开关电源同步整流技术9
- 格式:ppt
- 大小:22.00 KB
- 文档页数:1
江苏宏微科技股份有限公司 Power for the Better同步整流技术及主要拓扑电路宏微科技市场部2015-9-16Contents• 同步整流电路概述 • 典型电路及其特点 • 损耗分析 • 同步整流电路中常见问题 • MOSFET选型设计参考Power for the Better1 CONFIDENTIAL力求更好Contents• 同步整流技术概述 • 典型电路及其特点 • 损耗分析 • 同步整流电路中常见问题 • MOSFET选型设计参考Power for the Better2 CONFIDENTIAL力求更好同步整流技术概述由于中低压MOSFET具有很小的导通电阻,在有电流通过时产生的电压降很 小,可以替代二极管作为整流器件,可以提高变换器的效率。
diodeMOSFETMOSFET作整流器时,栅源极间电压必须与被整流电压的相位保持同步关系才 能完成整流功能,故称同步整流技术。
MOSFET是电压控制型开关器件,且没有反向阻断能力,必须在其栅-源之 间加上驱动电压来控制器漏-源极之间的导通和关断。
这是同步整流设计的难 点和重点。
根据其控制方式,同步整流的驱动电路分为 •自驱动方式; • 独立控制电路他驱方式; • 部分自驱+部分他驱方式结合;Power for the Better3 CONFIDENTIAL力求更好Contents• 同步整流技术概述 • 典型电路及其特点 • 损耗分析 • 同步整流电路中常见问题 • MOSFET选型设计参考Power for the Better4 CONFIDENTIAL力求更好典型电路及其特点1u 2u L1 TX1 1m C1 P1 S1 2 R1 P1 S1 D1N4148 D2 TX1 1m C1 L1 2 R1DC-AC ConverterDC-AC ConverterD1N4148 D1 S2 1u 2uL2L2主变压器副边绕组自驱动 自驱同步整流电路辅助绕组自驱动优点: 电路相对简单,可靠性较高; 成本低; 当采用辅助绕组时,不受主绕组输出电压限制; 在有源钳位正激,双管正激,谐振复位正激,不对称半桥拓扑应用广 泛。
第五章开关电源新技术5-1电源PFC技术5-2 同步整流技术同步整流的概念整流电路是DC/DC变换器的重要组成部分,传统的整流器件采用功率二极管。
由于功率二极管的通态压降较高(压降最小的肖特基二极管也有0.55~0.65 V),因此整流损耗较大。
由于集成电路已逐渐采用微功耗设计,供电电压逐渐降低,某些工作站和个人电脑要求有3.3 V甚至低至1.8 V的供电电压[1]。
显然,DC/DC变换器在输出如此低的电压时,整流管的功耗占输出功率的比重将更大,致使变换器效率更低。
另一方面,仪器设备的小型化设计要求尽量缩小其电源的体积,但耗散功率大恰成为电源小型化、薄型化的障碍。
80年代初,高频功率MOSFET刚开始得到发展,NEC公司的S.IKEDA等人就提出了一种新的整流管[2],即采用功率MOSFET代替功率二极管作为整流元件,从而实现了输出整流管通态压降小、耗散功率低,效率高的DC/DC变换器。
功率MOSFET是一种电压型控制器件,它作为整流元件时,要求控制电压与待整流电压的相位保持同步才能完成整流功能,故称为同步整流电路。
为满足更高频率、更大容量的同步整流电路的需要,人们不断地探索并提出更新的功率MOSFET结构[3]。
5-2-1 自控制同步整流电路拓扑分析图1为倍流同步整流有源箝位DC/DC变换器的主电路拓扑图。
变换器采用有源箝位电路,Vin 为直流输入电压,S1为主开关,S2为辅助开关,S 3和S4为同步整流管(S1~S4均为N型MOS管),T为隔离变压器,S2和C组成有源箝位网络。
D1~D4代表S1~S4的体二极管,C1~C4代表S1~S4的等效结电容,Llk为T的漏感,Lm 为T的励磁电感,T1为理想变压器,变比为N∶1。
