著性水平,在数据X下,对参数进行估计。
(alpha缺省时设定为0.05),返回值muhat是X的均值的点估计值,sigmahat是标准差的点估计值, muci是均值的区间估计,sigmaci是标准差的区间估计.例1、给出两列参数?? =10, ??=2正态分布随机数,并以此为样本值,给出?? 和?? 的点估计和区间估计命令:r=normrnd(10,2,100,2);[mu,sigm,muci,sigmci]=normfit(r);[mu1,sigm1,muci1,si gmci1]=normfit(r,0.01);mu=9.8437 9.9803sigm=1.91381.9955muci=9.4639 9.584310.2234 10.3762sigmci=1.68031.75202.2232 2.3181mu1=9.8437 9.9803sigm1=1.91381.9955muci1=9.3410 9.456210.3463 10.5043sigmci1=1.6152 1.68412.3349 2.4346例2、产生正态分布随机数作为样本值,计算区间估计的覆盖率。
参数估计和假设检验参数估计和假设检验是统计学中常用的两种方法,用于根据样本数据对总体的特征进行推断和判断。
参数估计是通过样本数据估计总体参数值的方法,而假设检验则是基于样本数据对总体参数假设进行判断的方法。
下面将详细介绍这两种方法以及它们的应用。
1.参数估计参数是指总体特征的度量,比如总体均值、总体方差等。
在实际应用中,我们往往无法得到总体数据,只能通过抽样得到样本数据。
参数估计的目标是利用样本数据去估计总体参数的值。
最常用的参数估计方法是点估计和区间估计:-点估计是使用样本统计量来估计总体参数的值,常用的样本统计量有样本均值、样本方差等。
-区间估计是利用样本数据构建一个置信区间,用来估计总体参数的取值范围。
置信区间的计算方法通常是基于样本统计量的分布进行计算。
在进行参数估计时,需要注意以下几个要点:-选择适当的样本容量和抽样方法,确保样本具有代表性,并满足参数估计的要求。
-选择适当的样本统计量进行参数估计,并对其进行合理的解释与限制。
-利用抽样分布特性和统计理论,计算参数估计的标准误差和置信区间,对参数估计结果进行解释和判断。
2.假设检验假设检验是基于样本数据对总体参数假设进行判断的方法。
在实际问题中,我们常常需要根据样本数据来判断一些总体参数是否达到一些要求或存在其中一种关系。
假设检验的基本步骤:-建立原假设(H0)和备择假设(H1)。
原假设通常是对总体参数取值的一种假设,备择假设则是原假设的对立假设。
-选择适当的统计量用来检验假设,并计算样本统计量的检验统计量。
-根据样本数据计算得出的检验统计量,利用抽样分布特性和统计理论计算P值。
-根据P值与事先设置的显著性水平进行比较,如果P值小于显著性水平,则拒绝原假设;反之,接受原假设。
在进行假设检验时,需要注意以下几个要点:-显著性水平的选择:显著性水平(α)是进行假设检验过程中设置的一个临界值,它反映了能够容忍的错误发生的概率。
常用的显著性水平有0.05和0.01-选择适当的统计量与检验方法:根据问题的性质和数据类型选择适当的统计量和检验方法。
第七章参数估计和假设检验一、填空题1.在抽样推断中,常用的总体指标有、和。
2.在抽样推断中,按随机原则从总体中抽取的部分单位叫,这部分单位的数量叫。
3.整群抽样是对总体中群内的进行的抽样组织形式。
4.若总体单位的标志值不呈正态分布,只要,全部可能样本指标也会接近于正态分布。
5.抽样估计的方法有和两种。
6.扩大误差范围,可以推断的可靠程度,缩小误差范围则会推断的可靠程度。
7.对总体的指标提出的假设可以分为和。
8.如果提出的原假设是总体参数等于某一数值,这种假设检验称为,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为。
二、单项选择题1.所谓大样本是指样本单位数在()及以上。
A.50个B.30个C.80个D.100个2.总体平均数和样本平均数的关系是()。
