八年级下数学测试题及答案doc
- 格式:doc
- 大小:249.00 KB
- 文档页数:6
人教版八年级下册数学期末试卷综合测试卷(word 含答案)一、选择题1.要使式子﹣3x -有意义,则x 的值可以为( )A .﹣6B .0C .2D .π2.下列语句不能判定ABC 是直角三角形的是( )A .2220a b c +-=B .::3:4:5A BC ∠∠∠= C .::3:4:5a b c =D .A B C ∠+∠=∠3.如图,四边形ABCD 的对角线AC 、BD 相交于O ,下列判断正确的是( )A .若AC ⊥BD ,则四边形ABCD 是菱形B .若AC =BD ,则四边形ABCD 是矩形C .若AB =DC ,AD ∥BC ,则四边形ABCD 是平行四边形 D .若AO =OC ,BO =OD ,则四边形ABCD 是平行四边形4.为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的( ) A .平均数B .中位数C .众数D .方差5.如图,在△ABC 中,AC =6,AB =8,BC =10,点D 是BC 的中点,连接AD ,分别以点A ,B 为圆心,CD 的长为半径在△ABC 外画弧,两弧交于点E ,连接AE ,BE .则四边形AEBC 的面积为( )A .2B .3C .24D .366.如图,在平面直角坐标系上,直线y =34x ﹣3分别与x 轴、y 轴相交于A 、B 两点,将△AOB 沿x 轴翻折得到△AOC ,使点B 刚好落在y 轴正半轴的点C 处,过点C 作CD ⊥AB 交AB 于D ,则CD 的长为( )A.185B.245C.4 D.57.如图,在平行四边形ABCD上,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B、F为圆心,以大于12BF的长为半径画弧交于点P,作射线AP交BC于点E,连接EF.若12BF=,10AB=,则线段AE的长为()A.18 B.17 C.16 D.148.如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(3,4),点P 是y轴正半轴上的动点,连接AP交线段OB于点Q,若△OPQ是等腰三角形,则点P的坐标是()A.(0,53)B.(0,43)C.(0,43)或(0,163)D.(0,53)或(0,163)二、填空题9.2x-x的取值范围为__________.10.如图,在菱形ABCD中,AC=6,BD=8,则菱形的面积等于 ___.11.图中阴影部分是一个正方形,则此正方形的面积为_______ .12.在平行四边形ABCD 中,AB =5,AD =3,AC ⊥BC ,则BD 的长为____.13.已知一次函数y=kx +b 图像过点(0,5)与(2,3),则该一次函数的表达式为_____. 14.如图,O 是矩形ABCD 的对角线AC 、BD 的交点,OM ⊥AD ,垂足为M ,若AB=8,则OM 长为_______.15.如图,将一块等腰直角三角板ABC 放置在平面直角坐标系中,90,ACB AC BC ∠=︒=,点A 在y 轴的正半轴上,点C 在x 轴的负半轴上,点B 在第二象限,AC 所在直线的函数表达式是22y x =+,若保持AC 的长不变,当点A 在y 轴的正半轴滑动,点C 随之在x 轴的负半轴上滑动,则在滑动过程中,点B 与原点O 的最大距离是_______.16.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.三、解答题17.计算:(1)80205-+;+-.(2)(53)(53)18.由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城的正西方向240km的B处,以每时12km的速度向北偏东60°方向移动,距沙尘暴中心150km的范围为受影响区域.(1)A城是否受到这次沙尘暴的影响?为什么?(2)若A城受这次沙尘暴影响,那么遭受影响的时间有多长?A B C均在格点上.19.如图,网格中的每个小正方形的边长为1,点、、(1)直接写出AC的长为___________,ABC的面积为_____;(2)请在所给的网格中,仅用无刻度的直尺作出AC边上的高BD,并保留作图痕迹.20.已知:如图,在Rt△ABC中,D是AB边上任意一点,E是BC边中点,过点C作CF∥AB,交DE的延长线于点F,连接BF、CD.(1)求证:四边形CDBF是平行四边形.(2)当D点为AB的中点时,判断四边形CDBF的形状,并说明理由.21.先化简,再求值:a+2-+,其中a=1007.12a a如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)先化简,再求值:a+2269-+,其中a=﹣2018.a a22.某电商在线销售甲、乙、丙三种水果,已知每千克乙水果的售价比每千克甲水果的售价多3元,每千克丙水果的售价是每千克甲水果售价的2倍,用200元购买丙水果的数量是用80元购买乙水果数量的2倍.(1)求丙水果每千克的售价是多少元?(2)电商推出如下销售方案:甲、乙、丙三种水果搭配销售共7千克,其中乙水果的数量是丙水果数量的2倍,且甲、乙两种水果数量之和不超过丙水果数量的6倍.请直接写出按此方案购买7千克水果最少要花费元.23.如图1,以平行四边形的顶点O为坐标原点,以所在直线为x轴,建立平面直角坐标系,,D是对角线AC的中点,点P从点A出发,以每秒1个单位的速度沿AB方向运动到点B,同时点Q从点O出发,以每秒3个单位的速度沿x轴正方向运动,当点P到达点B时,两个点同时停止运动.(1)求点A的坐标.(2)连结PQ,AQ,CP,当PQ经过点D时,求四边形的面积.(3)在坐标系中找点F,使以Q、D、C、F为顶点的四边形是菱形,则点F的坐标为________.(直接写出答案)24.(1)[探究]对于函数y=|x|,当x≥0时,y=x;当x<0时,y=﹣x.在平面直角坐标系中画出函数图象,由图象可知,函数y=|x|的最小值是.(2)[应用]对于函数y =|x ﹣1|+12|x +2|.①当x ≥1时,y = ;当x ≤﹣2时,y = ;当﹣2<x <1时,y = . ②在平面直角坐标系中画出函数图象,由图象可知,函数y =|x ﹣1|+12|x +2|的最小值是 .(3)[迁移]当x = 时,函数y =|x ﹣1|+|2x ﹣1|+|3x ﹣1|+…+|8x ﹣1|取到最小值.(4)[反思]上述问题解决过程中,涉及了一些重要的数学思想或方法,请写出其中一种. 25.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值. (3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由. 26.如图1,ABC ∆中,CD AB ⊥于D ,且::2:3:4BD AD CD =; (1)试说明ABC ∆是等腰三角形;(2)已知Δ40ABC S =cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒). ①若DMN ∆的边与BC 平行,求t 的值;②在点N 运动的过程中,ADN ∆能否成为等腰三角形?若能,求出t 的值;若不能,请说明【参考答案】一、选择题 1.D 解析:D 【分析】根据二次根式有意义的条件列出不等式,解不等式即可. 【详解】解:由题意得:x ﹣3≥0, 解得:x ≥3,各个选项中,π符合题意, 故选:D . 【点睛】此题主要考查二次根式有意义的条件,解题的关键是熟知二次根式的性质.2.B解析:B 【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可. 【详解】解:A 、由2220a b c +-=,可得222+=a b c ,故是直角三角形,不符合题意; B 、∵::3:4:5A B C ∠∠∠=,∴∠C =180°×575345=︒++,故不是直角三角形,符合题意;C 、32+42=52,能构成直角三角形,不符合题意;D 、∵∠A +∠B =∠C ,∴∠C =90°,故是直角三角形,不符合题意; 故选:B . 【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.D解析:D【分析】根据平行四边形及特殊平行四边形的判定方法,对选项逐个判断即可. 【详解】解:A :对角线相互垂直平行四边形才是菱形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;B :对角线相等的平行四边形才是矩形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;C :一组对边相等,另外一组对边平行,不一定是平行四边形,还有可能是等腰梯形,故选项错误,不符合题意;D :对角线互相平分的四边形是平行四边形,故选项正确,符合题意; 故选D . 【点睛】此题考查了平行四边形的判定方法,熟练掌握平行四边形及特殊平行四边形的判定方法是解题的关键.4.B解析:B 【解析】 【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可. 【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了, 故选B . 【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.5.D解析:D 【分析】根据勾股定理的逆定理求出90BAC ∠=,求出BD CD AD AE BE ====,根据菱形的判定求出四边形AEBD 是菱形,根据菱形的性质求出//AE BD ,求出1122ABE ABD ACD ABC S S S S ∆∆∆∆====,再求出四边形AEBC 的面积即可.【详解】 解:6AC =,8AB =,10BC =,222AB AC BC ∴+=,ABC ∆∴是直角三角形,即90BAC ∠=︒,点D 是BC 的中点,10BC =,5BD DC AD ∴===,即5BE AE BD AD ====,∴四边形AEBD 是菱形,//AE BC ∴,1116812222ABE ABD ACD ABC S S S S ∆∆∆∆∴====⨯⨯⨯=,∴四边形AEBC 的面积是12121236++=,故选:D . 【点睛】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,菱形的性质和判定,三角形的面积等知识点,解题的关键是能求出12ABE ABD ACD ABC S S S S ∆∆∆∆===是解此题的关键,注意:①如果一个三角形的两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形,②等底等高的三角形的面积相等.6.B解析:B 【解析】 【分析】利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,在Rt △AOB 中,利用勾股定理可求出AB 的长,由折叠的性质可得出OC =OB ,进而可得出BC 的长,再利用面积法,即可求出CD 的长. 【详解】解:当x =0时,y =34×0﹣3=﹣3,∴点B 的坐标为(0,﹣3);当y =0时,34x ﹣3=0,解得:x =4,∴点A 的坐标为(4,0).在Rt △AOB 中,∠AOB =90°,OA =4,OB =3, ∴5AB = 由折叠可知:OC =OB =3, ∴BC =OB +OC =6.∵S △ABC =12BC •OA =12AB •CD , ∴245BC OA CD AB == 故选B . 【点睛】本题主要考查了一次函数与坐标轴的交点问题,折叠的性质,三角形的面积公式,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.7.C解析:C 【解析】 【分析】证明四边形ABEF 是菱形,得到OA=OE ,OB=OF =6,AE ⊥BF ,再在Rt △AOB 中由勾股定理求出OA 即可解决问题. 【详解】解:∵以点A 为圆心,AB 的长为半径画弧交AD 于点F , ∴AF=AB ,∵分别以点B 、F 为圆心,以大于12BF 的长为半径画弧交于点P ,作射线AP 交BC 于点E ,∴直线AE 是线段BF 的垂直平分线, 且AP 为∠F AB 的角平分线, ∴EF=EB ,∠F AE=∠BAE , ∵四边形ABCD 为平行四边形, ∴AD ∥BC ,∠F AE =∠AEB , ∴∠AEB =∠BAE , ∴BA =BE , ∴BA =BE=AF=FE , ∴四边形ABEF 是菱形; ∴AE ⊥BF ,OB =OF =6,OA =OE , ∴∠AOB =90°,在Rt △AOB 中:8AO =, ∴216AE AO ==, 故选:C . 【点睛】本题考查的是菱形的判定、垂直平分线、角平分线的尺规作图、勾股定理等相关知识点,掌握特殊四边形的判定方法及重要图形的尺规作图是解决本题的关键.8.C解析:C 【分析】利用待定系数法分别求出OB 、PA 的函数关系式,设(0,)P m ,4(,)3Q n n ,并由P 、Q 点坐标,可表示出OP 、OQ 和PQ ,根据△OPQ 是等腰三角形,可得OP OQ =或OP PQ =或OQ PQ =,则可得到关于m 的方程,求得m 的值,即可求得P 点坐标.【详解】解:设OB 的关系式为y kx =,将B (3,4)代入得:43k =, ∴43OB y x =, 设(0,)P m ,4(,)3Q n n , ∴OP m =,53OQ n =,PQ = 设PA 的关系式为y kx b =+,将(0,)P m ,(4,0)A 代入得:40b m k b =⎧⎨+=⎩, 解得4b m m k =⎧⎪⎨=-⎪⎩, ∴4PA m y x m =-+, 将4PA m y x m =-+,43OB y x =联立方程组得: 443PA OB m y x m y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得12163Q m x n m==+, 若△OPQ 是等腰三角形,则有OP OQ =或OP PQ =或OQ PQ =,当OP OQ =时,53m n =,12163m n m =+, 即5123163m m m=⨯+, 解得43m =,则P 点坐标为(0,43), 当OP PQ =时,m =,12163m n m =+, 解得176m =-,不合题意,舍去, 当OQ PQ =时,根据等腰三角形性质可得:点Q 在OP 的垂直平分线上,12Q y OP =, ∴4132n m =,且12163m n m =+, 即412131632m m m ⨯=+, 解得163m =,则P 点坐标为(0,163)综上可知存在满足条件的点P,其坐标为(0,43)或(0,163).故选:C.【点睛】本题是一次函数的综合问题,考查了待定系数法、等腰三角形的性质等知识,掌握待定系数法与两点间的距离公式并注意分类讨论思想及方程思想的应用是解题的关键,综合性较强.二、填空题9.x≥2且x≠3【解析】【分析】0,且分子二次根式的被开方数非负,则可求得x的取值范围.【详解】由题意得:3020xx-≠⎧⎨-≥⎩,解不等式组得:x≥2且x≠3.故答案为:x≥2且x≠3.【点睛】本题是求使式子有意义的自变量的取值范围的问题,涉及二次根式的意义,分母不为零,不等式组的解法等知识;一般地,当式子为分式时,分母不为零;当式子中含有二次根式时,要求被开方数非负.10.24【解析】【分析】根据菱形的面积=对角线积的一半,可求菱形的面积.【详解】四边形ABCD是菱形,∴116824 22S AC BD=⋅=⨯⨯=.故答案为:24.【点睛】本题考查菱形的性质,解题的关键是熟练运用菱形的性质.11.36cm2【解析】【分析】利用勾股定理求正方形边长,从而求正方形的面积.【详解】6∴正方形的面积为:6²=36故答案为:36 cm 2.【点睛】本题考查勾股定理解直角三角形,题目比较简单,正确计算是解题关键.12.A 解析:213【分析】根据AC ⊥BC ,AB =5,AD =3,可以得到AC 的长,再根据平行四边形的性质,可以得到DE 和BE 的长,然后根据勾股定理即可求得BD 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD =BC ,∵AC ⊥BC ,AB =5,AD =3,∴∠ACB =90°,BC =3,∴AC =4,作DE ⊥BC 交BC 的延长线于点E ,∵AC ⊥BC ,∴AC ∥DE , 又∵AD ∥CE ,∴四边形ACED 是矩形,∴AC =DE ,AD =CE ,∴DE =4,BE =6,∵∠DEB =90°,∴BD 222264213BE DE ++=故答案为:213【点睛】本题考查了平行四边形的判定和性质、勾股定理,解答本题的关键是熟练掌握勾股定理. 13.y =-x +5【分析】由直线y =kx +b 经过(0,5)、(2,3)两点,代入可求出函数关系式.【详解】解:把点(0,5)和点(2,3)代入y =kx +b 得532b k b =⎧⎨=+⎩,解得:15k b =-⎧⎨=⎩,所以一次函数的表达式为y =-x +5,故答案为:y =-x +5.【点睛】此题主要考查了待定系数法求一次函数解析式,注意利用一次函数的特点,来列出方程组求解是解题关键.14.A解析:4【解析】【分析】根据三角形的中位线即可求解.【详解】∵O 是矩形ABCD 的对角线AC 、BD 的交点,∴O 是AC 中点,又OM ⊥AD ,AD ⊥CD ∴12∥OM CD ,又AB=CD=8 故OM=4故填:4【点睛】此题主要考查矩形的性质,解题的关键是熟知三角形中位线的性质.15.【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求得OE 与BE 的长,然后由三角形三边关系,求得点B 到原点的最大距离.【详解】解:当x =0时,y =2x +2=2,∴A (0,2);当y =2x +2=0时,x =-1,∴C (-1,0).∴OA =2,OC =1,∴AC如图所示,过点B 作BD ⊥x 轴于点D .∵∠ACO +∠ACB +∠BCD =180°,∠ACO +∠CAO =90°,∠ACB =90°,∴∠CAO =∠BC D .在△AOC 和△CDB 中,AOC CDB CAO BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△CDB (AAS ),∴CD =AO =2,DB =OC =1,OD =OC +CD =3,∴点B 的坐标为(-3,1).如图所示.取AC 的中点E ,连接BE ,OE ,OB ,∵∠AOC =90°,AC =5, ∴OE =CE =12AC =52, ∵BC ⊥AC ,BC =5,∴BE =22BC CE +=52, 若点O ,E ,B 不在一条直线上,则OB <OE +BE =5522, 若点O ,E ,B 在一条直线上,则OB =OE +BE =5522, ∴当O ,E ,B 三点在一条直线上时,OB 取得最大值,最大值为552+, 故答案为:552+.【点睛】此题考查了一次函数综合题,利用自变量与函数值的对应关系是求AC 长度的关键,又利用了勾股定理;求点B 的坐标的关键是利用全等三角形的判定与性质得出CD ,BD 的长;求点B 与原点O 的最大距离的关键是直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.或【详解】分析:过点D′作MN ⊥AB 于点N ,MN 交CD 于点M ,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理解析:52或533【详解】分析:过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.详解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1、所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=12CD=12AB=4,AD=AD′=5,由勾股定理可知:22=3AD AN'-,∴MD′=MN-ND′=AD-ND′=2,EM=DM-DE=4-a,∵ED′2=EM2+MD′2,即a2=(4-a)2+4,解得:a=52;②当MD′=ND′时,MD′=ND′=12MN=12AD=52,由勾股定理可知:2253 =AD ND'-'∴53,∵ED′2=EM2+MD′2,即a2=53−a)2+(52)2,解得:53.综上知:DE=5253.故答案为52.. 点睛:本题考查了翻转变换、轴对称的性质、矩形的性质以及勾股定理,解题的关键是找出关于DM 长度的一元二次方程.本题属于中档题,难度不大,但在做题过程中容易丢失一种情况,解决该题型题目时,结合勾股定理列出方程是关键.三、解答题17.(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式=(2)原式=5﹣3=2.【点睛】本题考查的是二次根式解析:(1)2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式==(2)原式=5﹣3=2.【点睛】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握利用平方差公式进行简便运算是解题的关键.18.(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否解析:(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC =30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否受到这次沙尘暴的影响;(2)如图,设点E 、F 是以A 为圆心,150km 为半径的圆与BM 的交点,根据勾股定理可以求出CE 的长度,也就求出了EF 的长度,然后除以沙尘暴的速度即可求出遭受影响的时间.【详解】解:(1)过点A 作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠CBA =30°,∴AC =12AB =12×240=120,∵AC =120<150,∴A 城将受这次沙尘暴的影响.