工作时S1和S 2轮流导通,当S1关断时,S2导通,箝位电容C被并联到T的原边,为漏感电流提供一个低阻抗的无损耗的通路,从而在每个开关周期中以最小的损耗来吸收和回放电能,同时变压器T铁心磁通又可自动复位。
同步整流技术简介:同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。
它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。
功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。
用功率MOSFET 做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。
同步整流技术就是大大减少了开关电源输出端的整流损耗,从而提高转换效率,降低电源本身发热。
本电源是一款高效率稳压电源模块,输入电压在低于、高于、等于输出电压时,输出电压都可以维持稳定不变。
比如设定输出为12V,那么输入电压在5~32V之间变化时,输出稳压在12V不变。
本模块具有完善的保护功能,可应用于太阳能充电。
优势:电路板采用1.6加厚镀金工艺;输入采用可更换保险管,保护了电源和设备;整版电解采用进口原装贴片、低阻、高频电容,使得纹波降至冰点;IC采用进口原装;恒压、恒流、欠压保护(MPPT更适合太阳能充电)输出错误指示灯,输出电压漂移太严重、短路等故障时亮起;氧化散热片散热,散热效果比本色铝片效果更佳;电感采用铁硅铝,发热更小;欢迎您购买使用我们这款电压模块,请仔细阅读以下使用说明,否则由于使用不当造成的损坏,本公司概不予以保修、更换。
本模块属于自动升降压电源,输入电压在低于、高于、等于输出电压时,输出电压都可以维持稳定不变。
比如设定输出为12V,输入电压在5~32V 之间变化时,输出稳压在12V 不变;有恒流、恒压、欠压保护,以及输出指示、故障指示功能,输出有过流、过压、短路保护;所有元件都能达到工业级应用;可完美应用于各种场合,如充电、大功率LED 驱动、设备供电、车载电源等。
电气参数:1. 输入电压:DC5-32V,建议使用电压在10V以上2. 输出电压:DC1V-30V连续可调;3. 输出电流:10A(MAX)长期7A以内;4. 输出功率:长期80W,峰值130W,超过80W请加强散热;5. 输出纹波:50mV(12V转12V,5A测得);6. 输入反接保护:无,如需要,请在输入端串联肖特基二极管;7. 输出防倒灌:无,如用于电瓶充电或负载是自带电感情负载,请在输出端串联肖特基二极管;8. 尺寸:77.6*46.5*15mm9.短路保护:有;10.重约45克;调试方法:1.电池欠压保护调整方法:(以12V铅酸电池设置10V欠压保护、关断输出为例)输入接稳压电源调整到10V,调整欠压保护电位器(顺时针增大,逆时针减小),直到刚好故障指示灯(红灯)亮起,即设置成功;这样电池放电到10V时候,会自动切断供电,保护电池不受损坏。
同步整流工作原理讲解同步整流是一种常见的电子元件,它在电力转换和直流电源中起到重要的作用。
本文将对同步整流的工作原理进行详细讲解。
我们来了解一下什么是同步整流。
同步整流是一种通过控制开关管的导通和截止,将交流电转换成直流电的技术。
它通常应用于交流电转直流电的场合,如电力电子变流器、电力因数校正器、电动车充电器等。
在同步整流中,最基本的工作原理是利用开关管的导通和截止来控制电流的流动方向。
当开关管导通时,电流可以流向负载,实现正向整流;而当开关管截止时,电流无法流过开关管,从而实现反向整流。
通过控制开关管的导通和截止,可以将交流电转换为直流电。
具体来说,同步整流的工作原理可以分为三个阶段:导通阶段、截止阶段和换向阶段。
首先是导通阶段。
在导通阶段,当交流电源的电压大于负载两端的电压时,开关管会导通,使得电流从交流电源流向负载。
在导通阶段,开关管承受着较大的电流和电压,需要具备较高的导通能力和耐压能力,以确保开关管能正常导通。
