第一章核物理
- 格式:ppt
- 大小:1.68 MB
- 文档页数:35
核医学教学大纲第一章核物理基础与核医学仪器1.掌握:原子和原子核的组成,核素及其分类,核医学仪器的组成及其显像原理,闪烁探测器的组成及其探测原理,伽玛照相机、SPECT/CT和PET/CT的组成以及显像原理。
2.熟悉:衰变模式及类型,其他探测器的基本原理。
3.了解:带电粒子、高能光子与物质的相互作用。
四、重点英文问词汇:Isotope, Radionuclide scan, Tomography, Decay, Electrum capture Background, Radiation decay, Detector, Computed tomography, Sagittal, Coronal, Reconstruction, Generator, SPECT, SPECT/CT, PET/CT.六、思考题:1.射线的基本性质是什么?2. α、β、γ射线中,哪种射线的电离能力最强?哪种射线的穿透能力最强?3.物理半衰期,生物半衰期和有效半衰期有哪些区别?4.为什么射线能够被γ闪烁器探测器探测?5.PET和SPECT仪器的工作原理有何区别?第二章放射性药物与辐射防护1.掌握:(1)常用放射性药物的浓聚机理(2)临床核医学中常用放射性药物的物理特性(例如99m TcO4-, 99m Tc-MDP,99m Tc-MIBI,99m Tc-MAA, 99m Tc-DTPA, 99m Tc-EHIDA,131I, 18F-FDG etc ).2.熟悉:常用放射性药物,放射核素纯,放射化学纯,放射性活度,辐射安全。
3.了解:(1)钼锝发生器系统。
(2)有关锝的化学和放射性药物的制备。
(3)锝标记的放射性药物的质量保证。
(4)放射防护的基本原理和措施。
四、重点英文问词汇:Radiophamaceutical,radionuclidic purity,radiochemical purity,radioactivity,Radiation safety,Molybdenum-99/Technetium-99m generator systems,Quality assurance,labeled radiopharmaceuticals,exposure, absorbed dose, equivalent dose.六、思考题:1.放射化学纯度和放射性核素纯度有何区别?2.为什么要对放射性药物进行质量保证和质量控制?3.外照射的防护措施有哪些?4.如何处理放射性废物?第三章体外分析与显像术1.掌握:(1)放射免疫分析的基本原理及其方法学。
第一章核物理基础说起来,每年物理师上岗证考试前三章的基础内容都是重点复习内容,尽管在日常工作中应用不多,但作为一个物理师,顾名思义,与“物理”是有着紧密关系的,这就少不了一个物理师对物理学知识必须了解一些基本的东东。
总的来说,前三章内容以记忆为主,另加一些理解!前三章的概念比较多,类似的、相同性质的,比较分析会对理解记忆有帮助,注意区分那些不同点!原子结构原子结构这部分内容较少,知识点也较明确。
相对容易掌握。
1、原子结构的数量级10(-10),原子和原子核的数量级关系:10000倍;2、每个电子的电量约为1.6×10(-19);3、核素:具有确定质子数和中子数的原子的整体;4、同位素:原子序数相同而质量数不同的核素,在元素周期表中处于同一位置;5、轨道电子数:每个壳层最多容纳2n(2)个电子,各壳层的顺序依次为K、L、M、N、O、P、Q;每个次壳层最多容纳2(2l+1)个电子;《肿瘤放射物理学》第二页表1-1:电子的壳层结构是要多加记忆的。
原子、原子核能级1、电子在原子核库仑场中所具有的势能主要由主量子数n和轨道量子数l决定,并随n和l 的增大而提高;2、基态的定义3、由于高原子序数的原子核比低原子序数的原子核对电子的吸引力大,因此对于同一个能级,当所属原子的原子序数增大时,他的能量更低;4、能量值得大小等于壳层能级能量的绝对值,这些能量程为相应壳层的结合能;5、特征辐射、特征X线、俄歇电子6、当核获得能量,可以从基态跃迁到某个激发态。