(2)设点E ,F 是以A 为圆心,150km 为半径的圆与MB 的交点,连接AE ,AF , 由题意得,222221*********CE AE AC =-=-=,CE =90∴EF =2CE =2×90=180180÷12=15(小时)∴A 城受沙尘暴影响的时间为15小时.【点睛】本题考查了直角三角形中30°的角所对的直角边等于斜边的一半及勾股定理的应用,正确理解题意,把握好题目的数量关系是解决问题的关键.19.(1),;(2)见解析【解析】 【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1),:(2)如图所示,解析:(1)29AC =9ABC S=;(2)见解析【解析】【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1)222529,AC +, 111452425149222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=:(2)如图所示,BD 即为所求.【点睛】本题考查了作图-应用与设计作图,三角形的面积的计算,勾股定理,正确的作出图形是解题的关键.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下:∵D 为AB 的中点,∠ACB =90°,∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形,∴平行四边形CDBF 是菱形.【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型.21.(1)小亮(2)=-a (a <0)(3)2024.【解析】【详解】试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的; (2)错误原因是:二次根式的性质=|a|的应用错误;(解析:(1)小亮(2(a <0)(3)2024.【解析】【详解】试题分析:(1,判断出小亮的计算是错误的;(2的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2018)=2024.22.(1)10;(2)46【分析】(1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元,利用数量总价单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即解析:(1)10;(2)46【分析】(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元,利用数量=总价÷单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克,根据甲、乙两种水果数量之和不超过丙水果数量的6倍,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设购买7千克水果的费用为w 元,利用总价=单价⨯数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元, 依题意得:80200232x x⨯=+, 解得:5x =,经检验,5x =是原方程的解,且符合题意,3538x ∴+=+=,22510x =⨯=.答:每千克丙水果的售价是10元.(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克, 依题意得:7226m m m m --+,解得:1m .设购买7千克水果的费用为w 元,则5(72)82101135w m m m m m =--+⨯+=+.110>,w ∴随m 的增大而增大,∴当1m =时,w 取得最小值,最小值1113546=⨯+=(元).故答案为:46.【点睛】本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.23.(1);(2)21;(3)或或或【分析】(1)过点作轴于,求出AH 和OH 即可;(2)证明≌,表示出AP ,CQ ,根据OC=14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、解析:(1);(2)21;(3)或或或【分析】(1)过点A 作轴于H ,求出AH 和OH 即可; (2)证明≌,表示出AP ,CQ ,根据OC =14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、F 为顶点的四边形是菱形得到以C ,D ,Q 为顶点的三角形是等腰三角形,求出CD ,得到点Q 坐标,再分情况讨论.【详解】解:(1)过点A 作轴于H , ∵,,, ∴, ∴A 点坐标为.(2)∵,∴C点坐标为,∵点D是对角线AC的中点,∴点D的坐标为,∵四边形ABCD是平行四边形,∴,∴,当PQ经过点D时,,在和中,,∴≌,∴,∵,∴,∴,∴,∴四边形APCQ的面积为,即当PQ经过点D时,四边形APCQ的面积为21.(3)∵F是平面内一点,以Q,D,C,F为顶点的四边形是菱形,则以C,D,Q为顶点的三角形是等腰三角形,∵,,∴,∴当时,Q点坐标为或,当Q点坐标为时,F点坐标为,当Q点坐标为时,F点坐标为,当时,点F与点D关于x轴对称,∴点F的坐标为,当时,设Q点坐标为,∴,解得,∴Q点坐标为,∴F点坐标为,∴综上所述,以Q,D,F,C为顶点的四边形是菱形,点F的坐标为或或或.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,菱形的性质,等腰直角三角形的判定和性质,综合性较强,解题的关键是根据菱形的性质进行分类讨论.24.(1)见解析;0;(2)①x,﹣x,﹣x+2,②见解析;;(3);(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可解析:(1)见解析;0;(2)①32x,﹣32x,﹣12x+2,②见解析;32;(3)16;(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可得出结论;(3)分段去绝对值,合并同类项,得出函数关系式,即可得出结论;(4)直接得出结论.【详解】解:(1)[探究]图象如图1所示,函数y=|x|的最小值是0,故答案为0;(2)[应用]①当x≥1时,y=x﹣1+12(x+2)=32x;当x≤﹣2时,y=﹣x+1﹣12(x+2)=﹣32x;当﹣2<x<1时,y=﹣x+1+12(x+2)=﹣12x+2;②函数图象如图2所示,由图象可知,函数y=|x﹣1|+12|x+2|的最小值是32,故填:①32x,﹣32x,﹣12x+2,②32;(3)[迁移]当x≤18时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1﹣8x+1=﹣36x+8,∴y≥72,当18<x≤17时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1+8x﹣1=﹣20x+6,∴227≤y<72,当17<x≤16时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1+7x﹣1+8x﹣1=﹣6x+4,∴3≤y<227,当16<x≤15时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1+6x﹣1+7x﹣1+8x﹣1=6x+2,∴3<y≤165,当15<x≤14时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=16x,∴165<y≤4,当14<x≤13时,y=﹣x+1﹣2x+1﹣3x+1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=24x﹣2,∴4<y≤6,当13<x≤12时,y=﹣x+1﹣2x+1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=30x﹣4,∴6<y≤11,当12<x≤1时,y=﹣x+1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=34x﹣6,∴11<y≤28,当x>1时,y=x﹣1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=36x﹣8,∴y>28,∴当x=16时,函数y=|x﹣1|+|2x﹣1|+|3x﹣1|+…+|8x﹣1|取到最小值;(4)[反思]用到的数学思想有:数形结合的数学思想,分段去绝对值,故答案为:分段去绝对值.【点睛】此题主要考查了一次函数的应用,去绝对值,函数图象的画法,用分类讨论的思想解决问题是解本题的关键.25.(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2解析:(1)123y x=-+;(2)t=23s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.【详解】(1)如图1中,作BH⊥x轴于H.∵A(1,0)、C(0,2),∴OA=1,OC=2,∵∠COA=∠CAB=∠AHB=90°,∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,∴∠ACO=∠BAH,∵AC=AB,∴△COA≌△AHB(AAS),∴BH=OA=1,AH=OC=2,∴OH=3,∴B(3,1),设直线BC的解析式为y=kx+b,则有231 bk b=⎧⎨+=⎩,解得:132k b ⎧=-⎪⎨⎪=⎩, ∴123y x =-+; (2)如图2中,∵四边形ABMN 是平行四边形,∴AN ∥BM ,∴直线AN 的解析式为:1133y x =-+, ∴10,3N ⎛⎫ ⎪⎝⎭, ∴103BM AN ==, ∵B (3,1),C (0,2),∴BC=10,∴2103CM BC BM =-=, ∴21021033t =÷=, ∴t=23s 时,四边形ABMN 是平行四边形; (3)如图3中,如图3中,当OB 为菱形的边时,可得菱形OBQP ,菱形OBP 1Q 1.菱形OBP 3Q 3, 连接OQ 交BC 于E ,∵OE⊥BC,∴直线OE的解析式为y=3x,由3123y xy x=⎧⎪⎨=-+⎪⎩,解得:3595xy⎧=⎪⎪⎨⎪=⎪⎩,∴E(35,95),∵OE=OQ,∴Q(65,185),∵OQ1∥BC,∴直线OQ1的解析式为y=-13x,∵OQ1,设Q1(m,-1m3),∴m2+19m2=10,∴m=±3,可得Q1(3,-1),Q3(-3,1),当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,易知线段OB的垂直平分线的解析式为y=-3x+5,由3513y xy x=-+⎧⎪⎨=-⎪⎩,解得:15858xy⎧=⎪⎪⎨⎪=-⎪⎩,∴Q2(158,58-).综上所述,满足条件的点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【点睛】本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.26.(1)证明见解析;(2)①t值为5或6;②点N运动的时间为6s,,或时,为等腰三角形. 【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2解析:(1)证明见解析;。
人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。
12B。
8C。
$\frac{2}{3}$D。
$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。
5,12,13B。
1,2,5C。
1,3,2D。
4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。
$(x+2)^2=3$B。
$(x+2)^2=5$C。
$(x-2)^2=3$D。
$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。
矩形B。
菱形C。
正方形D。
无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。
$y=-x$B。
$y=x+1$C。
$y=-2x+1$D。
$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。
|。
8分。
|。
9分。
|。
10分。
|甲(频数)|。
4.|。
2.|。
3.|乙(频数)|。
3.|。
2.|。
5.|A。
$s_1^2>s_2^2$B。
$s_1^2=s_2^2$C。
$s_1^2<s_2^2$D。
无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。
1,0B。
-1,1C。
1,-1D。
无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。
八年级数学(下)第十七章测试题(含答案)一、选择题(每小题4分,共28分)1.一个直角三角形的斜边长比一条直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.644.如图,一个高1.5m,宽3.6m的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8 mB.3.9 mC.4 mD.4.4 m5.(2013·德宏州中考)设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.36.如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L47.(2013·柳州中考)在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为( )A. B.C. D.二、填空题(每小题5分,共25分)8.定理“全等三角形的对应边相等”的逆命题是,它是命题(填“真”或“假”).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE= .10.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程的平方应该是.11.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P 从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC 边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.12.(2013·哈尔滨中考)在△ABC中,AB=2,BC=1,∠ABC=45°,以AB 为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共47分)13.(10分)已知△ABC的三边分别为a,b,c,且a+b=4,ab=1,c=,试判定△ABC的形状,并说明理由.14.(12分)(2013·湘西州中考)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长.(2)求△ADB的面积.15.(12分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.(13分)(2013·贵阳中考)在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2 c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案解析1.【解析】选C.设斜边长为x,则一直角边为x-2,由勾股定理得,x2=(x-2)2+62,解得x=10.2.【解析】选D.由题意设三边长分别为x,x,x,∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.3.【解析】选D.由题意得,直角三角形的斜边为17,一条直角边为15,所以正方形A的面积为172-152=64.4.【解析】选B.设木板的长为xm,由题意知,x2=1.52+3.62,解得x=3.9(m).5.【解析】选D.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5①,∵a,b是直角三角形的两条直角边,∴a2+b2=2.52②,由①②可得ab=3.6.【解析】选B.在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,得x=≈2.8868,2x=5.7736,所以最好选用L2.7.【解析】选A.∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB,AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S△ABD=×3×=BD·,解得BD=.8.【解析】“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.答案:三边分别对应相等的两个三角形全等真9.【解析】AE=====2.答案:210.【解析】如图,则AG=3.在Rt△APG中,PG2=PA2-AG2=52-32=16.在Rt△PGB中,PB2=PG2+GB2=16+(3+5)2=80.答案:8011.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36 cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9,BC=12,AC=15,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3s时,BP=9-3×1=6,BQ=2×3=6,所以S△PBQ=BP·BQ=×6×6=18(cm2).答案:1812.【解析】当点D与C在AB同侧,BD=AB=2,作CE⊥BD于E,CE=BE=,ED=,由勾股定理得CD=(如图1);当点D与C在AB异侧,BD=AB=2,∠DBC=135°,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理得CD=(如图2).答案:或13.【解析】△ABC是直角三角形,理由:∵(a+b)2=16,a2+2ab+b2=16,ab=1,∴a2+b2=14.又∵c2=14,∴a2+b2=c2.∴△ABC是直角三角形.14.【解析】(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,AB===10, ∴S△ADB=AB·DE=×10×3=15.15.【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得: BC ===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h>70km/h,∴这辆小汽车超速行驶.16.【解析】(1)锐角钝角.(2)> <.(3)∵a=2,b=4,∴2<c<6,且由题意,c为最长边, ∴4<c<6,当a2+b2=c2,即c=2时,△ABC是直角三角形, ∴当4<c<2时,△ABC是锐角三角形,当2<c<6时,△ABC是钝角三角形.。
八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。