A.总体平均数是确定值,样本平均数是随机变量B.总体平均数是随机变量,样本平均数是确定值C.总体平均数和样本平均数都是随机变量D.总体平均数和样本平均数都是随机变量3.先对总体按某一标志分组,然后再在各组中按随机原则抽取一部分单位构成样本,这种抽样组织方式称为()。
A.简单随机抽样B.机械抽样C.类型抽样D.整群抽样4.用样本指标对总体指标作点估计时,应满足4点要求,其中无偏性是指()。
A.样本平均数等于总体平均数B.样本成数等于总体成数C.样本指标的平均数等于总体的平均数 D.样本指标等于总体指标5.在其它条件不变的情况下,提高抽样估计的可靠程度,其精确度将()。
A.保持不变B.随之扩大C.随之缩小D.无法确定6.在抽样估计中,样本容量()。
A.越小越好B.越大越好C.有统一的抽样比例D.取决于抽样估计的可靠性要求。
7.假设检验中的临界区域是指()。
A.接受域B.拒绝域C.检验域D.置信区间三、多项选择题1.在抽样推断中,抽取样本单位的具体方法有()。
A.重复抽样B.不重复抽样C.分类抽样D.等距抽样E.多阶段抽样2.在抽样推断中,抽取样本的组织形式有()。
第4章参数估计和假设检验第四章参数估计与假设检验掌握参数估计和假设检验的基本思想是正确理解和应⽤其他统计推断⽅法的基础,后⾯将要学习的⽅差分析、⾮参数检验、回归分析、时间序列等统计推断⽅法都是在此基础上展开的。
需要特别指出的是,所有的统计推断都要以随机样本为基础。
如果样本是⾮随机的,统计推断⽅法就不适⽤了。
由于相关知识在先修课程中已经学习过,本章主要在回顾相关知识的基础上,补充讲解必要样本容量的计算、p值、参数估计和假设检验⽅法的软件操作和结果分析等内容。
本章的主要内容包括:(1)参数估计的基本思想和软件实现。
(2)简单随机抽样情况下样本容量的计算。
(3)假设检验的基本原理。
(4)假设检验中的p值。
(5)⼏种常⽤假设检验的软件实现。
第⼀节参数估计⼀、参数估计的基本概念参数估计是指利⽤样本信息对总体数字特征作出的估计。
例如,我们可以通过估计⼀部分产品的合格率对整批产品的合格率作出估计,通过调查⼀个样本的⼈⼝数来对全国的⼈⼝数作出估计,等等。
参数估计可以分为点估计和区间估计。
点估计是指根据样本数据给出的总体未知参数的⼀个估计值。
对总体参数进⾏估计的⽅法可以有多种,例如矩估计法、极⼤似然估计法等,得到的估计量(样本统计量)并不是唯⼀的。
例如我们可以使⽤样本均值对总体均值作出估计,也可以使⽤样本中位数对总体均值进⾏估计。
因此,在参数估计中我们需要对估计量的好坏作出评价,这就涉及到估计量的评价准则问题。
常⽤的估计量评价准则包括⽆偏性、有效性、⼀致性等。
⽆偏性是指估计量的数学期望与总体参数的真实值相等;有效性的含义是,在两个⽆偏估计量中⽅差较⼩的估计量较为有效,⽅差越⼩越有效;⼀致性是指随着样本容量的增⼤,估计量的取值应该越来越接近总体参数。
样本的随机性决定了估计结果的随机性。
由于每⼀个点估计值都来⾃于⼀个随机样本,所以总体参数真值刚好等于⼀个具体估计值的可能性极⼩。
区间估计的⽅法则以概率论为基础,在点估计的基础上给出了⼀个置信区间,并给出了这⼀区间包含总体真值的概率,⽐点估计提供了更多的信息。
参数估计和假设检验习题解答(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--参数估计和假设检验习题1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.97521.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=,即,以95%的把握认为这批产品的指标的期望值μ为1600.2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为根,各台布机断头数的标准差为根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为根,标准差为根。
