20.2.1.极差与方差1
- 格式:ppt
- 大小:6.95 MB
- 文档页数:23
极差和方差公式
极差和方差是统计学中常用的两种变异度量方法。
极差是指数据集中最大值和最小值之间的差值,它可以用来描述数据分布的范围。
方差是指数据点与其均值的离差平方和的平均值,它可以用来描述数据集中的离散程度。
极差的计算公式为:R = max(x) - min(x),其中max(x)表示数据集中的最大值,min(x)表示数据集中的最小值。
方差的计算公式为:s^2 = Σ(x - x)^2 / (n - 1),其中x表示数据点,x表示数据集的均值,n表示数据集的大小。
可以看到,方差的计算需要先求出数据集的均值,因此在实际应用中,通常会先计算均值,再计算方差。
而极差的计算则比较简单,只需要求出最大值和最小值即可。
需要注意的是,极差和方差都是对数据集中的每个数据点进行计算的,因此对于含有异常值的数据集,它们的计算结果可能会受到影响。
此外,在比较两个数据集的变异程度时,应该使用标准差而不是方差,因为标准差可以将变异量与数据集的单位量纲对齐,使得比较更加准确。
- 1 -。
极差方差标准差公式方差、标准差和极差是统计学中常用的三种描述数据分散程度的指标,它们在数据分析和研究中起着重要的作用。
在本文中,我们将详细介绍极差、方差和标准差的概念、计算公式及其在实际应用中的意义。
首先,我们来介绍极差的概念。
极差是用来衡量一组数据中最大值和最小值之间的差距的统计量。
它可以简单地用最大值减去最小值来计算,即:极差 = 最大值最小值。
极差可以直观地反映出数据的波动程度,但它只考虑了最大值和最小值,对数据的整体分布情况并不十分准确。
因此,我们需要引入方差和标准差这两个指标来更全面地描述数据的分散程度。
接下来,我们将介绍方差的概念及其计算公式。
方差是衡量一组数据离散程度的统计量,它是各数据与其均值之差的平方的平均数。
方差的计算公式如下:方差= Σ(Xi X)^2 / n。
其中,Xi代表第i个数据点,X代表数据的均值,n代表数据的个数。
通过计算各数据与均值之差的平方并求平均数,可以得到数据的方差。
方差越大,数据的离散程度越高,反之则越低。
最后,我们将介绍标准差的概念及其计算公式。
标准差是方差的平方根,它是数据离散程度的一种度量,通常用来衡量数据的波动情况。
标准差的计算公式如下:标准差= √方差。
标准差的计算方法与方差密切相关,通过对方差取平方根,可以得到数据的标准差。
标准差越大,数据的波动越剧烈,反之则越平稳。
在实际应用中,极差、方差和标准差都是重要的统计指标,它们可以帮助我们更准确地了解数据的分布情况,从而进行科学的数据分析和决策。
例如,在财务分析中,我们可以利用这些指标来评估投资组合的风险;在质量控制中,我们可以利用这些指标来评估产品质量的稳定性;在市场营销中,我们可以利用这些指标来评估市场需求的波动情况等等。
综上所述,极差、方差和标准差是描述数据分散程度的重要统计指标,它们在数据分析和研究中具有重要的意义。
通过对这些指标的深入理解和应用,我们可以更好地把握数据的特征和规律,为科学决策提供可靠的依据。
【精品】2020年中考数学复习 --《极差、方差和标准差》知识点 极差、方差、标准差都是用来研究一组数据的离散程度,表示一组数据离散程度的指标.一、定义理解1、极差极差是用来反映一组数据变化范围的大小.我们可以用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差就称为极差.极差=最大值-最小值极差仅只表示一组数据变化范围的大小,只对极端值较为敏感,而不能表示其它更多的意义.2、方差方差是反映一组数据的整体波动大小的指标,它是指一组数据中各数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.求一组数据的方差可以简记为:“先平均,再求差,然后平方,最后再平均.”通常用2S 表示一组数据的方差,用x 表示一组数据的平均数,1x 、2x 、…n x 表示各数据. 方差计算公式是: s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2];3、标准差在计算方差的过程中,可以看出2S 的数量单位与原数据的不一致,因而在实际应用时常常将求出的方差再开平方,这就是标准差. 标准差=方差,方差=标准差2.一组数据的标准差计算公式是S =其中x 为n 个数据12n x x x ,,…,的平均数. 方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.方差较大的波动较大,方差较小的波动较小,方差的单位是原数据的单位平方,标准差的单位与原数据的单位相同.在解决实际问题时,常用样本的方差来估计总体方差方法去考察总体的波动情况.二、例题讲析例1、甲、乙两支篮球队在一次联赛中,各进行10次比赛得分如下:甲队:100,97,99,96,102,103,104,101,101,100乙队:97,97,99,95,102,100,104,104,103,102(1) 求甲、乙两队的平均分和极差?(2)计算甲、乙两队的方差与标准差,并判断哪支球队发挥更为稳定?解:(1)3.100100101101104103102969997100101)=(=甲+++++++++⨯x 3.10010210310410410010295999797101)=(=乙+++++++++⨯x甲队的极差=104-96=8; 甲队的极差=104-95=9(2)61.5])3.100100()3.10099()3.100100[(1012222=甲-++-+-=S 21.9])3.100102()3.10097()3.10097[(1012222=乙-++-+-= S 甲队的标准差:37.261.5≈; 乙队的标准差:03.321.9≈ 所以,由此可以判断甲队的得分方差小,标准差也相应较小,因此他们在联赛中发挥更为稳定一些.例2、对10盆同一品种的花施用甲、乙两种花肥,把10盆花分成两组,每组5盆,记录其花期:甲组:25,23,28,22,27乙组:27,24,24,27,23(1)10盆花的花期最多相差几天?(2)施用何种花肥,花的平均花期较长?(3)施用哪种保花肥效果更好?分析:花期的极差就是花期最多相差的天数,花的平均花期就是分别求得甲、乙两组数据的平均数,而看哪种保花肥效果好,关键是比较方差,方差越小,波动越小,效果越好! 解:(1)28-22=6(天) 所以,10盆花的花期最多相差6天.(2)由平均数公式得:252722282325(51)==甲++++x252327242427(51)==乙++++x得乙甲=x x ,所以,无论用哪种花肥,花的平均花期相等.(3)由方差公式得: 2.5])2527()2522()2528()2523()2525[(101222222=甲-+-+-+-+-=S 8.2])2523()2527()2524()2524()2527[(51222222=乙-+-+-+-+-=S 得22S 乙甲<S 故施用乙种花肥,效果比较可靠三、反馈练习1.一组数据5,8,x ,10,4的平均数是2x ,则这组数据的方差是________.2.五名同学目测同一本教科书的宽度时,产生的误差如下(单位:cm ):2,-2,-1,1,0, 则这组数据的极差为______cm .方差是_______,标准差是______3.若样本1,2,3,x 的平均数为5,又样本1,2,3,x ,y 的平均数为6,则样本1,2,3,x ,y 的极差是_______,方差是_______,标准差是______.4.已知一组数据0,1,2,3,4的方差为2,则数据20,21,22,23,24的方差为_____, 标准差为________.5.一组数据-8,-4,5,6,7,7,8,9的极差是______,方差是_____,标准差是______.6.若样本x 1,x 2,……,x n 的平均数为 =5,方差S 2=0.025,则样本4x 1,4x 2,……,4x n 的平均数x '=_____,方差S '2=_______.。