当它再跃迁回基态时,以r射线形式辐射能量,能量值等于跃迁能级之差。
原子、原子核的质量1、1u=1/12C(12,6)原子质量------描述方法不好输入,凑合着看吧。
2、N A=6.02×10(23)3、1u=1/NA=1.66×10(-27)kg质量:中子>质子>>电子质量和能量的关系1、E=mC(2)2、电子静止能量:0.51MeV质子静止能量:938.3MeV中子静止能量:939.6MeV3、运动的物体质量随运动速度的变化关系式。
绪论核医学:是一门利用放射性核素发射的核射线对疾病进行诊断、治疗和研究的学科。
核医学最大特点:以反映组织、脏器的功能状态为基础。
第一章核物理元素:具有相同质子数的原子,化学性质相同,但其中子数可以不同。
核素:质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。
同一元素可有多种核素。
同质异能素:质子数和中子数都相同,但处于不同的核能状态原子。
同位素:凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。
稳定核素(stable nuclide):原子核稳定,不会自发衰变的核素。
放射性核素(radionuclide):原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素。
放射性衰变(radiation decay):放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上的射线并转化为另一种原子的过程。
放射性活度:单位时间内原子核的衰变数量,单位:贝克。
基本衰变类型:α衰变;β衰变;正电子衰变;电子俘获;γ衰变。
γ衰变特点:1.从原子核中发射出光子2.常常在α或β衰变后核子从激发态退激时发生3.产生的射线能量离散4.可以通过测量光子能量来区分母体的核素类别半衰期(half-live):放射性原子核数从N0衰变到N0的1/2所需的时间。
带电粒子与物质相互作用:电离;激发;散射;轫制辐射。
光子与物质的相互作用:光电效应;康普顿散射;电子对生成。
光电效应:光子同原子作用把自己的全部能量传递给原子,壳层中某一电子获得动能克服原子束缚跑出来,成为自由电子,光子本身消失。
轫制辐射:带电粒子受到物质原子核电场的作用,运动速度和方向突然变化,能量以X射线发射出来。
第二章仪器核探测仪器的基本原理:电离作用、荧光现象、感光作用γ照相机基本结构:准直器、晶体、光电倍增管、脉冲幅度分析仪、信号分析数据处理系统。
SPECT:单光子计算机发射断层显像仪PET :正电子发射计算机断层显像仪PET/CT:以PET特性为主,同时将PET影像叠加在CT图像上,使得PET影像更加直观,解剖定位更加准确。
第一章核物理基础知识元素:凡是质子数相同,核外电子数相同,化学性质相同的同一类原子称为一组元素。
同位素(isotope):凡是质子数相同,中子数不同的元素互为同位素如: 1H、2H、3H。
同质异能素:凡是原子核中质子数和中子数相同,而处于不同能量状态的元素叫同质异能素。
核素:原子核的质子数、中子数、能量状态均相同原子属于同一种核素。
例如:1H、2H、3H、12C、14C 198Au 、99m Tc、99Tc1.稳定性核素(stable nuclide)稳定性核素是指:原子核不会自发地发生核变化的核素,它们的质子和中子处于平衡状态,目前稳定性核素仅有274种,2.放射性核素(radioactive nuclide)放射性核素是一类不稳定的核素,原子核能自发地不受外界影响(如温度、压力、电磁场),也不受元素所处状态的影响,只和时间有关。
而转变为其它原子核的核素。