八年级下册数学期末试卷综合测试(Word 版含答案)(1)一、选择题1.如果二次根式2x -有意义,那么x 的取值范围是( )A .2x >B .2x ≥C .2x ≠D .2x ≤ 2.若ABC 的三边a 、b 、c 满足条件222()()0a b a b c -⋅+-=,则ABC 为( ) A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形3.下列能判定一个四边形是平行四边形的是( )A .对角线相等,且一组对角相等的四边形是平行四边形B .一对邻角的和为180°的四边形是平行四边形C .两条对角线相互垂直的四边形是平行四边形D .一组对边平行且相等的四边形是平行四边形4.小君周一至周五的支出分别是(单位:元):7,10,14,7,12则这组数据的平均数是( )A .7B .10C .11D .11.55.如图,在正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是( )A .25B .5C .35D .2 6.如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若∠1=129°,则∠2的度数为( )A .49°B .50°C .51°D .52°7.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C '处,BC '交AD 于E ,AD =8,AB =4,则DE 的长为( )A.3 B.4 C.5 D.68.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A.1个B.2个C.3个D.4个二、填空题9.使式子32xx-+有意义的x的取值范围是______.10.已知菱形的两条对角线长分别为4cm和6cm,则这个菱形的面积为______cm2.11.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.12.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为_______.13.饮料每箱24瓶,售价48元,买饮料的总价y (元)与所买瓶数x 之间的函数________.14.如图,在△ABC 中,AD ,CD 分别平分∠BAC 和∠ACB ,AE ∥CD ,CE ∥AD .若从三个条件:①AB=AC ;②AB=BC ;③AC=BC 中,选择一个作为已知条件,则能使四边形ADCE 为菱形的是__(填序号).15.如图,已知点A ,B ,C ,D 的坐标分别为()2,2-,()2,1-,()3,1,()3,2.线段AD 、AB 、BC 组成的图形为图形G ,点P 沿D A B C →→→移动,设点P 移动的距离为S ,直线l :y x b =-+过点P ,且在点P 移动过程中,直线l 随P 运动而运动,当l 过点C 时,S 的值为__________;若直线l 与图形G 有一个交点,直接写出b 的取值范围是__________.16.如图,矩形ABCD 中,6,8AB BC ==,点E 是BC 边上一点,连接AE ,把ABE △沿AE 折叠,使点B 落在点F 处,当CEF △为直角三角形时,CF 的长为________.三、解答题17.计算:(1)2+818(212273-2324 18.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?”(注:丈、尺是长度单位,1丈=10尺,1尺=13米),这段话翻译城现代汉语,即为:如图,有一个水池,水面是一个边长为一丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是多少米?请你用所学知识解答这个问题.19.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图1中画出一个以AB为一边正方形ABCD,使点C、D在小正方形的顶点上;(2)在图2中画出一个以AB为一边,面积为6的□ABEF,使点E、F均在小正方形的顶点上,并直接写出□ABEF周长.20.如图,已知点E是ABCD中BC边的中点,连接AE并延长交DC的延长线于点F,连接AC,BF,AF BC=.(1)求证:四边形ABFC为矩形;(2)若AFD∆是等边三角形,且边长为6,求四边形ABFC的面积.21.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似.例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=,i+i2+i3+…+i2021=;(2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i);(3)已知a+bi=2543i-(a,b为实数),求2222(24)x a x b++-+的最小值.22.互联网时代,一部手机就可搞定午餐是新零售时代的重要表现形式,打包是最早出现的外卖形式,虽然古老,却延续至今,随着电话、手机、网络的普及,外卖行业得到迅速的发展.某知名外卖平台招聘外卖骑手,并提供了如下两种日工资方案:方案一:每日底薪50元,每完成一单外卖业务再提成3元;方案二:每日底薪80元,外卖业务的前30单没有提成,超过30单的部分,每完成一单提成5元.设骑手每日完成的外卖业务量为x单(x为正整数),方案一、方案二中骑手的日工资分别为y1、y2(单位:元).(1)分别写出y1、y2关于x的函数关系式;(2)若小强是该外卖平台的一名骑手,从日工资收入的角度考虑,他应该选择哪种日工资方案?并说明理由.23.如图,在平面直角坐标系中,已知▱OABC的顶点A(10,0)、C(2,4),点D是OA 的中点,点P在BC上由点B向点C运动.(1)求点B的坐标;(2)若点P运动速度为每秒2个单位长度,点P运动的时间为t秒,当四边形PCDA是平行四边形时,求t的值;(3)当△ODP是等腰三角形时,直接写出点P的坐标.24.如图,在平面直角坐标系中,直线AB交x轴于点A(﹣2,0), 交y轴于点B(0,4),直线y=kx+b经过点B且交x轴正半轴于点C,已知△ABC面积为10.(1)点C的坐标是(,),直线BC的表达式是;(2)如图1,点E为线段AB中点,点D为y轴上一动点,以DE为直角边作等腰直角三角形△EDF,且DE=DF,当点F落在直线BC上时,求点D的坐标;(3)如图2,若G为线段BC上一点,且满足S△ABG=S△ABO,点M为直线AG上一动点,在x轴上是否存在点N,使以点B,C,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,说明理由;25.综合与实践:如图1,在正方形ABCD中,连接对角线AC,点O是AC的中点,点E 是线段OA上任意一点(不与点A,O重合),连接DE,BE.过点E作EF DE⊥交直线BC于点F.(1)试猜想线段DE与EF的数量关系,并说明理由;CE CD CF之间的数量关系,并说明理由;(2)试猜想线段,,(3)如图2,当E在线段CO上时(不与点C,O重合),EF交BC延长线于点F,保持CE CD CF之间的数量关系.其余条件不变,直接写出线段,,【参考答案】一、选择题1.B解析:B【分析】x-≥,据此解题.x-202【详解】x-≥,x-202∴≥,x2故选:B.本题考查二次根式有意义的条件,是基础考点,掌握相关知识是解题关键.2.C解析:C【详解】解析:∵222()()0a b a b c -+-=,∴a b =或222+=a b c .当只有a b =成立时,是等腰三角形.当只有222+=a b c 成立时,是直角三角形.当a b =,222+=a b c 同时成立时,是等腰直角三角形.答案:C题型解法:此类题型首先根据题意化简式子,找出隐含条件,然后根据三边的关系判断三角形的形状.当三角形的三边满足勾股定理时,即可判断为直角三角形.3.D解析:D【解析】【分析】分别利用平行四边形的判定方法结合梯形的判定方法分析得出答案.【详解】解:A 、对角线相等,且一组对角相等的四边形无法确定是平行四边形,故此选项不合题意;B 、一对邻角的和为180°的四边形是平行四边形,错误,有可能是梯形,故此选项不合题意;C 、两条对角线相互垂直的四边形无法确定是平行四边形,故此选项不合题意;D 、一组对边平行且相等的四边形是平行四边形,正确,符合题意.故选D .【点睛】本题主要考查了平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定条件. 4.B解析:B【解析】【分析】用这组数据的和除以数据的个数就可计算出这组数据的平均数,据此解答即可.【详解】解:(7+10+14+7+12)÷5=50÷5=10(元),故选:B .【点睛】此题主要考查的是平均数的含义及其计算方法,关键是要熟练掌握平均数的计算方法. 5.B【分析】连接AC 、CF ,如图,根据正方形的性质得∠ACD =45°,∠FCG =45°,AC =2,CF =32,则∠ACF =90°,再利用勾股定理计算出AF =25,然后根据直角三角形斜边上的中线求CH 的长.【详解】连接AC 、CF ,如图,∵四边形ABCD 和四边形CEFG 都是正方形,∴∠ACD =45°,FCG =45°,AC =2BC =2,CF =2CE =32,∴∠ACF =45°+45°=90°,在Rt △ACF 中,AF =()()22232=25+,∵H 是AF 的中点,∴CH =12AF =5 .故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.也考查了直角三角形斜边上的中线性质及勾股定理.6.C解析:C【解析】【分析】根据翻折的性质可知,∠DOE =∠A ,∠HOG =∠B ,∠EOF =∠C ,又∠A +∠B +∠C =180°,可知∠1+∠2=180°,又∠1=129°,继而即可求出答案.【详解】解:根据翻折的性质可知,∠DOE =∠A ,∠HOG =∠B ,∠EOF =∠C ,又∵∠A +∠B +∠C =180°,∴∠DOE +∠HOG +∠EOF =180°,∴∠1+∠2=180°,又∵∠1=129°,∴∠2=51°.故选:C .【点睛】本题考查翻折变换的知识,解答此题的关键是三角形折叠以后的图形和原图形全等,对应的角相等,同时注意三角形内角和定理的灵活运用.7.C解析:C【解析】【分析】根据折叠前后角相等可知△ABE ≌△C'ED ,利用勾股定理可求出.【详解】解:∵四边形ABCD 是矩形,∴AB=CD ,∠C =∠A =90°由折叠的性质可得:C'D =CD =AB ;∠C'=∠C =∠A在△ABE 与△C'ED 中'''C D AB C ED AEB C A =⎧⎪∠=∠⎨⎪∠=∠⎩∴△ABE ≌△C'ED (AAS )∴DE=BE设DE =BE =x ,则AE =8-x ,AB =4,在直角三角形ABE 中,()22816x x =-+ 解得x =5故选C .【点睛】本题考查勾股定理在折叠问题中的应用,找到合适的直角三角形构建等量关系是本题关键.8.A解析:A【分析】根据函数图像上的特殊点以及函数图像自身的实际意义进行判断即可.【详解】解:由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,①错;从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1小时,②对;汽车用9小时走了280千米,平均速度为:280÷9≠30米/时,③错.汽车自出发后6小时至9小时,图象是直线形式,说明是在匀速前进,④错. 故答案为A.【点睛】本题考查由函数图象的实际意义,理解函数图像所反映的运动过程是解答本题的关键.二、填空题9.3x ≤且2x ≠-【解析】【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 10.12【解析】【分析】根据菱形的面积计算公式计算即可;【详解】解:由已知得,菱形的面积等于两对角线乘积的一半即:4×6÷2=12cm 2.故答案为:12.【点睛】本题主要考查了菱形的面积计算,准确计算是解题的关键.11.A解析:4【解析】【详解】解:解如图所示:在Rt ∆ABC 中,BC=3,AC=5,由勾股定理可得:AB 2+BC 2=AC 2设旗杆顶部距离底部AB=x 米,则有32+x 2=52,解得x=4故答案为:4.【点睛】本题考查勾股定理.12.A解析:35°【分析】根据矩形的判定得到四边形ABCD是矩形,由矩形的性质求出∠DAB,代入∠OAB=∠DAB ﹣∠OAD求出即可.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,∵∠OAD=55°,∴∠OAB=∠DAB﹣∠OAD=35°,故答案为:35°.【点睛】本题考查了矩形的判定和性质,能根据矩形的性质求出∠DAB的度数是解此题的关键.13.y=2x.【详解】试题解析:每瓶的售价是4824=2(元/瓶),则买的总价y(元)与所买瓶数x之间的函数关系式是:y=2x.考点:根据实际问题列一次函数关系式.14.A解析:②【解析】【分析】根据②作条件,先证明四边形ADCE是平行四边形,再利用邻边相等,得到四边形ADCE 是菱形.【详解】解:当BA=BC时,四边形ADCE是菱形.理由:∵AE∥CD,CE∥AD,∴四边形ADCE是平行四边形,∵BA=BC,∴∠BAC=∠BCA,∵AD,CD分别平分∠BAC和∠ACB,∴∠DAC=∠DCA,∴DA=DC,∴四边形ADCE是菱形.【点睛】本题考查的知识点是菱形的证明,解题关键是熟记菱形的性质.15.1或11 或【分析】l 过点C 、点P 的位置有两种情况:①点P 位于点E 时,S=1;②点P 位于点C 时,S=11;求出l 过临界点D 、E 、B 即求出直线与图形有一个交点时b 的取值范围.【详解解析:1或11 45b <≤或1b =-【分析】l 过点C 、点P 的位置有两种情况:①点P 位于点E 时,S =1;②点P 位于点C 时,S =11;求出l 过临界点D 、E 、B 即求出直线l 与图形G 有一个交点时b 的取值范围.【详解】解:∵点A 、B 、C 、D 的坐标分别为(-2,2),(-2,1),(3,1),(3,2) ∴AD =BC =5,AB =1当直线l 过点C (3,1)时,1=-3+b ,即b =4∴直线的解析式为y =-x +4.∴42y x y =-+⎧⎨=⎩,解得22x y =⎧⎨=⎩,即直线1与AD 的交点E 为(2,2) ∴DE =1.∴如图:当l 过点C 时,点P 位于点E 或点C①当l 过点C 时,点P 位于点E 时,S =DE =1;②当l 过点C 时,点P 位于点C 时,S =AD +AB +BC =5+1+5=11..∴当1过点C 时,S 的值为1或11;当直线l 过点D 时,b =5;当直线1过点C 时,b =4;当直线1过点B 时,将B (-2,1)代入y =-x +b 得1=2+b ,即b =-1∴当45b <≤或1b =-时,直线l 与图形G 有一个交点.故填1或11,45b <≤或1b =-.【点睛】本题主要考查了一次函数图象与系数的关系、一次函数图象上点的坐标特征,根据题意求出临界值成为解答本题的关键.16.4或【分析】当为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点A 、F 、C 共线,即沿折叠,使点解析:4或【分析】当CEF △为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接AC ,先利用勾股定理计算出10AC =,根据折叠的性质得90AFE B ∠=∠=︒,而当CEF △为直角三角形时,只能得到90EFC ∠=︒,所以点A 、F 、C 共线,即B 沿AE 折叠,使点B 落在对角线AC 上的点F 处,则,6EB EF AB AF ===,可计算出CF ;②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形,根据勾股定理计算出CF .【详解】解:当CEF △为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接AC ,在Rt ABC 中,6,8AB BC ==,∴10AC =,∵B 沿AE 折叠,使点B 落在点F 处,∴90AFE B ∠=∠=︒,当CEF △为直角三角形时,只能得到90EFC ∠=︒,∴点A 、F 、C 共线,即B 沿AE 折叠,使点B 落在对角线AC 上的点F 处,∴,6EB EF AB AF ===,∴1064CF =-=;②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形,∴6,862BE AB CE ===-=,∴CF =综上所述,CF 的长为4或故答案为:4或【点睛】本题考查折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.解题的关键是要注意本题有两种情况,需要分类讨论,避免漏解.三、解答题17.(1)4-;(2)3.【分析】(1)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可;(2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可.【详解】(1)解析:(1)422)3.【分析】(1)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可; (2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可.【详解】(1)2+81828818162232=42232=42==+(212273-23241227224333=2-3+4=3=⨯【点睛】此题考查了二次根式的加减乘法运算,解题的关键是熟练掌握二次根式的加减乘法运算法则.18.4米【分析】根据勾股定理列出方程,解方程即可.【详解】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,米答:水池里水的深度是4米.【点睛】本题考查解析:4米【分析】根据勾股定理列出方程,解方程即可.【详解】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,1∴⨯=米1243答:水池里水的深度是4米.【点睛】本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键.19.(1)见解析;(2)见解析;周长为4+2.【解析】【分析】(1)直接利用网格结合正方形的性质得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案.【详解】(1)解析:(1)见解析;(2)见解析;周长为.【解析】【分析】(1)直接利用网格结合正方形的性质得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案.【详解】(1)如图1,将AB 绕点A 逆时针旋转90︒得AD ,将AB 绕点B 顺时针旋转90︒得BC ,连接DC ,正方形ABCD 即为所求.(2)如图2所示,2AF BE ==∴S ▱ABEF 236=⨯= 由题意可知:221310AB =+=平行四边形ABEF 即为所求.周长为2()2(210)410AB BE +=⨯=+【点睛】本题考查作图、勾股定理、正方形的性质等知识,解题的关键是理解题意,学会利用数形结合的思想思考问题.20.(1)见解析;(2)四边形的面积.【分析】(1)利用平行四边形的性质先证明,可得再证明四边形是平行四边形,从而可得结论;(2)先求解,,再利用勾股定理求解,从而可得答案.【详解】(1)证明解析:(1)见解析;(2)四边形ABFC 的面积93=【分析】(1)利用平行四边形的性质先证明ABE FCE ∆≅∆,可得,AB FC =再证明四边形ABFC 是平行四边形,从而可得结论;(2)先求解6AF DF ==,132CF DF ==,再利用勾股定理求解2233AC AF CF -=而可得答案.【详解】(1)证明:四边形ABCD 是平行四边形, AB CD ∴=,//AB CD ,BAE CFE ∴∠=∠,点E 是ABCD 中BC 边的中点,BE CE ∴=,AEB FEC ∠=∠,()ABE FCE AAS ∴∆≅∆,,AB FC ∴=//AB FC ,∴四边形ABFC 是平行四边形,又AF BC =,∴平行四边形ABFC 为矩形;(2)解:由(1)得:四边形ABFC 为矩形,90ACF ∴∠=︒, AFD 是等边三角形,6AF DF ∴==,132CF DF ==,AC ∴∴四边形ABFC 的面积3AC CF =⨯==.【点睛】本题考查的是等边三角形的性质,勾股定理的应用,平行四边形的性质与判定,矩形的判定,熟练的使用矩形的判定定理是解题的关键.21.(1)﹣i ,1,;(2)﹣i ﹣6;(3)的最小值为25.【解析】【分析】(1)根据题目所给条件可得i3=i2•i ,i4=i2•i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所解析:(1)﹣i ,1,20221i i i--;(2)﹣i ﹣6;(325.【解析】【分析】(1)根据题目所给条件可得i 3=i 2•i ,i 4=i 2•i 2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a +bi =4+3i ,求出a 、b ,即可得出答案.【详解】(1)i 3=i 2•i =﹣1×i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1,设S =i +i 2+i 3+…+i 2021,iS =i 2+i 3+…+i 2021+i 2022,∴(1﹣i )S =i ﹣i 2022,∴S =20221i i i--,故答案为﹣i,1,20221i ii--;(2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i)=3﹣4i+3i﹣4i2﹣(4﹣9i2)=3﹣i+4﹣4﹣9=﹣i﹣6;(3)a+bi=2543i-=25(43)(43)(43)ii i+-+=10075169i++=4+3i,∴a=4,b=3,x,0)到点A(0,4),B(24,3)的最小距离,∵点A(0,4)关于x轴对称的点为A'(0,﹣4),连接A'B即为最短距离,∴A'B25,25.【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键.22.(1)y1=50+3x;当0<x<30且n为整数时,y2=80;当x≥30时且n为整数时,y2=5x-70;(2)见解析【分析】(1)根据题意,可以写出y1,y2关于x的函数解析式;(2)在0解析:(1)y1=50+3x;当0<x<30且n为整数时,y2=80;当x≥30时且n为整数时,y2=5x-70;(2)见解析【分析】(1)根据题意,可以写出y1,y2关于x的函数解析式;(2)在0<x<30范围内,令y1=y2,求x的值,可得y1>y2时x的取值范围,在x≥30时,令y1=y2可得x的值,即可得y1>y2时可得x的取值范围.【详解】解:(1)由题意得:y1=50+3x,当0<x<30且x为整数时,y2=80,当x≥30时且x为整数时,y2=80+5(x-30)=5x-70;(2)当0<x<30且x为整数时,当50+3x=80时,解得x=10,即10<x<30时,y1>y2,0<x<10时,y1<y2,当x≥30且x为整数时,50+3x=5x-70时,解得x=60,即x>60时,y2>y1,30≤x<60时,y2<y1,∴从日工资收入的角度考虑,①当0<x<10或x>60时,y2>y1,他应该选择方案二;②当10<x<60时,y1>y2,他应该选择方案一;③当x=10或x=60时,y1=y2,他选择两个方案均可.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)B(12,4);(2);(3)【分析】(1)由四边形是平行四边形,得到,,于是得到,,可求出点的坐标;(2)根据四边形是平行四边形,得到,即,解方程即可得到结论;(3)如图2,可分三解析:(1)B(12,4);(2);(3)【分析】(1)由四边形是平行四边形,得到,,于是得到,,可求出点B的坐标;(2)根据四边形是平行四边形,得到,即,解方程即可得到结论;(3)如图2,可分三种情况:①当时,②当时,③当时分别讨论计算即可.【详解】解:如图1,过C作于E,过B作于F,四边形是平行四边形,,,,C的坐标分别为,,,,,;(2)设点P运动秒时,四边形是平行四边形,由题意得:,点D是的中点,,四边形是平行四边形,,即,,当秒时,四边形是平行四边形;(3)如图2,①当时,过作于E,则,,,又,C的坐标分别为,,∴,即有,当点P与点C重合时,,;②当时,过作于G,则,,;③当时,过作于F,则,,,;综上所述:当是等腰三角形时,点P的坐标为,,,,.