问,新工艺上浆率能否推广(α=解: 012112:, :,H H μμμμ≥<3.某电器零件的平均电阻一直保持在Ω,改变加工工艺后,测得100个零件的平均电阻为Ω,如改变工艺前后电阻的标准差保持在Ω,问新工艺对此零件的电阻有无显著影响(α=解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量 3.33 1.96Z ===>,接受1: 2.64H μ≠,即, 以95%的把握认为新工艺对此零件的电阻有显著影响.4.有一批产品,取50个样品,其中含有4个次品。
在这样情况下,判断假设H 0:p ≤是否成立(α=解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==,50,n =由检验统计量0.9733Z ===<,接受H 0:p ≤.即, 以95%的把握认为p ≤是成立的.5.某产品的次品率为,现对此产品进行新工艺试验,从中抽取4O0件检验,发现有次品56件,能否认为此项新工艺提高了产品的质量(α=解: 01:0.17, :0.17,H p H p ≥<采用非正态大样本统计检验法,拒绝域为Z z α<-,400,n =0.950.05, 1.65z α=-=-,由检验统计量4001.5973i x npZ -===-∑>, 接受0:0.17H p ≥,即, 以95%的把握认为此项新工艺没有显著地提高产品的质量.6.从某种试验物中取出24个样品,测量其发热量,计算得x =11958,样本标准差s =323,问以5%的显著水平是否可认为发热量的期望值是12100(假定发热量是服从正态分布的)解: 01:12100, :12100,H H μμ=≠总体标准差σ未知,拒绝域为2(1)t t n α>-,24,n = x =11958,s =323,0.0250.05,(23) 2.0687t α==, 由检验统计量2.1537t ===>,拒绝0:12100H μ=,接受1:12100,H μ≠ 即, 以95%的把握认为试验物的发热量的期望值不是12100.7.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
统计学中的参数估计与假设检验统计学是一门研究如何收集、整理、分析和解释数据的学科。
参数估计和假设检验是统计学中两个重要的概念和方法,用于推断总体参数和判断假设是否成立。
本文将详细介绍参数估计与假设检验的基本原理和应用。
一、参数估计参数估计是通过样本数据推断总体的未知参数。
在统计学中,总体是指研究对象的全体,而样本是从总体中抽取的一部分。
参数是总体的特征指标,例如均值、方差、比例等。
参数估计旨在通过样本数据对总体参数进行估计,并给出估计的精度。
参数估计分为点估计和区间估计两种方法。
点估计是通过样本数据计算得到的单个数字,用来估计总体参数的具体数值。
常见的点估计方法有最大似然估计、矩估计和贝叶斯估计等。
区间估计是通过样本数据计算得到的一个范围,该范围包含总体参数真值的概率较高。
置信区间是区间估计的一种形式,它可以用来描述估计值的不确定性。
二、假设检验假设检验是用于检验研究问题的特定假设是否成立的一种统计推断方法。
在假设检验中,我们提出一个原假设和一个备择假设,并根据样本数据对两个假设进行比较,进而判断原假设是否应该被拒绝。
原假设通常表示一种无关,即不发生预期效应或差异。
备择假设则表示研究者所期望的效应或差异。
在进行假设检验时,我们首先选择一个适当的统计检验方法,例如t检验、F检验或卡方检验等。
然后,计算出样本数据的检验统计量,并根据相关的分布理论和显著性水平进行推论。
最后,比较检验统计量与临界值,以决定是否拒绝原假设。
三、参数估计与假设检验的应用参数估计和假设检验在实际问题中有广泛的应用。
以医学研究为例,研究人员可能希望通过抽样来估计某种药物的有效剂量,并对药效进行假设检验。
在市场调研中,我们可以使用参数估计和假设检验来推断总体的需求曲线和做出市场预测。
在质量控制中,我们可以利用参数估计和假设检验来判断产品是否符合标准。