接下来是截止阶段。
在截止阶段,当交流电源的电压小于负载两端的电压时,开关管会截止,使得电流无法从交流电源流向负载。
在截止阶段,开关管承受着较大的反向电压,需要具备较高的截止能力和耐压能力,以确保开关管能正常截止。
最后是换向阶段。
在换向阶段,当交流电源的电压从正向变为反向时,开关管会切换导通和截止状态,实现电流的反向流动。
在换向阶段,开关管需要具备较快的切换速度和较低的开关损耗,以确保开关管能正常切换。
除了以上的基本工作原理,同步整流还可以通过增加滤波电容和电感来实现对输出电流的平滑和稳定。
滤波电容可以存储电荷,并在开关管截止时释放电荷,以保持输出电流的连续性;而电感则可以平滑输出电流,减小输出电流的纹波。
总结起来,同步整流通过控制开关管的导通和截止,将交流电转换为直流电。
它的工作原理包括导通阶段、截止阶段和换向阶段,通过增加滤波电容和电感可以实现对输出电流的平滑和稳定。
同步整流在现代电力转换和直流电源中具有广泛的应用,为电力系统的稳定运行和高效能源转换提供了重要支持。
开关电源同步整流工作原理
开关电源同步整流是一种常用的高效率电源设计技术。
其工作原理是
在开关电源的输出端介入一个同步整流电路,在开关管导通时,同步
整流管关断,反之,同步整流管导通,开关管关断。
该技术可以有效
地减小开关电源在输出电压端的压降,从而降低功率损耗,提高转换
效率。
同步整流器的工作原理如下:
1.当开关管导通时,同步整流管关断,输出电容开始放电,电压逐渐降低,但不会到达0V,因为同步整流管的导通使得输出电容通过同步整流管流出电流。
2.当开关管关断时,同步整流管导通,电流由同步整流器流回到输出端,使得输出电容得到重新充电,从而保证输出电压的稳定性。
同步整流器的优点在于,相比传统整流电路,同步整流电路在输出端
引入了一定的电阻,但在同样输出功率下,同步整流电路可以实现更
高的转换效率。
此外,同步整流电路还可以减小开关电源在输出电压
端的噪声幅度,提供更加稳定的输出电压。
同时,同步整流器还可以
减少开关电源对输出电容的压力,从而提高电容使用寿命。
总之,开关电源同步整流是一种有效提高开关电源转换效率、改善输出电压稳定性的技术。
在实际应用中,根据不同的电源设计需要和要求,可以选择不同类型的同步整流器,并进行相应的参数调整,以达到最佳的工作效果。
同步整流技术简单介绍大家都知道,对于开关电源,在次级必然要有一个整流输出的过程。
作为整流电路的主要元件,通常用的是整流二极管(利用它的单向导电特性),它可以理解为一种被动式器件:只要有足够的正向电压它就开通,而不需要另外的控制电路。
但其导通压降较高,快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降。
这个压降完全是做的无用功,并且整流二极管是一种固定压降的器件,举个例子:如有一个管子压降为0.7V,其整流为12V时它的前端要等效12.7V电压,损耗占0.7/12.7≈5.5%.而当其为3.3V整流时,损耗为0.7/4(3.3+0.7)≈17.5%。
可见此类器件在低压大电流的工作环境下其损耗是何等地惊人。
这就导致电源效率降低,损耗产生的热能导致整流管进而开关电源的温度上升、机箱温度上升--------有时系统运行不稳定、电脑硬件使用寿命急剧缩短都是拜这个高温所赐。
随着电脑硬件技术的飞速发展,如GeForce 8800GTX显卡,其12V峰值电流为16.2A。
所以必须制造能提供更大输出电流(如多核F1,四路12V,每路16A;3.3V和5V输出电流各高达24A)的电源转换器。
而当前世界的能源紧张问题的凸现,为广大用户提供更高转换效率(如多核R80,完全符合80PLUS标准)的电源转换器就是我们整个开关电源行业的不可回避的社会责任了。
如何解决这些问题?寻找更好的整流方式、整流器件。