【点睛】本题是四边形综合题,考查了平行四边形的性质,等腰三角形的性质,勾股定理,熟练掌握平行四边形的性质和等腰三角形的性质是解题的关键.24.(1),;(2)或;(3)存在,或或【解析】【分析】(1)由△ABC 面积为10,可得AC =5,即可求C 点坐标,再将点B 与C 代入y =kx+b ,解二元一次方程组可求y =﹣x+4;(2)当D 点在E解析:(1)(3,0)C ,443y x =-+;(2)23(0,)7或(0,1)-;(3)存在,19(,0)3或31(,0)3-或1(,0)3- 【解析】【分析】(1)由△ABC 面积为10,可得AC =5,即可求C 点坐标,再将点B 与C 代入y =kx +b ,解二元一次方程组可求y =﹣43x +4; (2)当D 点在E 上方时,过点D 作MN ⊥y 轴,过E 、F 分别作ME 、FN 垂直与x 轴,与MN 交于点M 、N ,由△EDF 是等腰直角三角形,可证得△MED ≌△NDF (AAS ),设D(0,y ),F (m ,﹣43m +4),E (﹣1,2),由ME =y ﹣2,MD =1,DN =y ﹣2,NF =1,得到m =y ﹣2,y =1+(﹣43m +4)=5﹣43m ,求出D (0,237);当点D 在点E 下方时,过点D 作PQ ⊥y 轴,过P 、Q 分别作PE 、FQ 垂直与x 轴,与PQ 交于点P 、Q ,同理可证△PED ≌△QDF (AAS ),设D (0,y ),F (m ,﹣43m +4),得到PE =2﹣y ,PD =1,DQ =2﹣y ,QF =1,所以m =2﹣y ,1=﹣43m +4﹣y ,求得D (0,﹣1); (3)连接OG ,由S △ABG =S △ABO ,可得OG ∥AB ,求出AB 的解析式为y =2x +4,所以OG 的解析式为y =2x ,可求出G (65 ,125),进而能求出AG 的解析式为y =34x +32,设M (t ,34t +32),N (n ,0),①当BC 、MN 分别为对角线时,BC 的中点为(32,2),MN 的中点为(2t n +,38t +34),求得N (﹣13,0);②当BM 、CN 分别为对角线时,BM 的中点为(2t ,38t +114),CN 的中点为(32n +,0),求得N (﹣313,0);③当BN 、CM 分别为对角线时,BN 的中点为(2n ,2),CM 的中点为(32t +,38t +34),求得N (193,0). 【详解】解:(1)∵△ABC 面积为10, ∴12×AC ×OB =12×AC ×4=10,∴AC =5,∵A (﹣2,0),∴C(3,0),将点B与C代入y=kx+b,可得4 30bk b=⎧⎨+=⎩,∴434kb⎧=-⎪⎨⎪=⎩,∴y=﹣43x+4,故答案为(3,0),y=﹣43x+4;(2)当D点在E上方时,过点D作MN⊥y轴,过E、F分别作ME、FN垂直与x轴,与MN交于点M、N,∵△EDF是等腰直角三角形,∴∠EDF=90°,ED=DF,∵∠MDE+∠NDF=∠MDE+∠MED=90°,∴∠NDF=∠MED,∴△MED≌△NDF(AAS),∴ME=DN,MD=FN,设D(0,y),F(m,﹣43m+4),∵E是AB的中点,∴E(﹣1,2),∴ME=y﹣2,MD=1,∴DN=y﹣2,NF=1,∴m=y﹣2,y=1+(﹣43m+4)=5﹣43m,∴m=97,∴D(0,237);当点D在点E下方时,过点D作PQ⊥y轴,过P、Q分别作PE、FQ垂直与x轴,与PQ 交于点P、Q,∵△EDF是等腰直角三角形,∴∠EDF=90°,ED=DF,∵∠PDE+∠QDF=∠PDE+∠PED=90°,∴∠QDF=∠PED,∴△PED≌△QDF(AAS),∴PE=DQ,PD=FQ,设D(0,y),F(m,﹣43m+4)∵E是AB的中点,∴E(﹣1,2),∴PE=2﹣y,PD=1,∴DQ=2﹣y,QF=1,∴m=2﹣y,1=﹣43m+4﹣y,∴m=3,∴D(0,﹣1);综上所述:D点坐标为(0,﹣1)或(0,237);(3)连接OG,∵S△ABG=S△ABO,∴OG∥AB,设AB的解析式为y=kx+b,将点A(﹣2,0),B(0,4)代入,得420bk b=⎧⎨-+=⎩,解得24k b =⎧⎨=⎩, ∴y =2x +4,∴OG 的解析式为y =2x ,∴2x =﹣43x +4, ∴x =65, ∴G (65 ,125), 设AG 的解析式为y =k 1x +b 1,将点A 、G 代入可得11112061255k b k b -+=⎧⎪⎨+=⎪⎩, 解得113422k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴y =34x +32, ∵点M 为直线AG 上动点,点N 在x 轴上,则可设M (t ,34t +32),N (n ,0), 当BC 、MN 分别为对角线时,BC 的中点为(32,2),MN 的中点为(2t n +,38t +34), ∴322t n +=,38t +34=2, ∴t =103,n =﹣13, ∴N (﹣13,0); 当BM 、CN 分别为对角线时,BM 的中点为(2t ,38t +114),CN 的中点为(32n +,0), ∴322n t +=,38t +114=0, ∴t =﹣223,n =﹣313, ∴N (﹣313,0); ③当BN 、CM 分别为对角线时,BN 的中点为(2n ,2),CM 的中点为(32t +,38t +34), ∴322t n +=,38t +34=2, ∴t =103,n =193, ∴N (193,0); 综上所述:以点B ,C ,M ,N 为顶点的四边形为平行四边形时,N 点坐标为19(,0)3或31(,0)3-或1(,0)3-. 【点睛】本题考查一次函数的综合应用,(2)中注意D 点的位置有两种情况,避免丢解,同时解题时要构造K 字型全等,将D 点、F 点坐标联系起来,(3)中利用平行四边形对角线互相平分的性质,借助中点坐标公式解题,能简便运算,快速求解.25.(1),理由见解析;(2),理由见解析;(3),理由见解析【分析】(1)先根据正方形的性质可证得,由此可得,,再根据同角的补角相等证得,等量代换可得,由此可得,再等量代换即可得证;(2)过点E解析:(1)DE EF =,理由见解析;(2CD CF =+,理由见解析;(3)CD CF =-,理由见解析【分析】(1)先根据正方形的性质可证得BCE DCE ≌,由此可得CBE CDE ∠=∠,BE DE =,再根据同角的补角相等证得CDE EFB ∠=∠,等量代换可得CBE EFB ∠=∠,由此可得BE EF =,再等量代换即可得证;(2)过点E 作EG EC ⊥交CB 的延长线于点G ,先证明EG EC =,利用勾股定理可得CG ,再证明EGF ECB △≌△,由此可得GF CB CD ==,最后再等量代换即可得证;(3)仿照(1)和(2CD CF =-.【详解】解:(1)DE EF =,理由如下:∵四边形ABCD 是正方形,∴BC CD AD ==,90BCD ADC ∠=∠=︒, ∴180452ADC DAC DCA ︒-∠∠=∠==︒, ∴45BCE BCD DCA ∠=∠-∠=︒,∴BCE DCE ∠=∠,在BCE 与DCE 中,BC DC BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩∴()BCE DCE SAS ≌,∴CBE CDE ∠=∠,BE DE =,∵EF DE ⊥,∴90FED ∠=︒,∵360EFC BCD CDE FED ∠+∠+∠+∠=︒,∴180CDE EFC ∠+∠=︒,∵180EFC EFB ∠+∠=︒,∴CDE EFB ∠=∠,∴CBE EFB ∠=∠,∴BE EF =,∴DE EF =;(2)2CE CD CF =+,理由如下:如图,过点E 作EG EC ⊥交CB 的延长线于点G ,∴90CEG ∠=︒,由(1)知:45BCE ∠=︒,∴45EGC BCE ∠=∠=︒, ∴EG EC =,∴在Rt GEC △中,222CG CE EG CE +,在EGF △与ECB 中,EGF ECB EFG EBC EF EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EGF ECB AAS △≌△,∴GF CB CD ==,又∵CG GF CF CD CF =+=+, ∴2CE CD CF =+;(32CE CD CF =-,理由如下:如图,过点E 作EG EC ⊥交BC 于点G ,设CD 与EF 的交点为点P ,∴90CEG ∠=︒,由(1)可知:45BCE ∠=︒,∴45EGC BCE ∠=∠=︒,∴EG EC =,∴在Rt GEC △中,222CG CE EG CE +,∵EF DE ⊥,∴90FED ∠=︒,∴90CDE EPD ∠+∠=︒,∵18090DCF BCD ∠=︒-∠=︒,∴90CFE CPF ∠+∠=︒,又∵EPD CPF ∠=∠,∴CDE CFE ∠=∠,由(1)可知:CBE CDE ∠=∠,∴CBE CFE ∠=∠,在EGF △与ECB 中,EGF ECB EFG EBC EG EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EGF ECB AAS △≌△,∴GF CB CD ==,又∵CG GF CF CD CF =-=-, ∴2CE CD CF =-.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的判定与性质以及勾股定理的应用,作出正确的辅助线并能灵活运用相关图形的性质是解决本题的关键.。
八年级下学期数学试题班级:_______姓名:________考号:_________成绩________第I卷(选择题)一、单选题A. C. D.,由下列条件不能判断它是直角三角形的是(A. B. -+15.)6.则等于()A. B. C. D.7.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1B.C. 4-2D. 3-48.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为(?)A. 6B. 10C. 8D. 129.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是(???? )A. 2B.C.D. 210.平行四边形四个内角的角平分线所围成的四边形是()的卷(非选择题)最简二次根式与-+16.如图,正方形ABCD的边长为5,点E在边AB上,且BE=2.若点P在对角线BD上移动,则PA+PE的最小值是__________.17.将五个边长都为2的正方形按如图所示摆放,点A1、A2、A3、A4分别是四个正方形的中心,则图中四块阴影部分的面积的和为______.18.如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=BC.连接CE并延长交AD于点F,连接AE,过B点作BG⊥AE于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③S四边形EFHG=S△DEF+S△AGH;④△AEF≌△CDE其中正确的结论有?______ (填正确的序号)三、解答题19.计算下列各题(1)(2)20.如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.AB = BC,D、E、F分别是BC23.交于=,求24.CP,求25.满足=0,C上一26.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.参考答案与解析1.C【解析】分析:根据二次根式有意义的条件,被开方数为非负数,可直接列不等式求解.详解:∵式子有意义详解:根据二次根式的加减,可由与不是同类二次根式,因此不能计算,=,故不正确;故选:B.点睛:此题主要考查了二次根式的化简,关键是灵活利用二次根式的性质对式子变形即可,比较简单,是常考题.3.A【解析】分析:根据直角三角形的概念,角的特点和勾股定理的逆定理逐一判断即可.详解:根据直角三角形的两锐角互余,可知180°×=75°<90°,不是直角三角形,故正确;根据三角形的内角和定理,根据∠A+∠B+∠C=180°,且∠A=∠B+∠C,可得c=x5.B【解析】先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB=3,从而求出C=BC-BE=5-3=2.故选:A.点睛:本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.6.C【解析】试题解析:∵四边形MBND是菱形,∴MD=MB.x=yMD=MB=2x-y=y∴.故选C.∵∠BAE=22.5°,∴∠DAE=90°-∠BAE=90°-22.5°=67.5°,在△ADE中,∠AED=180°-45°-67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD-DE=4-4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,BE=4=4-2解之得:x=3,∴AF=AB-FB=8-3=5,∴S△AFC=?AF?BC=10.故选:B.点睛:本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.9.C【解析】试题分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCPCP=1=∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.10.B【解析】分析:作出图形,根据平行四边形的邻角互补以及角平分线的定义求出∠AEB=90°,同理可求∠F、∠FGH、∠H都是90°,再根据四个角都是直角的四边形是矩形解答.详解:∵四边形ABCD是平行四边形,ABE=∠BAD+∠【解析】试题分析:在△ABC和△CDE中,EC=AC∠ECD=∠CAB∠ACB=∠CED∴△ABC≌△CDE,∴AB=CD,BC=DE,∴AB2+DE2=DE2+CD2=CE2=3,222∴三角形(2017)是第673个循环组的第一个三角形,直角顶点的横坐标为:12×672=8064,∴三角形(2017)的直角顶点的坐标是(8064,0).故选:C.点睛:本题考查了坐标与图形变化-旋转,仔细观察图形,发现每3个三角形为一个循环组依次循环是解题的关键,也是本题的难点.13.-1【解析】分析:根据同类二次根式的性质,化为最简二次根式后,被开方数相同,可得关于a的方程即可求解.详解:(2-)(2+)=22-()2=4-5=-1故答案为:-1.点睛:此题主要考查了二次根式的运算,关键是观察式子的特点—利用平方差公式计算即可,比较简单.16.【解析】分析:作出点E关于BD的对称点E′交BC于E′,连接AE′与BDAE′=故答案为:.点睛:此题考查了轴对称-最短线路问题,以及正方形的性质,熟练掌握各自的性质是解本题的关键.17.4【解析】分析:连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.详解:如图,连接AP,AN,点A是正方形的对角线的交则AP=AN,∠APF=∠ANE=45°,,而正方形的面积为故答案为:4.点睛:本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.18.①②【解析】分析:?先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.再根据△AEF最长边AE和△CED的最长边CD不相等,可判断不是全等三角形.在△ADE和△CDE中,∴△ADE≌△CDE,∴∠ABH=∠DCF,在Rt△ABH和Rt△DCF中,∵AH=HE,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,点睛:此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.19.(1) 4;(2)+2【解析】分析:(1)根据二次根式的化简、分母有理化、零次幂的性质可求解;(2)根据二次根式的化简、零次幂的性质,绝对值的性质,负整指数幂的性质可求解.详解:(1)=2×+3-1)-1-=+2要熟练掌握,21.-【解析】分析:先算除法,后算减法,分式除以分式,把这个分式的分子分母颠倒,再和这个分式相乘.解析:当时,原式=22.(1)证明见解析;(2)24cm.【解析】试题分析:(1)可根据菱形的定义“一组邻边相等的平行四边形是菱形”,先证明四边形BFED是平行四边形,然后再证明四边形的邻边相等即可.(2)F是AB的中点,有了AB的长也就求出了菱形的边长BF的长,那么菱形BDEFAB【解析】分析:(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解:(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,,AC=2BC=2点睛:本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.24.135°【解析】试题分析:根据同角的余角相等求出∠ACP=∠BCD,再利用“边角边”证明△ACP和△BCD全等,判断出△PCD是等腰直角三角形,再根据全等三角形对应边相等可得AP=BD,然后利用勾股定理逆定理判断出△BPD是直角三角形,∠BPD=90°,再根据∠BPC=∠BPD+∠CPD代入数据计算即可得解.试题解析:解:连接BD.【解析】分析:(1)根据非负数的性质即可求得a、b的值,从而得到△AOB是等腰直角三角形,据此可求;(2)根据等腰直角三角形的性质以及三角形的外角的性质可以得到∠POC=∠DPE,即可得证△POC≌△DPE,则OC=PE,OC的长度可根据等腰直角三角形的性质可求;(3)利用等腰三角形的性质,以及外角的性质,证得∠POC=∠DPE,即可得到△POC≌△DPE,根据全等三角形的对应边相等,即可求得OD的长,从而求得D的坐标.详解:(1)根据题意得:a=b,a-3=0.解得:a=b=3,∴OA=OBPOC≌△DPE. ∴OC=PEOC=AB=3,PDO=∴∠APD=67.5°-45°=22.5°, ∴∠BPO=180°-∠OPD-∠APD=112.5°∴∠PDA=∠BPO∴在△POB和△DPA中,∴△POB≌△DPA(AAS)PA=OB= 3,,DA=PB= 6-3∴ OD=OA-DA=3-(6-3)=6-6∴ D(6-6,0)点睛:此题属于一次函数的综合题,涉及的知识有:全等三角形的判定与性质,中,∴△BAD ≌ △CA∵BD+CD=BC,∴CF+CD=BC;(3)、①CD-CF =BC.②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,∴∠BAD=∠CAF,则在△BAD和△CAF中,∴△BAD ≌ △CAF(SAS),∴∠ABD=∠ACF,∵∠ABC=45°,∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.∵正方形ADEF的边长为且对角线AE、DF相交于点O,。