核衰变的类型1.α衰变(α decay):2.-衰变(- decay):3.+衰变:4.γ衰变:核衰变规律1.物理半衰期(physical half life,T1/2):放射性核素衰变速率常以物理半衰期T1/2表示,指放射性核素数从No衰变到No的一半所需的时间。
物理半衰期是每一种放射性核素所特有的。
数学公式T1/2=λ2.生物半衰期(Tb):由于生物代谢从体内排出原来一半所需的时间,称为之。
3.有效半衰期(Te):由于物理衰变与生物的代谢共同作用而使体内放射性核素减少一半所需要的时间,称之。
Te、Tb、T1/2三者的关系为:Te= T1/2·Tb / (T1/2+ Tb)。
4.放射性活度(radioactivity, A):是表示单位时间内发生衰变的原子核数。
放射性活度的单位是每秒衰变次数。
其国际制单位的专用名称为贝可勒尔(Becquerel),简称贝可,符号为Bq。
数十年来,活度沿用单位为居里(Ci) 1Ci=×1010/每秒。
第一章:核物理的基本知识一:原子物理的基本概念:1、原子的基本结构:质子(正电荷)原子:原子核中子核外电子(负电荷)原子的表示:Z A XX:元素符号;Z:原子序数,A原子质量数,即原子核内的核子数原子结构示意图2、原子、原子核能级电子在原子核库仑场中具有的势能变化构成了分立的原子能级。
1)基态和激发态:2)特征辐射(特征X射线);钨原子的能级示意图:3、原子量:定义:4、 基本粒子电子、质子、中子、光子、π介子和其他一些粒子认为是物质结构的基本单元。
其中,光子、电子广泛应用与放射治疗中,质子、中子也可用于放射治疗的原子质量C u 1261211二、放射性1、原子核衰变:不稳定的核素自发地放出射线,转变成另一种核素,这种现象称为放射性。
这个过程称为放射性衰变。
衰变类型主要有:1) α衰变:原子核自发地放射出α粒子(氦的原子核)的转变过程称为α衰变。
2) β衰变:原子核自发地放射出电子е-或е+正电子或俘获一个轨道电子的转变过程称为β衰变。
3) γ跃迁:α和β衰变后的子核很可能处于激发态,会以γ射线的形式释放能量跃迁到低能态或基态,这种过程称为γ跃迁。
钴-60、铯-137、铱-192具有β衰变同时具有γ射线2、放射性度量放射性衰变公式:λ为衰变常数,表示单位时间内每个原子核衰变的概率放射性活度:一定量的放射性核素在一个很短时间间隔内发生的核衰变数除以该时间间隔之商,公式为:te N N λ-=0单位:贝克勒尔(Bq ),A 和A 0分别是t 时刻和初始时刻的放射性活度放射性核素的半衰期:放射性核素其原子衰变到初始数目一半是所需的时间称为放射性核素的半衰期(T 1/2),半衰期与衰变常数的关系为:平均寿命:放射性原子核平均生存的时间。
可表示为:t e A N dt dN A λλ-===0λλ693.02ln 2/1==T 2/144.11T ==λτ第二章:电离辐射与物质的相互作用基本概念:直接电离:由带电粒子通过碰撞直接引起的物质的原子或分子的电离称为直接电离。
(第一章)原子核物理基础引言(P1)1.1895年X射线1896年放射性这三大发现揭开了近代物理的序幕,物质结构的研究开始进入微观领域。
1897年电子2.放射性现象1896年法国科学家贝克勒尔(Becquerel A.H)发现的天然放射性现象是人类第一次观察到核变化的情况,通常人们把这一重大发现看成是原子核物理的开端。
3.20世纪50年代,逐步形成了研究物质结构的三个分支学科,即原子物理、原子核物理和粒子物理,这三者各有独立的研究领域和对象,但又紧密关联。
本章重点论述原子核物理这一领域。
第一节原子和原子核的基本性质(P1-6)1.到目前为止,包括人工制造的不稳定元素在内,人们已经知道了100多种元素。
2.1911年卢瑟福(Rutherford R.C.)根据α粒子的散射实验提出了原子的核式模型的假设,即原子是由原子核和核外电子组成。
补充:1898年, 卢瑟福(Rutherford)在“贝可勒尔射线”中发现了α、β粒子,后来证实了α射线是氦原子核,β射线是电子。
3.原子就被分成两部分来处理:核外电子的运动构成了原子物理学的主要内容,而原子核则成了另一门学科——原子核物理学的主要研究对象。