同步整流技术和通态电阻(几毫欧到十几毫欧)极低的专用功率MOSFET就是在这个时刻走上开关电源技术发展的历史舞台了!作为取代整流二极管以降低整流损耗的一种新器件,功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。
因为用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。
同步整流技术介绍开关电源的同步整流技术同步整流技术简介1 概述近年来,为了适应微处理器的发展,模块电源的发展呈现两个明显的发展趋势:低压和快速动态响应,在过去的10年中,模块电源大大改善了分布式供电系统的面貌。
即使是在对成本敏感器件如线路卡,单板安装,模块电源也提供了诱人的解决方案。
然而,高速处理器持续降低的工作电压需要一个全新的,适应未来的电压方案,尤其考虑到肖特级二极管整流模块不能令人满意的效率。
同步整流电路正是为了适应低压输出要求应运而生的。
由于一般的肖特基二极管的正向压降为0.3V以上,在低压输出时模块的效率就不能做的很高,有资料表明采用肖特基二极管的隔离式DC-DC模块电源的效率可以按照下式进行估算:VoutVout (0.1 Vout Vcu Vf)0.1 Vout―原边和控制电路损耗Vcu―印制板的线路损耗Vf―整流管导通压降损耗我们假设采用0.4V的肖特基整流二极管,印制板的线路损耗为0.1V,则1.8V的模块最大的估算效率为72%。
这意味着28%的能量被模块内部损耗了。
其中由于二极管导通压降造成的损耗占了约15%。
随着半导体工艺的发展,低压功率MOS管的的有着越来越小的通态电阻,越来越低的开关损耗,现在IR公司最新的技术可以制作30V/2.5mΩ的MOS管,在电流为15A时,导通压降为0.0375,比采用肖特基二极管低了一个数量级。
所以近年来对同步整流电路的研究已经引起了人们的极大关注。
在中大功率低压输出的DC-DC变换器的产品开发中,采用低压功率MOSFET替代肖特基二极管的方案得到了广泛的认同。
今天,采用同步整流技术的ON-BOARD 模块已经广泛应用于通讯的所有领域。
2 同步整流电路的工作原理介绍开关电源的同步整流技术图1 采用同步整流的正激电路示意图(无复位绕组)同步整流电路与普通整流电路的区别在于它采用了MOS管代替二极管,而MOS管是它驱的开关器件,必须采用一定的方式控制MOS管的开关。
同步整流技术已经成为现代开关电源技术的标志。
凡是高水平开关电源,必定有同步整流技术。
在使用面上早已不再局限于5V、3.3V、2.5V这些低输出电压领域,现在上至12V,15V,19V至24V以下输出,几乎都在使用同步整流技术。
下面介绍和分析各种同步整流技术的优点、缺点及实现方法。
一、自驱动同步整流这里给出反激、正激及推挽三种电路的同步整流电路。
在正常输入电压值附近工作时,效果十分明显,在高端时,效率变坏而且容易损坏MOSFET。
其电路如图1所示。
输出电压小于5V时才适用。
图1. 反激、正激、推挽电路的自偏置同步整流电路二、辅助绕组驱动的同步整流为了防止高端输入时同步整流的MOSFET栅极上的电压过高,改用从二次侧绕组中增加驱动绕组的方式。
该方式可以有效地调节驱动同步整流的MOSFET的栅压,使它在MOSFET栅压的合理区域,从而保护了MOSFET,提高了电源的可靠性,此外也将输出电压从5V扩展到24V。
其工作原理如图2所示。
图2辅助绕组驱动的同步整流电路三、控制IC方式的同步整流为提高驱动同步整流MOSFET的效果,从而设计了各种模式的同步整流的控制驱动IC,也取得了不少成果,它将同步整流MOSFET的栅压调至最佳状态。
将其开启关断也提高了时控精度,其主要的不足在于MOSFET的源极必须接地,这会加大地线上的开关噪声,并传输至电源输出端。
此外其开关时序由自身输出脉冲给出,所以同步整流MOSFET的开启关断通常为硬开关,其时间会与初级侧主开关有些时间差,因此输出电压大体控制在20V以下,ST 公司推出的STSR2、STSR3,以及线性技术公司的LTC3900和LTC3901即是此种控制方式的代表作品。
图3和图4给出其应用电路图。