第十八章平行四边形单元测试题第一卷选择题一、选择题(每小题3分,共24分)1.在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是( C )A.∠D=60° B.∠A=120° C.∠C+∠D=180°D.∠C+∠A=180°2.矩形,菱形,正方形都具有的性质是( B )A.对角线相等 B.对角线互相平分 C.对角线平分一组对角 D.对角线互相垂直3.如图,▱ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为( B )A. 6cm B. 12cm C. 4cm D. 8cm第3题第4题第5题第7题4.如图所示,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,则m的取值范围是()A.10<m<12 B.2<m<22 C. 1<m<11 D.5<m<65.如图,如果平行四边形ABCD的对角线AC和BD相交于点O,那么图中的全等三角形共有()A. 1对B. 2对C. 3对D. 4对6.已知菱形的边长为6cm,一个内角为60°,则菱形较短的对角线长是()A. 6cm B.cm C. 3cm D.cm7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°8.菱形的周长为20cm,两邻角的比为.1:2,则较长的对角线长为()A. 4.5cm B. 4cm C. 5cm D. 4cm9.矩形的四个内角平分线围成的四边形()A.一定是正方形 B.是矩形 C.菱形 D.只能是平行四边形10.在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为()A. 9.5 B.10.5 C. 11 D. 15.5第二卷非选择题二、填空题(每小题3分,共24分)11.已知正方形的一条对角线长为4cm,则它的面积是cm2.12.菱形的两条对角线分别是6cm,8cm,则菱形的边长为cm,面积为cm2.13.如图,菱形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AB和CD于点E、F,BD=6,AC=4,则图中阴影部分的面积和为.14.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.bnnnn第13题第14题第15题第16题15.如图,在△ABC中,点D、E、F分别是AB、AC、BC的中点,若△ABC的周长为12cm,则△DEF的周长是cm.16.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1S2;(填“>”或“<”或“=”)17.已知Rt△ABC的周长是4+4,斜边上的中线长是2,则S△ABC= .18.将七个边长都为1的正方形如图所示摆放,点A1、A2、A3、A4、A5、A6分别是六个正方形的中心,则这七个正方形重叠形成的重叠部分的面积是.第19题图第20题图三、解答题(共7小题,共66分)19.如图,在△ABC中,D、E、F分别为边AB、BC、CA的中点.证明:四边形DECF是平行四边形.(6分)20.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.(8分)21.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为点E,(8分)(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.22.如图所示,已知AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,(10分)求证:AD⊥EF.23.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(10分)(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.24.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(12分)(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.25.如图,△ABC中,MN∥BD交AC于P,∠ACB、∠ACD的平分线分别交MN于E、F.(12分)(1)求证:PE=PF;(2)当MN与AC的交点P在什么位置时,四边形AECF是矩形,说明理由;(3)当△ABC满足什么条件时,四边形AECF是正方形.(不需要证明)第十六章二次根式一、选择题(每小题3分,共24分)1.在下列各式中,不是二次根式的有( B )①-10;②10a(a≥0);③mn(m,n同号且n≠0);④x2+1;⑤38.A .3个B .2个C .1个D .0个2.若代数式x +1(x -3)2有意义,则实数x 的取值范围是( B )A .x ≥-1B .x ≥-1且x ≠3C .x >-1D .x >-1且x ≠33.下列计算:(1)( 2)2=2;(2) (-2)2=2;(3)(-2 3)2=12;(4)(2+3)(2- 3)=-1.其中结果正确的个数为( D ) A .1 B .2 C .3 D .44.下列式子中为最简二次根式的是( A ) A. 3 B. 4 C.8 D.125.若75n 是整数,则正整数n 的最小值是( B ) A .2 B .3 C .4 D .56.一个直角三角形的两条直角边长分别为2 3 cm ,3 6 cm ,那么这个直角三角形的面积是( C )A .8 2 cm 2B .7 2 cm 2C .9 2 cm 2 D. 2 cm 27.如果a -b =2 3,那么代数式(a 2+b 22a -b )·aa -b的值为( A )A. 3 B .2 3 C .3 3 D .4 3 8.甲、乙两人计算a +1-2a +a 2的值,当a =5的时候得到不同的答案,甲的解答是a +1-2a +a 2=a +(1-a )2=a +1-a =1;乙的解答是a +1-2a +a 2=a +(a -1)2=a +a -1=2a -1=9.下列判断正确的是( D )A .甲、乙都对B .甲、乙都错C .甲对,乙错D .甲错,乙对 二、填空题(每小题3分,共24分)9.已知a <2,则(a -2)2=____2-a____. 10.计算:27-613=___根号三_____. 11.在实数范围内分解因式:x 2-5=_____(x-根号五)(x+根号五)_______. 12.计算:18÷3×13=____根号二____. 13.化简:(1)13 2=____六分之根号二____;(2)112=___十二分之二倍的根号三_____;(3)102 5=____十分之五倍的根号二____;(4)23-1=____根号三加一____. 14.一个三角形的三边长分别为8 cm ,12 cm ,18 cm ,则它的周长是____五倍的根号二加二倍的根号三____ cm.15.已知a 是13的整数部分,b 是13的小数部分,则ab =____三倍的根号十三减九____.16.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即:如果一个三角形的三边长分别为a ,b ,c ,那么该三角形的面积为S =14[a 2b 2-(a 2+b 2-c 22)2].已知△ABC 的三边长分别为5,2,1,则△ABC 的面积为____1____.三、解答题(共52分) 17.(10分)计算:解(1)2(12+20)-3(3-5); =根号三加七倍的根号五(2)(3-2 5)(15+5)-(10-2)2. =负的五倍的根号三减三倍的根号五减十二18.(10分)已知a =7+2,b =7-2,求下列代数式的值:(1)a 2b +b 2a ;(2)a 2-b 2. (1)=六倍的根号七 (2)=八倍的根号七19.(10分)先化简,再求值:1x 2+2x +1·(1+3x -1)÷x +2x 2-1,其中x =2 5-1.十分之根号五20.(10分)王师傅有一根长45米的钢材,他想将它锯断后焊成三个面积分别为2平方米、18平方米、32平方米的正方形铁框,王师傅的钢材够用吗?请通过计算说明理由.四倍的根号二加四倍的根号十八加四倍的根号三十二等于四倍的根号二加十二倍的根号二加十六倍的根号二等于三十倍的根号二三十二倍的根号二大于四十五所以王师傅的钢材不够用21.(12分)阅读材料:小明在学习了二次根式后,发现一些含根号的式子可以写成另一个式子的平方的形式,如3+2 2=(1+2)2,善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a,b,m,n均为正整数),则有a+b2=m2+2n2+2mn2,所以a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得a=___m的平方加三倍的n方_____,b=___2mn_____;(2)利用所探索的结论,找一组正整数a,b,m,n填空:___13___+___4___3=(____1__+__2____3)2;(3)若a+4 3=(m+n3)2,且a,m,n均为正整数,求a的值.A=13or勾股定理单元复习测试题一.选择题二.01.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5 B.1,1,C.8,12,13 D.2.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.B.C.D.3.如图,字母B所代表的正方形的面积是()A.12 B.144 C.13 D.1944.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了()米.A.0.5 B.1 C.1.5 D.25.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169 B.25 C.19 D.136.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米7.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC,那么这四个三角形中,不是直角三角形的是()A.B.C.D.8.下列说法中,正确的个数有()①已知直角三角形的面积为2,两直角边的比为1:2,则斜边长为;②直角三角形的最大边长为,最短边长为1,则另一边长为;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5.A.1个B.2个C.3个D.4个9.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对10.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE ⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,则PE+PF的长是()A.B.6 C.D.二.填空题11.如图,在Rt△ABC中,∠C=90°,DE垂直平分AB,连结AD,若AC=6,BC=8,则CD的长为.12.已知:如图,四边形ABDC,AB=4,AC=3,CD=12,BD=13,∠BAC=90°.则四边形ABDC的面积是.13.如图,在四边形ABCD中,∠ADC=∠ABC=45°,CD=,BC=,连接AC、BD,若AC⊥AB,则BD的长度为.14.如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为m.15.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.三.解答题16.已知:如下图,Rt△ABC中,CD⊥AB于D,AC=4,BC=3,DB=.(1)求DC的长;(2)求AD的长;(3)求AB的长.17.《勾股圆方图》是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图(1)).设每个直角三角形中较短直角边为a,较长直角边为b,斜边为c(1)利用图(1)面积的不同表示方法验证勾股定理.(2)实际上还有很多代数恒等式也可用这种方法说明其正确性.试写出图(2)所表示的代数恒等式:;(3)如果图(1)大正方形的面积是13,小正方形的面积是1,求(a+b)2的值.18.如图的一块地(图中阴影部分),∠ADC=90°,AD=12,CD=9,AB=25,BC=20.(1)求∠ACB的度数;(2)求阴影部分的面积.19.如图所示,永定路一侧有A、B两个送奶站,C为永定路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AC⊥BC,∠1=30°.(1)连接AB,求两个送奶站之间的距离;(2)有一人从点C处出发沿永定路边向右行走,速度为2.5km/h,多长时间后这个人距B 送奶站最近?并求出最近距离.20.如图,平面直角坐标系中的每个小正方形边长为1,△ABC的顶点在网格的格点上.(1)画线段AD∥BC,且使AD=BC,连接BD;此时D点的坐标是.(2)直接写出线段AC的长为,AD的长为,BD的长为.(3)直接写出△ABD为三角形,四边形ADBC面积是.21.如图,有一公路AB和一铁路CD在点A处交汇,且∠BAD=30°,在公路的点P处有一所学校(学校看作点P,点P与公路AB的距离忽略不计),AP=320米,火车行驶时,火车周围200米以内会受到噪音的影响,现有一列动车在铁路CD上沿AD方向行驶,该动车车身长200米,动车的速度为180千米/时,那么在该动车行驶过程中.(1)学校P是否会受到噪声的影响?说明理由;(2)如果受噪声影响,那么学校P受影响的时间为多少秒?,勾股定理参考答案一.选择题1.解:A、32+42=52,故是直角三角形,故此选项不符合题意;B、12+12=()2,故是直角三角形,故此选项不符合题意;C、82+122≠132,故不是直角三角形,故此选项符合题意;D、()2+()2=()2,故是直角三角形,故此选项不符合题意.故选:C.2.解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=,故选:A.3.解:如图,根据勾股定理我们可以得出:a2+b2=c2a2=25,c2=169,b2=169﹣25=144,因此B的面积是144.故选:B.4.解:在Rt△ABC中,AB=2.5米,BC=1.5米,故AC===2米,在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)米,故EC===1.5米,故AE=AC﹣CE=2﹣1.5=0.5米.故选:A.5.解:∵大正方形的面积13,小正方形的面积是1,∴四个直角三角形的面积和是13﹣1=12,即4×ab=12,即2ab=12,a2+b2=13,∴(a+b)2=13+12=25.故选:B.6.解:由题意可知.BE=CD=1.5m,AE=AB﹣BE=4.5﹣1.5=3m,AC=5m 由勾股定理得CE==4m故离门4米远的地方,灯刚好打开,故选:A.7.解:A、∵AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,故本选项错误;B、∵AC2=22+32=13,BC2=12+12=2,AB2=22+32=13,∴△ABC不是直角三角形,故本选项正确;C、∵AB2=12+32=10,AC2=22+22=8,BC2=12+12=2,∴△ABC是直角三角形,故本选项错误;D、∵AC2=22+42=20,BC2=22=4,AB2=42=16,∴△ABC是直角三角形,故本选项错误.故选:B.8.解:①、设较短的一个直角边为M,则另一个直角边为2M,所以M×2M=2,解得M =,2M=2.根据勾股定理解得斜边为.所以此项正确;②、根据勾股定理解得,另一边==,所以此项正确;③、设∠A=x,则∠B=5x,∠C=6x.因为x+5x+6x=180°解得x=15°,从而得到三个角分别为15°、75°、90°.即△ABC为直角三角形,所以此项正确;④、已知面积和高则可以得到底边为6,又因为是等腰三角形,则底边上的高也是底边上的中线,则可以得到底边的一半为3.此时再利用勾股定理求得腰长为=5.所以此项正确.所以正确的有四个.故选:D.9.解:在直角三角形ABD中,根据勾股定理,得BD=15;在直角三角形ACD中,根据勾股定理,得CD=6.当AD在三角形的内部时,BC=15+6=21;当AD在三角形的外部时,BC=15﹣6=9.则BC的长是21或9.故选:D.10.【解答】解:(1)作PM⊥AC于点M,可得矩形AEPM∴PE=AM,利用DB=DC得到∠B=∠DCB∵PM∥AB.∴∠B=∠MPC∴∠DCB=∠MPC又∵PC=PC.∠PFC=∠PMC=90°∴△PFC≌△CMP∴PF=CM∴PE+PF=AC∵AD:DB=1:3∴可设AD=x,DB=3x,那么CD=3x,AC=2x,BC=2x∵BC=∴x=2∴PE+PF=AC=2×2=4.(2)连接PD,PD把△BCD分成两个三角形△PBD,△PCD,S=BD•PE,△PBDS=DC•PF,△PCDS=BD•AC,△BCD所以PE+PF=AC=2×2=4.故选:C.二.填空题(共5小题)11.解:∵DE是AB的中垂线,∴DA=DB,设AD=x,则DB=x,CD=BC﹣BD=8﹣x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8﹣x)2=x2,解得x=,∴CD=8﹣x=,故答案为:.12.解:连接BC,∵∠A=90°,AB=4,AC=3∴BC=5,∵BC=5,BD=13,CD=12∴BC2+CD2=BD2∴△BCD是直角三角形∴S四边形ABCD=S△BCD+S△ABC=×4×3+×5×12=36,故答案为:3613.解:过A作AE⊥AD,使AE=AD,连接CE,DE,过C作CF⊥AD于F,则△ADE是等腰直角三角形,∵∠ADC=45°,∴△CDF是等腰直角三角形,∴CF=DF=CD=1,∵AC⊥AB,∠ABC=45°,∴△ABC是等腰直角三角形,∴AC=BC=,∴AF==2,∴AD=3,∴DE=AD=3,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE,(SAS),∴CE=BD,∵∠ADE=∠ADC=45°,∴∠CDE=90°,∴CE==2,∴BD=CE=2.故答案为:2.14.解:在Rt△ABO中,∵AB=15m,AO=12m,∴OB===9m.同理,在Rt△COD中,DO===12m,∴BD=OD﹣OB=12﹣9=3(m).故答案是:3.15.解:如图所示:故答案是:3.三.解答题(共6小题)16.解:(1)在Rt△DCB中,DC2+DB2=BC2,∴DC2=9﹣,∴DC=;(2)在Rt△ACD中,AD2+CD2=AC2,∴AD2=16﹣,∴AD=;(3)AB=AD+DB=+=5.17.解:(1)图(1)中的大正方形的面积可以表示为c2,也可表示为(b﹣a)2+4×ab ∴(b﹣a)2+4×ab=c2化简得b2﹣2ab+b2+2ab=c2∴当∠C=90°时,a2+b2=c2;(2)(x+y)(x+2y)=x2+3xy+2y2故填:(x+y)(x+2y)=x2+3xy+2y2(3)依题意得则2ab=12∴(a+b)2=a2+b2+2ab=13+12=25,即(a+b)2=25.18.解:在Rt△ADC中,∵AD=12,CD=9,∴AC2=AD2+CD2=122+92=225,∴AC=15(取正值).在△ABC中,∵AC2+BC2=152+202=625,AB2=252=625.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠A CB=90°.(2)S阴影=AC×BC﹣AD×CD=×15×20﹣×12×9=96.答:阴影部分的面积为96.19.解:(1)∵AC=8km,BC=15km,AC⊥BC,∴A C2+BC2=AB2,AB=km,(2)过B作BD⊥永定路于D,∵△ABC是直角三角形,且∠ACB=90°,∵∠1=30°,∴∠BCD=180°﹣90°﹣30°=60°,在Rt△BCD中,∵∠BCD=60°,∴∠CBD=30°,∴CD=BC==7.5(km),∵7.5÷2.5=3(h),∴3小时后这人距离B送奶站最近.最近距离为km.20.解:(1)如图所示:D点的坐标是(0,﹣4);(2)线段AC的长为=,AD的长为=2,BD的长为=.(3)∵AB==5,AD=2,BD=,(2)2+()2=(5)2,∴△ABD为直角三角形,四边形ADBC面积是2×=20.故答案为:(0,﹣4);,2,;直角,20.21.解:(1)如图作PH⊥CD于H.在Rt△APH中,∵∠PAH=30°,PA=320m,∴PH=PA=160m,∵160<200,∴学校P会受到噪声的影响.(2)当PE=PF=200时,动车在线段EF上时,受噪声影响,∵EF=2FH==240m,180千米/时=50米/秒∵=8.8秒,答:学校P受影响的时间为8.8秒.二次根式详解详析1.B [解析] ①的被开方数是负数,不是二次根式.②符合二次根式的定义,是二次根式.③m,n同号,且n≠0,则被开方数是非负数,是二次根式.④因为x2≥0,所以x2+1>0,被开方数是正数,是二次根式.⑤的根指数不是2,所以不是二次根式.2.B [解析] 由题意得⎩⎪⎨⎪⎧x +1≥0,(x -3)2≠0, 解得x ≥-1且x ≠3.3.D [解析] (1)根据“( a )2=a (a ≥0)”可知( 2)2=2成立;(2)根据“ a 2=||a ”可知 (-2)2=2成立;(3)根据“(ab )2=a 2b 2”可知,计算(-2 3)2,可将-2和 3分别平方后,再相乘,所以这个结论正确;(4)根据“(a +b )(a -b )=a 2-b 2”,( 2+3)( 2- 3)=( 2)2-( 3)2=2-3=-1.4.A5.B [解析] ∵75=25×3,∴使75n 是整数的正整数n 的最小值是3.故选B. 6.C7.A [解析] 原式=(a -b )22a ·a a -b =a -b 2,把a -b =2 3代入,原式=2 32=3,故选A.8.D [解析] ∵a =5,∴(1-a )2=|1-a |=a -1.9.2-a 10. 311.(x +5)(x -5) 12. 2 13.(1)26 (2)36 (3)22(4)3+1 14.(5 2+2 3) [解析] 8+12+18=2 2+2 3+3 2=(5 2+23)cm.15.3 13-9 [解析] 根据题意,得a =3,b =13-3,所以ab =3()13-3= 3 13-9.16.1 [解析] 把5,2,1代入三角形的面积公式得S =14[5×4-(5+4-12)2]=14(20-16)=1,故填1. 17.解:(1)原式=2(2 3+2 5)-3 3+3 5 =4 3+4 5-3 3+3 5 =3+7 5. (2)原式=3×15+ 5 3- 25×15-10 `5-[](10)2-2×10×2+(2)2=3 5+5 3-10 3-10 5-10+4 5-2=-3 5-5 3-12.18.解:(1)原式=ab (a +b ).当a =7+2,b =7-2时,原式=6 7. (2)原式=(a +b )(a -b ).当a =7+2,b =7-2时,原式=8 7.19.解:原式=1(x +1)2·x +2x -1·(x +1)(x -1)x +2=1x +1. 当x =2 5-1时, 原式=12 5-1+1=510.20.解:不够用.理由如下: 焊成三个面积分别为2平方米、18平方米、32平方米的正方形铁框所需的钢材的总长是4(2+18+32)=4(2+3 2+4 2)=32 2(米),(32 2)2=2048,452=2025. ∵2048>2025,∴王师傅的钢材不够用.21.解:(1)m 2+3n 22mn(2)答案不唯一,如:4 2 1 1(3)根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn .∵2mn =4,且m ,n 为正整数,∴m =2,n =1或m =1,n =2, ∴a =7或a =13.平行四边形答案:所以D 是错误的.故选D .2、解:菱形对角线不相等,矩形对角线不垂直,也不平分一组对角,故答案应为对角线互相平分,故选B .3、解:∵▱ABCD 的周长是28cm ,∴AB+BC=14cm,∵AB+BC+AC=22cm,∴AC=22﹣14=8 cm.故选D.4、解:∵平行四边形ABCD∴OA=OC=6,OB=OD=5∵在△OAB中:OA﹣OB<AB<OA+OB∴1<m<11.故选C.5、解:∵ABCD是平行四边形∴AD=BC,AB=CD,AO=CO,BO=DO∵∠AOB=∠COD,∠AOD=∠COB∴△ABO≌△CDO,△ADO≌△CBO(ASA)∵BD=BD,AC=AC∴△ABD≌△CDB,△ACD≌△CAB(SAS)∴共有四对.故选D.6、解:根据菱形的性质可得较短的对角线与菱形的两边组成一个等边三故选D.8、解:由已知可得,菱形的边长为5cm,两邻角分别为60°,120°.又菱形的对角线互相垂直平分,且每一条对角线平分一组对角,可得30°的角,所对边为2.5cm,则此条对角线长5cm.根据勾股定理可得,另一对角线长的一半为cm,则较长的对角线长为5cm.故本题选C.9、解:矩形的四个角平分线将矩形的四个角分成8个45°的角,因此形成的四边形每个角是90°.又知两条角平分线与矩形的一边构成等腰直角三角形,所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形,故选A.∴△DEF的周长为△EAF的周长,即AE+EF+AF=(AB+BC+AC)=(12+10+9)=15.5.故选D.第二卷非选择题二、填空题(每小题3分,共24分)11、解:设这个正方形的边长为xcm,则根据正方形的性质可知:x2+x2=42=16,解可得x=2cm;则它的面积是x2=8cm2,故答案为8cm2.12、解:菱形的两条对角线分别是6cm,8cm,得到两条对角线相交所构成的直角三角形的两直角边是×6=3cm和×8=4cm,那么它的斜边即菱形的边长=5cm,面积为6×8×=24cm2.故答案为5,24.∴∠CAB=30°∴PA=2EP∵AB=2,E是AB的中点∴AE=1在Rt△APE中,PA2﹣PE2=1∴PE=,PA=∴PE+PB=PE+PA=.故答案为.所以S1=S2.故答案为S1=S2.17、解:∵Rt△ABC的周长是4+4,斜边上的中线长是2,∴斜边长为4,设两个直角边的长为x,y,则x+y=4,x2+y2=16,解得:xy=8,∴S△ABC=xy=4.18、解:连接BD和AA2,∵四边形ABA2D和四边形A1EFC都是正方形,∴DA1=A1A2,∠A1DN=∠A1A2M=45°,∠DA1A2=∠NA1M=90°,∴∠DA1N=∠A2A1M,∵在△DA1N和△A2A1M中∠A1DN=∠A1A2M,DA1=A1A2,∠DA1N=∠A2A1M,∴△DA1N≌△A2A1M,即四边形MA1NA2的面积等于△DA1A2的面积,也等于正方形ABA2D的面积的,同理得出,其余的阴影部分的面积都等于正方形面积的,则这七个正方形重叠形成的重叠部分的面积是6××12=,故答案为:.三、解答题(共7小题,共66分)∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.22、证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形.又∵∠1=∠2,而∠2=∠3,∴∠1=∠3,∴AE=DE.∴▱AEDF为菱形.∴AD⊥EF.23、(1)证明:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠FAE=∠BDE,∠AFE=∠DBE.∴△AFE≌△DBE.∴AF=BD.∵AF=DC,∴BD=DC.即:D是BC的中点.(4分)(2)解:四边形ADCF是矩形;∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∠ADB=∠CDB,∴∠PMD=∠PND=90°,PM=PN,∵∠ADC=90°,∴四边形MPND是矩形,∵PM=PN,∴四边形MPND是正方形.25、证明:(1)∵CE平分∠ACB,∴∠ACE=∠BCE.∵MN∥BC,∴∠PEC=∠BCE.∴∠ACE=∠PEC,PE=PC.同理:PF=PC.∴PE=PF.。