原子和原子核是物质结构互相关联又泾渭分明的两个层次。
4.关于电子:(1)电子是由英国科学家汤姆逊(Thomson J.J.)于1897年发现的,也是人类发现的第一个微观粒子。
(2)电子性质:①电子带负电,电子电荷的值为e=1.602 177 33×10-19CPS: 电荷是量子化的,即任何电荷只能是e的整数倍。
②电子的质量为m e=9.109 389 7×10-31kg补充:质子质量:1.6726231×10-27kg;中子质量:1.6749273×10-27kg5.原子核性质:(1)原子核带正电荷,原子核的电荷集中了原子的全部正电荷。
(2)原子核的质量远远超过核外电子的总质量;(3)原子核的线度只有几十飞米,而密度高达108t/cm3PS:1fm=10-15m=10-13cm 1nm=10-9m6.关于原子(1)原子的大小是由核外运动的电子所占的空间范围来表征的;(2)原子的大小即半径约为10-8cm的量级。
核医学知识点总结绪论+第一章核物理知识1、湮灭辐射:18F、11C、13N、15O等正电子核素在衰变过程中发射(产生)正电子,正电子与原子核周围的轨道电子(负电子)发生结合,同时释放两个能量相等方向相反的γ光子(511kev),这种现象就叫正电子湮灭辐射现象。
2、物理半衰期(T1/2):指放射性核素数目因衰变减少到原来的一半所需的时间,如131碘的半衰期是8.04天。
3、临床核医学:是将核技术应用于临床领域的学科,是用利用放射性核素诊断、治疗疾病和进行医学研究的学科。
4、核素:指具有特定的质子数、中子数及特定能态的一类原子。
5、放射性衰变的定义:放射性核素的原子由于核内结构或能级调整,自发的释放出一种或一种以上的射线并转化为另一种原子的过程。
6、放射性活度:表示单位时间内原子核的衰变数量:单位为Ci(居里),1Ci=3.7x1010Bq7、放射性核素发射器:从长半衰期的母体分离短半衰期的子体的装置,又称为“母牛”。
8、个人剂量监测仪:是从事放射性工作人员用来测量个人接受外照射剂量的仪器,射线探测器部分体积较小,可佩戴在身体的适当部位。
9、放射性核素示踪原理:是以放射性核素或其标记化合物作为示踪剂,应用射线探测仪器来检测其行踪,借此研究示踪剂在生物体内的分布代谢及其变化规律的技术。
10、阳性显像(positive imaging)是以病灶对显像剂摄取增高为异常的显像方法。
由于病灶放射性高于正常脏器、组织,故又称“热区”显像(hot spot imaging)如放射免疫显像、急性心肌梗死灶显像、肝血管瘤血池显像等。
11阴性显像(negative imaging)是以病灶对显像剂摄取减低为异常的显像方法。
正常的脏器、组织因摄取显像剂而显影,其中的病变组织因失去正常功能不能摄取显像剂或摄取减少而呈现放射性缺损或减低,故又称“冷区”显像(cold spot imaging)12放射性药物:含有放射性核素,用于临床诊断或治疗的药物。
放射物理与防护练习题放射物理与防护习题与答案第一章核物理基础(物质得结构、核转变)第一节学习目标及学习指导一、学习目标(一)掌握内容1.放射性核素衰变得类型。
2.原子核得衰变规律。
(二)熟悉内容熟悉原子结构、原子核结构。
(三)了解内容衰变平衡。
二、学习指导1.从初期理论得实验基础入手展开对原子结构得介绍,通过玻尔得原子模型引入玻尔假设、氢原子得玻尔理论,得出轨道半径、能量与量子数n得关系。
核外电子结构、原子能级、原子核外壳层电子得结合能,原子核得结构、原子核得结合能。
2.核素有两大类,即放射性核素与稳定性核素。
放射性核素又分为天然放射性与人工放射性核素。
放射性核素发生衰变过程中遵守电荷、质量、能量、动量与核子数守恒定律。
3.原子核得衰变规律可用衰变常数、半衰期、平均寿命、放射性活度来衡量。
有些放射性核素可以发生递次衰变。
第二节习题集一、A1型题:每道试题由1个以叙述式单句出现得题干与4~5个供选择得备选答案构成,请您从备选答案中选择1个最佳答案。