图3 STSR2,STSR3驱动同步整流的电路图4 LTC3900和LTC3901驱动的同步整流电路四、ZVS、ZCS同步整流该种方式诞生于2002年5月,在全桥或半桥电路中,PWM 输出的信号经信号变压器或高速光耦传递至二次侧,再经过RC网络积分后,经过MOSFET驱动器去驱动同步整流的MOSFET,驱动信号的脉冲宽度几乎不变,保持各50%的占空比,而当DC/DC系统输出电压稳压,一次脉宽调宽以后,二次侧同步整流MOSFET 即工作于ZVS、ZCS条件之下。
电源设计的同步整流技术随着科技的发展,电力需求不断增加,对高效能源的需求也逐渐增加。
因此,同步整流技术应运而生。
同步整流技术是指在电源设计中采用一种控制方法,使得输出电流与输入电流同步,从而提高整体系统的效率和稳定性。
同步整流技术的原理是通过对输入和输出的电流进行精确的控制,使其在时间和幅度上保持同步。
这样可以避免功率损耗和系统能量浪费,从而实现高效能源的利用。
与传统的非同步整流技术相比,同步整流技术具有更高的转换效率和更低的电压波动。
在同步整流技术中,有两种常见的实现方式:主动式和无源式。
主动式同步整流技术是通过电路中的开关管进行控制,实现输入和输出电流的同步。
主动式同步整流技术的特点是具有高效率和高可靠性,适用于大功率和高频率的应用。
常见的主动式同步整流电路包括有源整流器、LLC谐振整流器等。
无源式同步整流技术是通过电路中的无源元件(如二极管、电感器等)进行控制,实现输入和输出电流的同步。
无源式同步整流技术的特点是结构简单、成本低廉,适用于小功率和低频率的应用。
常见的无源式同步整流电路有无源整流桥、谐振型无源整流器等。
无论是主动式还是无源式同步整流技术,在设计过程中都需要考虑一些关键因素。
首先,要考虑电源的输入和输出功率的匹配。
输入功率越接近输出功率,整流效率就越高。
其次,还需要考虑电路的设计参数,如开关频率、电感和电容的选择等。
合理的设计参数可以提高整流系统的效率和稳定性。
同步整流技术不仅可以应用于传统的交流-直流电源设计,还广泛应用于新能源领域,如风电、太阳能等。
在这些领域中,同步整流技术可以将可再生能源转换为可用的电能,提高能源转换效率,促进可再生能源的开发和利用。
综上所述,同步整流技术是一种提高电源设计效率和稳定性的重要方法。
在电力需求不断增加和对高效能源的需求日益增加的背景下,同步整流技术具有重要的应用前景。
通过不断的研究和创新,同步整流技术有望在未来实现更高效、更稳定的能源转换。
同步整流原理同步整流(SynchronousRectification)是采用通态电阻极低的专用功率MOSFET取代传统的整流二极管以降低整流损耗的技术。
它能够大大提高DC/DC变换器的效率并不存在由快速恢复二极管势垒电压造成的死区电压。
同步整流的基本原理:单端正激、隔离降压同步整流的基本原理电路中,其中,Q1、Q2为功率MOSFET。
该电路的工作原理为在次级电压的正半周期,Q1导通、Q2关断,在次级电压的负半周期,Q2导通、Q1关断。
同步整流电路的功率损耗主要包括MOSFET的导通损耗和栅极驱动损耗,在开关频率低于1MHz时,以导通损耗为主。
正激式DC/DC变换器在功率管截止期间必须有将高频变压器复位的电路,以防止变压器磁芯饱和,一般采用C、R、VD无源箝位电路。
当功率管V截止时,高频变压器初级线圈由R、VD电路构成的放电通路使变压器复位。
DPA-Switch电路的内部结构与工作原理DPA-Switch电路是6端器件,6个引脚分别为控制端C、线路检测端L、外部设定极限电流端X、开关频率选择端F、源极S和漏极D。
线路检测端可实现过压检测、欠压检测、电压反馈、远程通断和同步等功能。
将开关频率选择端与源极端连接时,开关频率为400kHz,而将其连接控制端时,开关频率为300kHz。
(1)控制电压源用于控制电压UC以向并联调整器和门驱动器级提供偏置电压。
控制电流IC用来调节占空比。