八年级下册数学期末试卷达标检测卷(Word 版含解析)一、选择题1.下列二次根式有意义的范围为x ≥﹣4的是( )A .4x -B .14x -C .14x +D .4x + 2.下列给出的四组数中,能构成直角三角形三边的一组是( )A .3,4,5B .5,12,14C .6,8,9D .8,13,153.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线相等的四边形是矩形;③对角线互相垂直平分的四边形是菱形;④对角线互相垂直的矩形是正方形.其中真命题的个数是( )A .1B .2C .3D .44.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( )A .中位数B .平均数C .众数D .方差 5.ABC ∆的周长为60,三条边之比为13:12:5,则这个三角形的面积为( )A .30B .90C .60D .120 6.在菱形ABCD 中,80ABC ∠=︒,BA BE =,则DAE =∠( )A .20︒B .30C .40︒D .50︒7.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C '处,BC '交AD 于E ,AD =8,AB =4,则DE 的长为( )A .3B .4C .5D .68.如图,在平面直角坐标系中,已知A (5,0)点P 为线段OA 上任意一点.在直线y =34x 上取点E ,使PO =PE ,延长PE 到点F ,使PA =PF ,分别取OE 、AF 中点M 、N ,连结MN ,则MN 的最小值是( )A .2.5B .2.4C .2.8D .3二、填空题9.函数01(1)2y x x =+-+中x 的取值范围是______. 10.已知菱形的两条对角线长分别为1和4,则菱形的面积为______.11.如图,每个小正方形的边长都为1,则ABC ∆的三边长a ,b ,c 的大小关系是________(用“>”连接).12.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E 、F ,连接PB 、PD ,若AE =2,PF =9,则图中阴影面积为______;13.某一次函数的图象经过点(2,-3),且函数y 随x 的增大而增大,请你写出一个符合条件的函数解析式_____________________.14.在矩形ABCD 中,3AB =,ABC ∠的平分线BE 交AD 所在的直线于点E ,若2DE =,则AD 的长为__________.15.如图,在平面直角坐标系中,点A ,A 1,A 2,…在x 轴上,点P ,P 1,P 2,…在直线l :y=kx +34(k >0)上,∠OPA =90°,点P (1,1),A (2,0),且AP 1,A 1P 2,…均与OP 平行,A 1P 1,A 2P 2,…均与AP 平行,则有下列结论:①直线AP 1的函数解析式为y =x ﹣2;②点P 2的纵坐标是259;③点P 2021的纵坐标为(53)2021.其中正确的是_____(填序号).16.如图,在平面直角坐标系xOy 中,一次函数24y x =-的图象经过正方形OABC 的顶点A 和C ,则正方形OABC 的面积为____.三、解答题17.计算: ①33118(3)2⨯+-; ②2(32)24-+.18.笔直的河流一侧有一旅游地C ,河边有两个漂流点A ,B .其中AB =AC ,由于某种原因,由C 到A 的路现在已经不通,为方便游客决定在河边新建一个漂流点H (A ,H ,B 在同一直线上),并新修一条路CH ,测得BC =5千米,CH =4千米,BH =3千米. (1)判断△BCH 的形状,并说明理由;(2)求原路线AC 的长.19.阅读理解:我们给出如下定义:若一个四边形中存在一组相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:__________,__________.(2)如图,已知格点(小正方形的顶点)()0,0O ,()3,0A ,()0,4B ,请你画出以格点为顶点,OA ,OB 为勾股边且对角线相等的两个勾股四边形OAMB .20.如图,矩形ABCD 的对角线AC 与BD 交于点,作CF ∥BD ,DF ∥AC .求证:四边形DECF 为菱形.21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+-, ∴23a -= ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-,直接写出2481a a -+的值是 . (21315375121119+++++ 22.某商场要印制商品宣传材料,甲印刷厂的收费标准是:每份材料收1元印制费,另收1500元制版费;乙印刷厂的收费标准是:每份材料收2.5元印制费,不收制版费. (1)分别写出两厂的收费y (元)与印制数量x (份)之间的关系式;(2)印制800份宣传材料时,选择哪一家印刷厂比较合算?商场计划花费3000元用于印刷上述宣传材料,选择哪一家印刷厂能多印制一些宣传材料?23.在正方形ABCD 中,点E 是CD 边上任意一点,连接过点B 作于F ,交AD 于.如图1,过点D 作于G .求证:;如图2,点E 为CD 的中点,连接DF ,试判断存在什么数量关系并说明理由;如图3,,连接,点为的中点,在点E 从点D 运动到点C 的过程中,点随之运动,请直接写出点运动的路径长.24.如图,已知点()4,0A 、()0,2B ,线段OA OC =且点C 在y 轴负半轴上,连接AC .(1)如图1,求直线AB 的解析式;(2)如图1,点P 是直线CA 上一点,若3ABC ABP SS =,求满足条件的点P 坐标; (3)如图2,点M 为直线5:2l x =上一点,将点M 水平向右平移6个单位至点N ,连接BM 、MN 、NC ,求BM MN NC ++的最小值及此时点N 的坐标.25.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.【参考答案】一、选择题1.D解析:D【分析】根据二次根式中的被开方数是非负数,分式的分母不为0列出不等式,分别计算即可.【详解】解:A 、x ﹣4≥0,解得x ≥4,故此选项不符合题意;B 、x ﹣4>0,解得x >4,故此选项不符合题意;C 、x +4>0,解得x >﹣4,故此选项不符合题意;D 、x +4≥0,解得x ≥﹣4,故此选项符合题意.故选:D .【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,解题关键是熟记二次根式和分式有意义的条件,列出不等式求解.2.A解析:A【分析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【详解】解:A.∵32+42=52,∴能构成直角三角形三边;B.∵52+122≠142,∴不能构成直角三角形三边;C.∵62+82≠92,∴不能构成直角三角形三边;D.∵82+132≠152,∴不能构成直角三角形三边.故选A.【点睛】本题考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.B解析:B【解析】【分析】根据平行四边形、矩形、菱形和正方形的判定直接进行判断即可.【详解】解:①一组对边平行且相等的四边形是平行四边形,原命题是假命题;②对角线相等的平行四边形是矩形,原命题是假命题;③对角线互相垂直平分的四边形是菱形,是真命题;④对角线互相垂直的矩形是正方形,是真命题;故选:B.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.A解析:A【解析】【分析】由于比赛取前8名参加决赛,共有17名选手参加,根据中位数的意义分析即可.【详解】解:由于总共有17个人,且他们的分数互不相同,第9名的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选:A.【点睛】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数.5.D解析:D根据已知条件可求得三边的长,再判断这个三角形是直角三角形,即可求得面积.【详解】∵三条边之比为13:12:5,∴122+52=132,∴△ABC 是直角三角形,∵△ABC 的周长为60,∴三边长分别是:26,24,10,∴这个三角形的面积是:24×10÷2=120,故选D .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.B解析:B【解析】【分析】利用菱形的性质和等腰三角形的性质即可求解.【详解】解:在菱形ABCD 中,80ABC ∠=︒,∴18080100BAD ∠=︒-︒=︒,40ABE ∠=︒,∵BA BE =, ∴18040702BAE BEA ︒-︒∠=∠==︒, ∴1007030DAE BAD BAE ∠=∠-∠=︒-︒=︒,故选:B .【点睛】本题考查了菱形的性质和等腰三角形的性质,运用知识准确计算是解题的关键. 7.C解析:C【解析】【分析】根据折叠前后角相等可知△ABE ≌△C'ED ,利用勾股定理可求出.【详解】解:∵四边形ABCD 是矩形,∴AB=CD ,∠C =∠A =90°由折叠的性质可得:C'D =CD =AB ;∠C'=∠C =∠A在△ABE 与△C'ED 中''C ED AEB C A ⎪∠=∠⎨⎪∠=∠⎩∴△ABE ≌△C'ED (AAS )∴DE=BE设DE =BE =x ,则AE =8-x ,AB =4,在直角三角形ABE 中,()22816x x =-+ 解得x =5故选C .【点睛】本题考查勾股定理在折叠问题中的应用,找到合适的直角三角形构建等量关系是本题关键.8.B解析:B【分析】如图,连接PM ,PN ,设AF 交EM 于J ,连接PJ .证明四边形PMJN 是矩形,推出MN=PJ ,求出PJ 的最小值即可解决问题.【详解】解:如图,连接PM ,PN ,设AF 交EM 于J ,连接PJ .∵PO=PE ,OM=ME ,∴PM ⊥OE ,∠OPM=∠EPM ,∵PF=PA ,NF=NA ,∴PN ⊥AF ,∠APN=∠FPN ,∴∠MPN=∠EPM+∠FPN=12(∠OPF+∠FPA )=90°,∠PMJ=∠PNJ=90°,∴四边形PMJN 是矩形,∴MN=PJ ,∴当JP ⊥OA 时,PJ 的值最小此时MN 的值最小, ∵AF ⊥OM ,A (5,0),直线OM 的解析式为y=34x ∴设直线AF 的解析式为y=4-3x+b ∵直线AF 过A (5,0), ∴4-5+b 3⨯=0,∴b=203, ∴y=420-x+33, 由3442033y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,解得165125x y ⎧=⎪⎪⎨⎪=⎪⎩∴16(,)5125J ∴PJ 的最小值为125=2.4 即MN 的最小值为2.4故选:B .【点睛】本题考查一次函数的应用,矩形的判定和性质,垂线段最短等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.二、填空题9.x >﹣2且x ≠1.【解析】【分析】从二次根式,分式,零指数幂三个角度去思考求解即可.【详解】由题意得,x +2>0,且x ﹣1≠0,解得x >﹣2且x ≠1,所以x 的取值范围是x >﹣2且x ≠1.故答案为:x >﹣2且x ≠1.【点睛】本题考查了分式有意义的条件,二次根式有意义的条件,零指数幂有意义的条件,熟练上述基本条件是解题的关键.10.2【解析】【分析】利用菱形的面积等于对角线乘积的一半求解.【详解】解:菱形的面积=12×1×4=2. 故答案为2.【点睛】本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角). 记住菱形面积=12ab (a 、b 是两条对角线的长度). 11.c a b >>;【解析】【分析】观察图形根据勾股定理分别计算出a 、b 、c ,根据二次根式的性质即可比较a 、b 、c 的大小.【详解】解:在图中,每个小正方形的边长都为1,由勾股定理可得:22242025=+==a ,22331832=+==b ,221526=+=c ,∵262018>>,即262532>>,∴c a b >>,故答案为:c a b >>.【点睛】本题考查了勾股定理和比较二次根式的大小,本题中正确求出a 、b 、c 的值是解题的关键.12.A解析:18【分析】作PM ⊥AD 于M ,交BC 于N ,根据矩形的性质可得S △PEB =S △PFD 即可求解.【详解】解:作PM ⊥AD 于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,,,,,ADC ABC AMP AEP PBE PBN PFD PDM PFC PCN S S S S S S S S S S ∴=====,∴DFPM BEPN S S 矩矩=,12442DFP PBE S S ∴==⨯⨯=, ∴S 阴=9+9=18,故答案为:18.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明DFP PBE S S =.13.5y x =-(答案不唯一)【分析】根据题意,写出一个0k >且经过(2,3)-的解析式即可【详解】函数y 随x 的增大而增大0k ∴>图象经过点(2,-3)例如:5y x =-(答案不唯一)【点睛】本题考查了一次函数的性质,一次函数的定义,理解一次函数的性质是解题的关键. 14.5或1【分析】当点E 在AD 上时,根据平行线的性质和角平分线的定义可得3AE AB ==,可得AD 的长;当点E 在AD 的延长线上时,同理可求出AD 的长.【详解】解:如图1,当点E 在AD 上时,四边形ABCD 是矩形,90A ∴∠=︒,//AD BC ,AEB CBE ∴∠=∠, BE 平分ABC ∠,ABE CBE ∴∠=∠,ABE AEB ∴∠=∠,3AE AB ∴==,2DE =,325AD AE DE ∴=+=+=;如图2,当点E 在AD 的延长线上时,同理3AE =,321AD AE DE ∴=-=-=.故答案为:5或1.【点睛】本题主要考查了矩形的性质,等腰直角三角形的性质等知识,解题的关键是正确画出两种图形.15.①②③【分析】由已知易求得直线的解析式为:,直线为:,进而根据待定系数法可求得 的解析式为:即可判断①;解析式联立构成方程组可求得 的坐标,同理求得 的坐标,即可判断②;由、的坐标得出规律即可得解析:①②③【分析】由已知易求得直线OP 的解析式为:y x =,直线l 为:1344y x =+,进而根据待定系数法可求得 1AP 的解析式为:2y x =-即可判断①;解析式联立构成方程组可求得 1P 的坐标,同理求得 2P 的坐标,即可判断②;由1P 、2P 的坐标得出规律即可得出点 2021P 的纵坐标为202153⎛⎫ ⎪⎝⎭,即可判断③.【详解】解:设1AP 的解析式为y kx b =+,∵P (1,1),∴直线OP 为y x =,∵AP 1∥OP ,∴k =1,即y x b =+,∵A (2,0),∴2+b =0,解得b =﹣2,∴AP 1的解析式为2y x =-,故①正确;∵点P ,P 1,P 2,…在直线l :34y kx =+(k >0)上, ∴1=k +34,解得k =14,∴直线l 为:1344y x =+, 解21344y x y x =-⎧⎪⎨=+⎪⎩得11353x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴115133P ⎛⎫ ⎪⎝⎭,, 设11A P 的解析式为y x b =-+, 代入111533P ⎛⎫ ⎪⎝⎭,可得,11A P 的解析式为:163y x =-+, ∴A 1的坐标为(163,0), 同理求得A 1P 2的解析式为:163y x =-, 解1631344y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩得739259x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴P 2纵坐标为259,故②正确; ∵P 1纵坐标为53,P 2纵坐标为259=(53)2, 以此类推,点P 2021的纵坐标为(53)2021.故③正确. 故答案为:①②③.【点睛】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,总结出点的纵坐标的规律是解题的关键.16.【分析】过点作轴于点,过点作轴于点,由正方形的性质就可以得出,就可以得出,,由一次函数的图象经过正方形的顶点和,设点,就可以得出代入解析式就可以求出的值,由正方形的面积等于就可以求出结论.【详 解析:325【分析】过点C 作CD x ⊥轴于点D ,过点A 作AE y ⊥轴于点E ,由正方形的性质就可以得出CDO AEO ∆≅∆,就可以得出CD AE =,OD OE =,由一次函数24y x =-的图象经过正方形OABC 的顶点A 和C ,设点(,24)C a a -,就可以得出(24,)A a a --代入解析式就可以求出a 的值,由正方形的面积等于2OC 就可以求出结论.【详解】解:过点C 作CD x ⊥轴于点D ,过点A 作AE y ⊥轴于点E ,90CDO AEO ∴∠=∠=︒.四边形OABC 是正方形,90AOC ∴∠=︒,OC OA =.90DOE ∠=︒,AOC DOE ∴∠=∠,AOC AOD DOE AOD ∴∠-∠=∠-∠,COD AOE ∴∠=∠.在CDO ∆和AEO ∆中,CDO AEO COD AOE OC OA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()CDO AEO AAS ∴∆≅∆CD AE ∴=,OD OE =.一次函数24y x =-的图象经过正方形OABC 的顶点A 和C ,设点(,24)C a a -, OD a ∴=,24CD a =-,OE a ∴=,24AE a =-,(24,)A a a ∴--,2(24)4a a ∴-=--,125a ∴=. 125OD ∴=,45CD =, 在Rt CDO ∆中,由勾股定理,得2222212432555OC OD CD ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭. 2OABC S CO =正方形,325OABC S ∴=正方形. 故答案为:325. 【点睛】 本题考查了正方形的性质及面积公式的运用,垂直的性质的运用,勾股定理的运用,全等三角形的判定及性质的运用,一次函数图象上点的坐标的特征的运用,构造K 字形全等,得出AC 两点坐标关系是解题的关键.三、解答题17.①0;②5【分析】(1)先运用二次根式或立方根的性质化简各个根式,再计算即可;(2)先运用完全平方公式计算,再合并同类二次根式计算即可.【详解】解:①原式=0;②原式=5.【解析:①0;②5【分析】(1)先运用二次根式或立方根的性质化简各个根式,再计算即可;(2)先运用完全平方公式计算,再合并同类二次根式计算即可.【详解】解:原式3=-=-33=0;②2原式32=+-=5.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则和运算顺序是解题的关键.18.