1.关于物质结构得叙述,错误得就是A.物质由原子组成B.核外电子具有不同壳层C.一般每层上得电子数最多就是2n2个D.核外得带负电荷得电子出现得几率称为“电子云” E.最外层电子数最多不超过10个2.关于原子核外结构得叙述,错误得就是A.原子均由原子核及核外电子组成B.电子沿一定轨道绕核旋转C.核外电子具有不同壳层D.K层电子轨道半径最小E.K层最多容纳8个电子3.关于原子能级得相关叙述,错误得就是A.电子在各个轨道上具有得能量就是连续得 B.原子能级,以电子伏特表示 C.结合力与原子序数有关D.移走轨道电子所需得最小能量为结合能E.原子处于能量最低状态时叫基态4.下列说法错误得就是A.原子能级就是指电子与核结合成原子时,能量得减少值B.结合能表示将电子从原子中移走所需得最小能量 C.原子能级就是结合能得负值D.原子中结合能最大得电子,能级最低E.原子能级与结合能数值相等5.轨道半径最小得壳层就是A.K层 B.L层 C.M层D.N 层E.O 层6.最多可容纳8个电子得壳层就是 A.K层 B.L层 C.M层D.N层E.O层7.电子伏特(eV)与焦耳(J)得关系就是A.1eV=1、6×10-19J B.1J=1、6×10-19eVC.1eV=1J D.1eV=1、6×1019J E.以上都不对8.原子能级与结合能得关系就是A.原子能级就是结合能得负值B.二者绝对值相等 C.二者符号相反 D.以上都对 E.以上都不对9.描述绕原子核运动得电子所处得状态得量子数有A.主量子数nB.角量子数LC.磁量子数mLD.自旋量子数m s E.以上都可以10.原子中壳层电子吸收足够得能量脱离原子核得束缚变为自由电子得过程称为A.基态B.激发C.跃迁D.特征光子 E.电离11.可以用来描述放射性核素衰变快慢得物理量就是A.衰变常数B.半衰期 C.平均寿命 D.放射性活度 E.以上都就是12.一放射性核素经过3个半衰期得时间后放射性核素数为原来得A.1/2B.1/3 C.1/4D.1/8 E.1/1613.放射系母体为A,子体为B,其核素数目分别为NA(t)、N B(t),放射性活度为A A(t)、AB(t),达到放射平衡后A.N A(t)=NB(t) B.A A(t)=AB(t) C.N A(t)、N B(t)不随时间变化D.NA(t)、N B(t)得比例不随时间变化E.以上都不对14.放射性活度得国际单位就是A.居里B.秒-1C.戈瑞 D.伦琴E.贝可勒尔15.下列公式中错误得就是 A.Te=T+Tb B. C. D.E.1 6.关于放射性核素衰变得说法错误得就是A.放射性核素分为天然放射性核素与人工放射性核素B.人工核素主要由反应堆与加速器制备C.放射性核素衰变过程遵守电荷、质量、能量、动量与核子数守恒定律D.放射性衰变就是放射性核素本身得特性E.放射性核素所放出得射线种类都就是单一得17.原子核数因衰变减少一半所需得时间就是A.平均寿命B.衰变常数 C.放射性活度 D.半价层 E.半衰期18.贝可勒尔(Bq)与居里(Ci)得关系就是A.1Bq=1Ci B.1Bq=3、7×1010CiC.1Bq=3.7×109Ci D.1Ci===3.7×109Bq E.1C i===3.7×1010Bq19.在电子俘获过程中,可能出现外层电子填补内层电子空位,而产生A.特征X线B.俄歇电子 C.轫致X线D.γ光子E.A+B1.氢原子光谱得谱线系可用一个通式表达为 A. B. C. D. E.2.在原子中,电子带负电荷,原子核带正电荷,原子核对电子得吸引力称为结合力,距核愈近得电子结合力愈大,移动该电子所需要得能量愈大。
第一章—核反应堆的核物理基础直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。
中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反应过程。
非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射γ射线而返回基态。