(2)带隙基准电压源用于向内部提供各种基准电压,同时产生一个具有温度补偿并可调整的电流源,以保证精确设定振荡器频率和门级驱动电流。
(3)振荡器用于产生脉宽调制器所需要的锯齿波、时钟信号及最大占空比信号(Dmax)。
(4)并联调整器和误差放大器误差放大器用于将反馈电压Uf与5.8V基准电压进行比较以输出误差电流Ir,从而在电阻Rs上形成误差电压Ur。
(5)脉宽调制器(PWM)脉宽调制器是一个电压反馈式控制电路,具有两个功能:一是改变控制端电流IC的大小,即调节占空比,实现脉宽调制;二是将误差电压Ur经由Ra和Ca组成的截止频率为7kHz的低通滤波器进行滤波,以在滤掉开关噪声电压后,加至PWM比较器的同相输入端,然后再与锯齿波电压Uj进行比较,从而产生脉宽调制信号Ub。
同步整流技术的发展及应用从二十世纪末,由于MOSFET技术大幅度进步,引入开关电源技术中的同步整流技术给开关电源效率的提升带来了巨大的收益。
效率提升的百分点从3%~8%,比软开关技术带来的效果要好的多。
而且没有多少专利技术的限制。
目前使用的同步整流有,自驱动方式的同步整流;辅助绕组控制方式的同步整流;控制IC方式的同步整流。
近来已经出现了软开关技术的同步整流方式。
这种软开关的含义主要指减少或消除MOSFET的开关损耗,即减少体二极管的导通时间并消除体二极管的反响恢复时间造成的损耗。
它首先出现在推挽、全桥电路拓扑中,随之又出现在正激电路拓扑中。
软开关方式的同步整流,由于其处理的多为大电流,低电压,所以对效率的提升比初级侧软开关处理的高电压小电流更为有效。
为了更精确地控制二次侧同步整流,已有几种PWM控制IC将同步整流控制信号设计在IC内部,用外部元件调节同步整流信号的延迟时间,从而能更准确地做到同步整流的软开关控制。
此外功率半导体技术的进步使得MOSFET的导通电阻已经达到低于2mΩ,开关速度小于20ns。
栅驱动电荷小于25nq的先进水平。
有些MOSFET的体二极管还做成了快恢复的,这使得DC/DC变换器中只要采用同步整流技术,初级既使不用软开关技术,效果也已经很不错了。
同步整流技术已经成为现代开关电源技术的标志。
凡是高水平开关电源,必定有同步整流技术。
在使用面上早已不再局限于5V、3.3V、2.5V这些低输出电压领域,现在上至12V,15V,19V,24V至28V以下输出,几乎都在使用同步整流技术。
下面我就来介绍和分析各种同步整流技术的优点、缺点及实现方法。
一.自驱动同步整流这是最早的方法,也是最简单和成本最低廉的技术,这里给出反激、正激及推挽三种电路的同步整流电路。
在正常输入电压值附近工作时,效果十分明显,在高端时,效率变坏而且容易损坏MOSFET。
其电路如图1所示。
输出电压必须小于5V。
图1. 反激、正激、推挽方式电路的自偏置同步整流电路二.辅助绕组驱动的同步整流这是改进的方法,为防止高端输入时同步整流的MOSFET栅极上的电压过高,改用从二次绕组中增加驱动绕组的方式。
同步整流原理
同步整流原理是一种电路技术,用于将交流电转换为直流电。
该原理基于两个重要的电子元件:二极管和电容。
通过将二极管和电容组合在一起,可以实现将交流电信号变为直流电信号。
具体来说,当交流电信号输入电路时,二极管会根据其正负半周的特性,只允许电流在一个方向上通过。
在正半周中,二极管的正极与输入信号的正极连接,电流可以通过二极管。
在负半周中,二极管的正极与输入信号的负极连接,电流无法通过二极管。
电容的作用是平滑输出信号。
在正半周中,电容通过二极管充电,存储电能。
在负半周中,二极管停止导通,电容开始释放存储的电能,以供电路输出使用。
由于电容的充放电特性,输出信号将变为较为平滑的直流信号。
通过二极管和电容的组合,交流信号经过整流和平滑处理后,可以得到一个较为稳定的直流输出。
同步整流原理的主要应用是转换低电压的交流信号为直流信号,并广泛应用于电源和通信系统中。
它能够有效减小电源中的噪声和纹波,并提供稳定的直流电流供应。
任何需要使用稳定直流电的领域都可能会采用同步整流技术。