(1)直角三角形,理由见解析;(2)原来的路线AC的长为千米.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【详解】解:(1)△HBC是直角三角形,理由是:在△解析:(1)直角三角形,理由见解析;(2)原来的路线AC的长为256千米.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【详解】解:(1)△HBC是直角三角形,理由是:在△CHB中,∵CH2+BH2=42+32=25,BC2=25,∴CH2+BH2=BC2,∴△HBC是直角三角形且∠CHB=90°;(2)设AC=AB=x千米,则AH=AB-BH=(x-3)千米,在Rt△ACH中,由已知得AC=x,AH=x-3,CH=4,由勾股定理得:AC2=AH2+CH2,∴x2=(x-3)2+42,解这个方程,得x=256,答:原来的路线AC的长为256千米.【点睛】本题考查勾股定理的应用,解决本题的关键是掌握勾股定理的逆定理和定理.19.(1)矩形,正方形;(2)见解析【解析】【分析】(1)根据勾股四边形的定义即可求解;(2)由勾股定理可知可知四边形对角线为5,据此即可作图.【详解】解:(1)由勾股四边形的定义矩形、正方解析:(1)矩形,正方形;(2)见解析【解析】【分析】(1)根据勾股四边形的定义即可求解;(2)由勾股定理可知可知四边形OAMB对角线为5,据此即可作图.【详解】解:(1)由勾股四边形的定义矩形、正方形都满足一组相邻两边的平方和等于一条对角线的平方,故答案为:矩形,正方形;(2)如图,证明:∵∠AOB=90°,∴222OA OB AB+=,∴四边形OAMB为勾股四边形,由勾股定理得,22345OM+∴AB=OM,∴四边形OAMB都是勾股四边形,符合题意.【点睛】本题为新定义问题,考查了勾股定理等知识,矩形、正方形的性质,熟知勾股定理,理解勾股四边形的定义是解题关键.20.见解析【分析】根据DF∥AC,CF∥BD,即可证出四边形EDFC是平行四边形,又知四边形ABCD是矩形,故可得ED=BD=AC=EC,即可证出四边形EDFC是菱形.【详解】证明:∵DF∥AC解析:见解析【分析】根据DF∥AC,CF∥BD,即可证出四边形EDFC是平行四边形,又知四边形ABCD是矩形,故可得ED=12BD=12AC=EC,即可证出四边形EDFC是菱形.【详解】证明:∵DF∥AC,CF∥BD∴四边形EDFC是平行四边形,∵四边形ABCD是矩形,∴ED=12BD=12AC=EC,∴四边形EDFC是菱形.【点睛】本题主要考查矩形性质和菱形的判定的知识点,解答本题的关键是熟练掌握菱形的判定定理,此题比较简单.21.(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵a=,∴4a2-8a+1=4×()2-8×()+1=5;(2)解析:(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.,试题解析:(1)∵∴4a2-8a+1)2-8×)+1=5;×(2)原式=12×)=12×10=12=5.点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键.22.(1)y甲=x+1500,y乙=2.5x;(2)印制800份宣传材料时,选择乙厂比较合算;商场计划花费3000元用于印刷上述宣传材料,选择甲厂能多印制一些宣传材料【分析】(1)根据“甲印刷厂的收解析:(1)y甲=x+1500,y乙=2.5x;(2)印制800份宣传材料时,选择乙厂比较合算;商场计划花费3000元用于印刷上述宣传材料,选择甲厂能多印制一些宣传材料【分析】(1)根据“甲印刷厂的收费标准是:每份材料收1元印制费,另收1500元制版费”可得甲厂关系式,根据“乙印刷厂的收费标准是:每份材料收2.5元印制费,不收制版费”可得乙厂关系式;(2)把x=800代入两厂关系式进行计算即可得哪厂比较合算;把y=3000代入两厂关系式进行计算可得哪厂能多印制一些宣传材料.【详解】解:(1)根据题意得:y甲=x+1500,y乙=2.5x;(2)当x=800时,y甲=800+1500=2300,y乙=2.5×800=2000,∵2300>2000,∴印制800份宣传材料时,选择乙厂比较合算;当y=3000时,甲厂:3000=x+1500,解得x=1500,乙厂:3000=2.5x,解得x=1200,∵1500>1200,∴商场计划花费3000元用于印刷上述宣传材料,选择甲厂能多印制一些宣传材料.【点睛】本题考查了一次函数的应用,理解题意是解题的关键.23.(1)见解析;(2)FH+FE=DF,理由见解析;(3)【分析】(1)如图1中,证明△AFB≌△DGA(AAS)可得结论.(2)结论:FH+FE=DF.如图2中,过点D作DK⊥AE于K,DJ⊥解析:(1)见解析;(2),理由见解析;(3)【分析】(1)如图1中,证明△AFB≌△DGA(AAS)可得结论.(2)结论:.如图2中,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,证明四边形DKFJ是正方形,可得结论.(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K.设PT=b.证明△KPJ是等腰直角三角形,推出点P在线段JR上运动,求出JR即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵DG⊥AE,AE⊥BH,∴∠AFB=∠DGH=90°,∴∠FAB+∠DAG=90°,∠DAG+∠ADG=90°,∴∠BAF=∠ADG,∴△AFB≌△DGA(AAS),∴AF=DG,BF=AG,∴BF-DG=AG-AF=FG.(2)结论:FH+FE=2DF.理由:如图2中,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,∵四边形ABCD是正方形,∴∠BAD=∠ADE=90°,AB=AD,∵AE⊥BH,∴∠AFB=90°,∴∠DAE+∠EAB=90°,∠EAB+∠ABH=90°,∴∠DAE=∠ABH,∴△ABH≌△DAE(ASA),∴AH=AE,∵DE=EC=1CD,CD=AD,2∴AH=DH,∴DE=DH,∵DJ⊥BJ,DK⊥AE,∴∠J=∠DKE=∠KFJ=90°,∴四边形DKFJ是矩形,∴∠JDK=∠ADC=90°,∴∠JDH=∠KDE,∵∠J=∠DKE=90°,∴△DJH≌△DKE(AAS),∴DJ=DK,JH=EK,∴四边形DKFJ是正方形,∴FK=FJ=DK=DJ,∴DF=2FJ,∴FH+FE=FJ-HJ+FK+KE=2FJ=2DF;(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K.设PT=b.∵△ABH≌△DAE,∴AH=DE,∵∠EDH=90°,HP=PE,∴PD=PH=PE,∵PK⊥DH,PT⊥DE,∴∠PKD=∠KDT=∠PTD=90°,∴四边形PTDK是矩形,∴PT=DK=b,PK=DT,∵PH=PD=PE,PK⊥DH,PT⊥DE,∴DH=2DK=2b,DE=2DT,∴AH=DE=1-2b,∴PK=12DE=12-b,JK=DJ-DK=12-b,∴PK=KJ,∵∠PKJ=90°,∴∠KJP=45°,∴点P在线段JR上运动,∵2DJ=,∴点P 的运动轨迹的长为.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轨迹等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数解决问题,属于中考压轴题. 24.(1);(2)点P 的坐标为(,)或(,);(3)的最小值为;点N 的坐标为(,).【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C 的坐标,然后求出直线解析:(1)122y x =-+;(2)点P 的坐标为(163,43)或(83,43-);(3)BM MN NC ++的最小值为6N 的坐标为(172,711). 【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C 的坐标,然后求出直线AC 的解析式,由3ABC ABP S S =,得到3AC AP =,再分别求出AC 和AP 的长度,即可求出点P 的坐标;(3)根据题意,6MN =为定值,在图中找出一点B ',使得B N BM '=,即点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,此时求出B C B N NC BM NC ''=+=+,即可得到答案.【详解】解:(1)设直线AB 为y kx b =+,把点()4,0A 、()0,2B ,代入,则402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴122y x =-+; (2)∵线段4OA OC ==,且点C 在y 轴负半轴上,∴点C 的坐标为(0,-4),∵点A 为(4,0),∴直线AC 的解析式为:4y x =-;∵点B 到直线AC 的距离就是△ABC 和△ABP 的高,∴△ABC 和△ABP 的高相同,∵3ABC ABP SS =, ∴11322AC h AP h ••=⨯••,∴3AC AP =, ∵224442AC =+=, ∴1424233AP =⨯=, ∵点P 在直线AC 上,则设点P 为(x ,x -4),∴2242(4)(4)243AP x x x =-+-=•-=, ∴443x -=, ∴163x =或83x =, ∴点P 的坐标为(163,43)或(83,43-); (3)根据题意,∵点B 与点M 的水平距离为52, ∴在点N 的右边水平距离为52处作直线11x =,如图:令点B '为(11,2),此时有B N BM '=,∵6MN =,∴66BM MN NC BM NC B N NC '++=++=++,∴当点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,最小值为:66BM MN NC B N NC B C ''++=++=+;∵点B '(11,2),点C 为(0,-4),∴直线B C '的解析式为:6411y x =-,B C '∴BM MN NC ++有最小值为:66B C '+=+∵点N 的横坐标为:517622+=, ∴点N 的纵坐标为:6177411211y =⨯-=, ∴点N 的坐标为:(172,711). 【点睛】 本题考查了一次函数的性质,利用勾股定理求两点之间的距离,最短路径问题,坐标与图形,解题的关键是熟练掌握一次函数的图形和性质,正确找出使得线段之和最小时的临界点,注意运用数形结合的思想进行解题.25.(1)15,8;(2),见解析;(3);(4)4【分析】解决问题(1)只需运用面积法:,即可解决问题;(2)解法同(1);(3)连接、、,作于,由等边三角形的性质得出,由勾股定理得出,得出的解析:(1)15,8;(2)PE PF CG +=,见解析;(3)4)4【分析】解决问题(1)只需运用面积法:ABC ABP ACP S S S ∆∆∆=+,即可解决问题;(2)解法同(1);(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,由等边三角形的性质得出152BM BC ==,由勾股定理得出AM =ABC ∆的面积12BC AM =⨯=ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积1111()2222BC PE AC PF AB PG AB PE PF PG =⨯+⨯+⨯=++= (4)过点E 作EQ BC ⊥,垂足为Q ,易证BE BF =,过点E 作EQ BF ⊥,垂足为Q ,由解决问题(1)可得PG PH EQ +=,易证EQ DC =,BF DF =,只需求出BF 即可.【详解】解:(1)∵PE AB ⊥,10AB =,3PE =,∴ABP ∆的面积111031522AB PE =⨯=⨯⨯=, ∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴358CG PE PF =+=+=.故答案为:15,8.(2)∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴CG PE PF =+.(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,如图2所示:∵10AB AC BC ===,∴ABC ∆是等边三角形,∵AM BC ⊥, ∴152BM BC ==, ∴222210553AM AB BM =-=-=,∴ABC ∆的面积11105325322BC AM =⨯=⨯⨯=, ∵PE BC ⊥,PF AC ⊥,PG AB ⊥,∴ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积111222BC PE AC PF AB PG =⨯+⨯+⨯1()2AB PE PF PG =++ 253=,∴22535310PE PF PG ⨯++==. (4)过点E 作EQ BC ⊥,垂足为Q ,如图3所示:∵四边形ABCD 是矩形,∴AD BC =,90C ADC ∠=∠=︒,∵8AD =,3CF =,∴5BF BC CF AD CF =-=-=,由折叠可得:5DF BF ==,BEF DEF ∠=∠,∵90C ∠=︒, ∴4DC =,∵EQ BC ⊥,90C ADC ∠=∠=︒,∴90EQC C ADC ∠=︒=∠=∠,∴四边形EQCD 是矩形,∴4EQ DC ==,∵//AD BC ,∴DEF EFB ∠=∠,∵BEF DEF ∠=∠,∴BEF EFB ∠=∠,∴BE BF =,由解决问题(1)可得:PG PH EQ +=,∴4PG PH +=,即PG PH +的值为4.【点睛】本题是四边形综合题目,考查了矩形的性质与判定、等腰三角形的性质与判定、平行线的性质与判定、等边三角形的性质、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.。
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。
八年级下册数学人教版试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是二次函数?()A. y = 2x² 3x + 1B. y = x² + 4C. y = 3x + 2D. y = 5x² 6x + 93. 在直角坐标系中,点(3, -4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为()A. 32cmB. 36cmC. 42cmD. 46cm5. 若平行四边形的对角线互相垂直,则这个平行四边形是()A. 矩形B. 菱形C. 正方形D. 无法确定二、判断题(每题1分,共5分)1. 两个锐角互余。
()2. 任何有理数都可以表示为分数形式。
()3. 两个负数相乘的结果是正数。
()4. 一组对边平行且相等的四边形一定是矩形。
()5. 二次函数的图像一定是抛物线。
()三、填空题(每题1分,共5分)1. 若一个圆的半径为r,则它的面积是______。
2. 两个连续偶数的和是______。
3. 若一个数的算术平方根是4,则这个数是______。
4. 若一个等差数列的首项为2,公差为3,则第10项是______。
5. 若一个等比数列的首项为3,公比为2,则第5项是______。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是算术平方根?3. 什么是等差数列?给出一个等差数列的例子。
4. 什么是等比数列?给出一个等比数列的例子。
5. 简述二次函数的定义。
五、应用题(每题2分,共10分)1. 一个长方形的周长是30cm,长是宽的2倍,求长和宽。
2. 若一个二次函数的图像开口向上,顶点坐标为(2, -3),求这个函数的解析式。
3. 一个等腰三角形的底边长为10cm,高为12cm,求这个三角形的面积。
新人教版八年级数学下册期末测试卷附答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A .2- B .2 C .212+ D .212- 4.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >05.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)6.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .187.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__________. 328n n 为________.4.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -.2.先化简,再求值:()()22141a a a +--,其中18a =.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE :y =-2x -4与直线AB 及y 轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、A6、C7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、-1或5或13-3、74、a+c5、36、40°三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、23、(1)见解析;(2)经过,理由见解析4、(1)y =x +5;(2)272;(3)x >-3.5、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
八年级数学(下)第十九章《一次函数》测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2 2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.4.在关于的正比例函数中,随的增大而减小,则的取值范围是( ) A.B.C.D.5.已知两点M (4,2),N (1,1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为( ) A. (2,0) B. (2.5,0) C. (3,0) D. (4,0)6.如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx+b >mx ﹣2的解集是( )A. 1<x <2B. 0<x <2C. 0<x <1D. 1<x7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 58.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N →P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )A. B.C. D.10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y 1(km )和y 2(km )分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t (h )之间的关系,如图所示.下列说法:①折线段OAB 是表示小聪的函数图象y 1,线段OC 是表示小明的函数图象y 2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h ,其中不正确的个数为( )A. 0个B. 1个C. 2个D. 3个二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.12.如果点在直线上,则的值是__________.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.18.小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B 端,且小明到达B 端后停止运动,小亮匀速跑步到达A 端后,立即按原速返回B 端(忽略调头时间),回到B 端后停止运动,已知两人相距的路程S (千米)与小亮出发时间t (秒)之间的关系如图所示,则当小明到达B 端后,经过_________秒,小亮回到B 端.19.在全民健身环城越野赛中,甲、乙两名选手的行程y (千米)随时间x (时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?22.(7分)已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=-1时,求y的值;(3)当y=0时,求x的值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.答案(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2【答案】A【解析】二次根式有意义的条件是根号下被开方数非负,所以x +2≥0,即x ≥2, 故选A.2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限 【答案】A故选A.3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.【答案】A【解析】由图知蓄水池上宽下窄,深度h 和放水时间t 的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A 正确.B 斜率一样,C 前者斜率大,后者小,D 也是前者斜率大,后者小,因此B 、C 、D 排除.故选A . 4.在关于的正比例函数中,随的增大而减小,则的取值范围是( )A. B. C. D.【答案】A【解析】∵随的增大而减小,∴∴.故选A. 学科#网5.