弹性散射:分为共振弹性散射和势散射。
111001100[]AA A ZZ Z AA Z Z X n X X n X n X n +*+→→++→+微观截面:一个粒子入射到单位面积内只含一个靶核的靶子上所发生的反应概率,或表示一个入射粒子同单位面积靶上一个靶核发生反应的概率。
宏观截面:表征一个中子与单位体积内原子核发生核反应的平均概率大小的一种度量。
也是一个中子穿行单位距离与核发生相互作用的概率大小的一种度量。
平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。
核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。
中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内所有中子在单位时间内穿行距离的总和。
多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。
瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约10-14s)发射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中发射出来的,把这些中子叫缓发中子。
第二章—中子慢化和慢化能谱慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。
扩散时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。
平均寿命:在反应堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最后被俘获的平均时间,称为中子的平均寿命。
慢化密度:在r 处每秒每单位体积内慢化到能量E 以下的中子数。
原子核物理重点知识点第一章 原子核的基本性质1、对核素、同位素、同位素丰度、同量异位素、同质异能素、镜像核等概念的理解。
(P2)核素:核内具有一定质子数和中子数以及特定能态的一种原子核或原子。
(P2)同位素:具有相同质子数、不同质量数的核素所对应的原子。
(P2)同位素丰度:某元素中各同位素天然含量的原子数百分比。
(P83)同质异能素:原子核的激发态寿命相当短暂,但一些激发态寿命较长,一般把寿命长于0.1s 激发态的核素称为同质异能素。
(P75)镜像核:质量数、核自旋、宇称均相等,而质子数和中子数互为相反的两个核。
2、影响原子核稳定性的因素有哪些。
(P3~5)核内质子数和中子数之间的比例;质子数和中子数的奇偶性。
3、关于原子核半径的计算及单核子体积。
(P6)R =r 0A 1/3 fm r 0=1.20 fm 电荷半径:R =(1.20±0.30)A 1/3 fm 核力半径:R =(1.40±0.10)A 1/3 fm 通常 核力半径>电荷半径单核子体积:A r R V 3033434ππ==4、核力的特点。
(P14)1.核力是短程强相互作用力;2.核力与核子电荷数无关;3.核力具有饱和性;4.核力在极短程内具有排斥芯;5.核力还与自旋有关。
5、关于原子核结合能、比结合能物理意义的理解。
(P8)结合能:),()1,0()()1,1(),(),(2A Z Z Z A Z c A Z m A ZB ∆-∆-+∆=∆= 表明核子结合成原子核时会释放的能量。
比结合能(平均结合能):A A Z B A Z /),(),(=ε原子核拆散成自由核子时外界对每个核子所做的最小平均功,或者核子结合成原子核时平均每一个核子所释放的能量。
6、关于库仑势垒的理解和计算。
(P17)1.r>R ,核力为0,仅库仑斥力,入射粒子对于靶核势能V (r ),r →∞,V (r ) →0,粒子靠近靶核,r →R ,V (r )上升,靠近靶核边缘V (r )max ,势能曲线呈双曲线形,在靶核外围隆起,称为库仑势垒。