四、总结参数估计和假设检验是统计学中重要的方法,可以通过样本数据来推断总体参数和判断假设是否成立。
参数估计和假设检验的基本原理参数估计和假设检验是统计学中两个重要的概念和方法,用于从样本数据中得出总体参数的估计和对统计假设进行验证。
本文将介绍参数估计和假设检验的基本原理,以及它们在统计学中的应用。
一、参数估计的基本原理参数估计是用样本数据对总体参数进行估计的方法。
在统计学中,样本是从总体中抽取的一部分数据,总体是我们研究的对象。
参数是总体的数值特征,如总体均值、比例、方差等。
参数估计的基本原理是通过样本数据来推断总体参数的取值范围。
常用的参数估计方法有点估计和区间估计。
1. 点估计点估计是利用样本数据得到一个点作为总体参数的估计值。
点估计的基本原理是从样本中选取一个统计量作为总体参数的估计值。
常见的点估计方法有样本均值、样本比例以及最大似然估计等。
2. 区间估计区间估计是通过样本数据得到一个包含总体参数真值的区间。
区间估计的基本原理是根据样本数据计算出一个区间,使得总体参数落在这个区间内的概率达到预先指定的置信水平。
常见的区间估计方法有置信区间和预测区间等。
二、假设检验的基本原理假设检验是用于验证统计假设的方法。
统计假设是对总体参数或总体分布的陈述或假定,通常包括原假设和备择假设。
假设检验的基本原理是根据样本数据来判断原假设是否能够拒绝。
假设检验通常包括以下步骤:1. 建立假设首先,我们需要明确原假设和备择假设。
原假设通常是我们要进行验证的假设,备择假设则是对原假设的否定或补充。
2. 选择检验统计量接下来,我们选择一个合适的检验统计量,它能够在原假设成立时与备择假设有所区别。
3. 设置显著水平显著水平是在假设检验中预先设定的,用于判断拒绝原假设的临界值。
常见的显著水平有0.05和0.01。
4. 计算统计量的值根据样本数据计算检验统计量的值。
5. 判断拒绝域根据显著水平和检验统计量的分布,确定一个拒绝域。
如果检验统计量的值落在拒绝域内,就拒绝原假设;否则,接受原假设。
6. 得出结论根据拒绝或接受原假设的结果,得出关于总体的结论。
《社会统计学》复习资料一、概念辨析(3×8') 1.参数估计与假设检验参数估计是通过样本对总体的未知参数进行估计,假设检验指通过样本对总体的某种假设进行检验。
参数估计是先看样本的情况,再看总体的情况。
假设检验是先假设总体的情况,再以一个随机样本的统计值来检验这个假设是否正确。
换言之,要先构思总体情况,才进行抽样和分析样本的资料。
2.点估计与区间估计点估计指根据样本资料以一个最适当的样本统计值来代表总体的参数值,简单明确,但不能说明估计结果的抽样误差和把握程度;区间估计指以两个数值之间的间距来估计参数值。
点估计是区间估计的基础。
3.置信度和置信度水平置信度又称置信概率或置信系数,表示用置信区间估计的可靠性,即置信区间包含参数Q 的概率。
置信度水平表示用置信区间估计不可靠的概率。
置信度与置信度水平之和为1。
4.虚无假设与研究假设虚无假设0H 又称原假设、零假设。
是一种无差别假设,是一种已有的,具有稳定性的经验看法,没有充分根据,是不会被轻易否定的。
研究假设1H 又称备择假设,是研究者所需证实的假设。
否定0H 后可以认为1H 是对的。
5.甲种误差与乙种误差甲种误差又称第一类错误,是指0H 为真,但小概率事件发生了,拒绝了0H ,即把真的当成假的,它是在拒绝原假设时出现的错误。
犯甲种误差的概率是显著性水平α。
乙种误差即纳伪的错误,又称第二类错误,是指0H 为假,但小概率事件没有发生,接受即把假的当成真的,它是在接受原假设时出现的错误。
犯乙种误差的概率为β,β的值随着真值μ与原假设中0μ的偏离程度而变化,0μμμ-=∆越小,β的数值就越大。
α大β就小,α小β就大。
6.独立样本和配对样本独立样本指从二个总体中,分别独立地各抽取一个随机样本进行比较和研究。
配对样本指它只有一个样本,但样本中每个个体要先后观测两次,这样所有个体先观测的值看作是来自第一个总体的样本值,所有个体后观测的值,看作是来自另一个个体的样本值,以此来比较两总体之间的不同。