已知两点M(4,2),N(1,1),点P是x轴上一动点,若使PM+PN最短,则点P为()A. (2,0)B. (2.5,0)C. (3,0)D. (4,0)【答案】A6.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A. 1<x<2B. 0<x<2C. 0<x<1D. 1<x【答案】A【解析】由于直线y1=kx+b过点A(0,2),P(1,m),故选A .7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 5 【答案】A【解析】∵x=3>1, ∴y=-x+5=-3+5=2. 故选A. 学!科网8.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N→P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处 【答案】D【解析】观察图象可得:当R 在PN 上运动时,面积不断在增大,当点R 运动到PQ 上时,△MNR 的面积y 达到最大,且保持一段时间不变;到Q 点以后,面积y 开始减小;故当x=9时,点R 应运动到Q 处.故选D . 9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M→→→运动,则APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的( )A. B.C. D.【答案】A10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y1(km)和y2(km)分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t(h)之间的关系,如图所示.下列说法:①折线段OAB是表示小聪的函数图象y1,线段OC是表示小明的函数图象y2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h,其中不正确的个数为()A. 0个B. 1个C. 2个D. 3个【答案】B【解析】①小聪离甲地的距离先增加至最大然后减小直至为0,小明离乙地的距离逐渐增大直至最大30千故选B.二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.【答案】<<【解析】∵经过二、三、四象限,∴且12.如果点在直线上,则的值是__________.【答案】-3【解析】∵点在直线上,∴,解得.故答案为:-3.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.【答案】【解析】∵在中,当x=0时,y=4;当时,,∴的图象与x轴的交点坐标为,与y轴的交点坐标为(0,4),由题意可得:,解得:.故答案为:.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.【答案】【解析】设一次函数解析式∵与平行,∴,∴.∵一次函数经过,∴,,∴.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.【答案】4 {2 xy=-=-16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.【答案】6.【解析】小红家与学校的距离为6km,从图象可知她从学校到家用时为3-2=1小时,故从学校到家的平均速度等于6÷1=6 km/h,故答案为:6.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.【答案】≠-2 =218.小明和小亮分别从同一直线跑道A、B 两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过_________秒,小亮回到B端.【答案】45【解析】由题意得:设小明的速度为xm/s,小亮的速度为ym/s,则85 {{53103x yxyx y+==⇒= +=小明到达B端,所需时间为36072s 5=()小亮往返需要的总时间为7204531175-⨯=,则117-72=45(s)故答案:45.19.在全民健身环城越野赛中,甲、乙两名选手的行程y(千米)随时间x(时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).【答案】①③④⑤20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.【答案】)3,0 11333,2n n --⎫⎪⎪⎝⎭【解析】根据等腰三角形的三线合一的性质和30°角直角三角形的性质可求得131,22A ⎛⎫⎪ ⎪⎝⎭,)23,0A ,再由等腰三角形的三线合一的性质和30°角直角三角形的性质可求得3333,22A ⎛⎫⎪ ⎪⎝⎭, 5939,22A ⎛⎫⎪ ⎪⎝⎭,由此可得A 2n-1的坐标11333,22n n --⎛⎫⋅ ⎪ ⎪⎝⎭.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k 为何值时,y 随x 的增大而减小? (2)k 为何值时,它的图象经过原点? 【答案】(1)k >4;(2)k=-4. 【解析】考点:一次函数图象与系数的关系.22.(7分)已知y+3与x+2成正比例,且当x =3时,y =7. (1)写出y 与x 之间的函数关系式; (2)当x =-1时,求y 的值; (3)当y =0时,求x 的值. 【答案】(1)y=2x+1;(2)-1;(3)12-. 【解析】试题分析:(1)已知y+3与x+2成正比例,所以,设y+3=k( x+2),把x =3,y =7代入求出k 的值,即可写出y 与x 之间的函数关系式,(2)把x =-1代入y 与x 之间的函数关系式,求出y 的值. (3)把y =0代入y 与x 之间的函数关系式,求出x 的值.试题解析:(1)设y+3=k( x+2),把x =3,y =7代入得:7+3=(3+2)k,解得k=2,∴y+3=2(x+2),∴y=2x+1; (2)当x=-1时,y=2x+1=2×(-1)+1=-1;(3)当y=0时,有0=2x+1,解得x=12 .考点:1.正比例函数关系式.2.函数值和自变量值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.【答案】(1)m=2,一次函数解析式为y=2x﹣2;(2)S△AOB=2;(3)自变量x的取值范围是x>2.学科&网【解析】(3)自变量x的取值范围是x>2.考点:两条直线相交或平行问题24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.【答案】见解析【解析】考点:1、一次函数性质的应用;2、分类思想.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?【答案】(1)1000;(2)y=300x-5000;(3)40.【解析】试题分析::(1)由图可知第20天的总用水量为1000m3;(2)设y=kx+b.把已知坐标代入解析式可求解;(3)令y=7000代入方程可得.试题解析:(1)第20天的总用水量为1000米3(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴100020400030k bk b+⎨⎩+⎧==,解得,3005000kb-⎧⎨⎩==,∴y与x之间的函数关系式为:y=300x-5000(3)当y=7000时,有7000=300x-5000,解得x=40;种植时间为40天时,总用水量达到7000米3考点:一次函数的应用.26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B 出发后几小时,两人相遇?【答案】(1)1,10 km/h;(2)1.8.【解析】考点:1.一次函数的应用;2. 待定系数法的应用;3.直线上点的坐标与方程的关系.27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.【答案】当学生人数少于40时,选择远航旅行社更优惠,当学生人数等于40时,选择两家旅行社都一样,当学生人数大于40时,选择吉祥旅行社更优惠.【解析】考点:一次函数的应用.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段C D所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.【答案】(1)900;(2)y=75x(6≤x≤12);(3)0.75,6.75.【解析】考点:1、待定系数法;2、一次函数的应用.21。
人教版八年级(下册)数学学科试题(考试时间:90分钟 总分:120分)题 号 一 二 三 总分 得 分一、选择题(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、如果分式x-11有意义,那么x 的取值范围是( ) A 、x >1 B 、x <1 C 、x ≠1 D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是( ) A 、(2,-4) B 、(4,-2) C 、(-1,8) D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为( )A 、4B 、34C 、4或34D 、24、用两个全等的等边三角形,可以拼成下列哪种图形( )A 、矩形B 、菱形C 、正方形D 、等腰梯形5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为( )A B C D6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考( )A 、众数B 、平均数C 、加权平均数D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为( )A 、120cmB 、360cmC 、60cmD 、cm 320第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( )A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为( )A 、100B 、150C 、200D 、30010、下列命题正确的是( )A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
八年级下册数学期末试卷测试卷附答案 一、选择题 1.式子10x -在实数范围内有意义,则x 的取值范围是( )A .x ≥10B .x ≠10C .x ≤10D .x >10 2.以下列三段线段的长为三边的三角形中,不能构成直角三角形的是( ) A .6,8,10 B .5,12,13 C .111,,345 D .9,40,413.在下列条件中,不能判定四边形为平行四边形的是( )A .对角线互相平分B .一组对边平行且相等C .两组对角分别相等D .对角线互相垂直 4.比赛中给一名选手打分时,经常会去掉一个最高分,去掉一个最低分,这样的评分方式一定不会改变选手成绩数据的( )A .众数B .平均数C .中位数D .方差5.如图,将△ABC 放在正方形网格中(图中每个小正方形边长均为1)点A ,B ,C 恰好在网格图中的格点上,那么∠ABC 的度数为( )A .90°B .60°C .30°D .45°6.如图,在Rt ABC 中,90ABC ∠=︒,点D 在边AC 上,2AB =,BD CD =,2BC AB =.若ABD △与EBD △关于直线BD 对称,则线段CE 的长为( )A .655B .755C .855D .9557.如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处,若AB =3,AD =5,则EC 的长为( )A .1B .53C .32D .438.如图,直线m 与n 相交于点()1,3C ,m 与x 轴交于点()2,0D -,n 与x 轴交于点()2,0B ,与y 轴交于点A .下列说法错误的是( ).A .m n ⊥B .AOB DCB ∆∆≌C .BC AC =D .直线m 的函数表达式为3333y x =+ 二、填空题9.当代数式241x x --有意义时,x 应满足的条件_____. 10.已知菱形的两条对角线长分别为1和4,则菱形的面积为______.11.由四个全等的直角三角形组成如图所示的“赵爽弦图”,若直角三角形两直角边边长的和为3,面积为1,则图中阴影部分的面积为____________ .12.如图,在△ABC 中,点D ,E 分别是边AB ,AC 的中点,点F 是线段DE 上的一点.连接AF ,BF ,∠AFB =90°,且AB =10,BC =16,则EF 的长是_______13.在平面直角坐标中,点A (﹣3,2)、B (﹣1,2),直线y =kx (k ≠0)与线段AB 有交点,则k 的取值范围为___.14.如图,矩形ABCD 中,直线MN 垂直平分AC ,与CD ,AB 分别交于点M ,N .若DM =2,CM =3,则矩形的对角线AC 的长为_____.15.如图,将一块等腰直角三角板ABC 放置在平面直角坐标系中,90,ACB AC BC ∠=︒=,点A 在y 轴的正半轴上,点C 在x 轴的负半轴上,点B 在第二象限,AC 所在直线的函数表达式是22y x =+,若保持AC 的长不变,当点A 在y 轴的正半轴滑动,点C 随之在x 轴的负半轴上滑动,则在滑动过程中,点B 与原点O 的最大距离是_______.16.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.三、解答题17.计算: ①33118(3)2⨯+-; ②2(32)24-+.18.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C 处折断,顶部(B )着地,离旗杆底部(A )4米,工人在修复的过程中,发现在折断点C 的下方1.25米D 处,有一明显裂痕,若下次大风将旗杆从D 处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?19.如图,每个小正方形的边长都为1,AB 的位置如图所示.(1)在图中确定点C ,请你连接CA ,CB ,使CB ⊥BA ,AC =5;(2)在完成(1)后,在图中确定点D ,请你连接DA ,DC ,DB ,使CD =10,AD =17,直接写出BD 的长.20.如图,ABCD 的对角线AC 的垂直平分线与AD 、BC 分别交于E 、F ,垂足为点O .(1)求证:四边形AFCE 是菱形. (2)若2AE ED =,6AC =,4EF =,则ABCD 的面积为 .21.阅读下列材料,然后回答问题:31+的运算时,通常有如下两种方法将其进一步化简: 22(31)2(31)3131(31)(31)(3)1--==++-- 2(3)1(31)(31)3131313131-+-====++++ (153+ (242648620202018++++++ 22.振兴加工厂中甲,乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2.5倍.两组各自加工零件的数量y (件)与时间x (时)之间的函数图象如图所示.(1)求甲组加工零件的数量y 与时间x 之间的函数解析式;(2)求出图中a 的值及乙组更换设备后加工零件的数量y 与时间x 之间的函数解析式.23.如图1,在一个平面直角三角形中的两直角边的平方之和一定等于斜边的平方。
新人教版八年级数学下册期末测试卷及答案【最新】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.若613x ,小数部分为y ,则(2x 13y 的值是( )A .5-13B .3C .13 5D .-35.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:()()22141a a a +--,其中18a =.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.5.已知平行四边形ABCD ,对角线AC 、BD 交于点O ,线段EF 过点O 交AD 于点E ,交BC 于点F .求证:OE=OF .6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、B5、D6、B7、D8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、72、22()1y x =-+3、14、20°.5、:略6、6三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =- 2、23、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、(1)略;(2)2.5、略.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
八年级数学下册期末试卷综合测试卷(word 含答案)一、选择题1.2a +在实数范围内有意义,实数a 的取值范围是( ) A .a >0 B .a >1 C .a ≥﹣2 D .a >﹣1 2.以下列各组数为边长,不能构成直角三角形的是( )A .1,2,3B .5,12,13C .3,4,5D .1,2,53.如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,下列条件不能判断四边形ABCD 是平行四边形的是( )A .//AB DC ,ABC ADC ∠=∠ B .AB DC =,AD BC = C .OA OC =,OB OD =D .//AD BC ,AB CD =4.某次竞赛每个学生的综合成绩得分(x )与该学生对应的评价等次如表. 综合成绩(x )=预赛成绩×30%+决赛成绩×70% x ≥90 80≤x <90 评价等次优秀良好小华同学预赛成绩为80,综合成绩位于良好等次,他决赛的成绩可能为( )A .71B .79C .87D .955.如图所示,正方形ABCD 的边长为4,点E 为线段BC 上一动点,连结AE ,将AE 绕点E 顺时针旋转90°至EF ,连结BF ,取BF 的中点M ,若点E 从点B 运动至点C ,则点M 经过的路径长为( )A .2B .22C .23D .46.如图,在Rt △ABC 中,C ∠=90°,沿着过点B 的一条直线BE 折叠△ABC ,使点C 恰好落在AB 的中点D 处,则A ∠的度数为( )A .30°B .45°C .60°D .75°7.如图,在Rt ABC △中,90ACB ∠=︒,D ,E ,F 分别是AC ,BC ,AB 的中点,连接DE ,CF .若1CF =,则DE 的长度为( )A .1B .2C .3D .48.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.8二、填空题9.△ABC 的三条边长a 、b 、c 满足8c =,460a b -+-=,则△ABC ____直角三角形(填“是”或“不是”)10.菱形的周长为12cm ,它的一个内角为60︒,则菱形的面积为______()2cm .11.在Rt ABC ∆中,90C ∠=︒,4AC =,3BC =,则AB =______.12.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,已知5OD =,6AD =,则该矩形的周长是______.13.设一次函数y =kx +3. 若当x =2时,y =-1,则k =___________ 14.若矩形的边长分别为2和4,则它的对角线长是__. 15.如图,CD 是直线3y x =上的一条动线段,且2CD =,点()23,1A ,连接AC 、AD ,则ACD ∆周长的最小值是_______.16.如图,在菱形 ABCD 中,对角线 AC , BD 交于点O ,过点 A 作 AH ⊥ BC 于点 H ,已知 BD=8,S 菱形ABCD =24,则 AH =_______.三、解答题17.计算:(1)0131|2|8(2020)()3π--+-+-+-;(2)11(124)(320.5)83---; (3)(212)(4818)-⨯+; (4)22()()a b a b ++-.18.《九章算术》中有“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处距竹子底端6尺远,问折断处离地面的高度是多少尺?19.图1、图2均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图1中画一个面积为4的菱形;(2)在图2中画一个矩形,使其边长都是无理数,且邻边不相等.20.请在横线上添加一个合适的条件,并写出证明过程:如图,平行四边形ABCD 对角线上有两点E ,F ,AE =CF , ,连接EB ,ED ,FB ,FD .求证:四边形EBFD 为菱形.21.学习了二次根式的乘除后,老师给同学们出了这样一道题:已知a =13,求2221a a a a -+-的值.刘峰想了想,很快就算出来了,下面是他的解题过程:解:∵()()()2221211111a a a a a a a a a a a--+-===---, 又∵a =13,∴13a=, ∴原式=3.你认为刘峰的解法对吗?如果对,请你给他一句鼓励的话;如果不对,请找出错误的原因,并改正.22.小明爸爸为了让小明上学更近,决定在学校附近租套房子居住.现有甲、乙两家出租房屋,甲家已经装修好,每月租金为2500元;乙家未装修,每月租金为1800元,但需要支付装修费14000元.设租用时间为x 个月,所需租金为y 元.(1)请分别写出租用甲、乙两家房屋的租金x 甲、x 乙与租用时间x 之间的函数关系; (2)试判断租用哪家房屋更合算,并说明理由.23.如图1,在平面直角坐标系xOy 中,直线l 1:y =x +6交x 轴于点A ,交y 轴于点B ,经过点B 的直线l 2:y =kx +b 交x 轴于点C ,且l 2与l 1关于y 轴对称. (1)求直线l 2的函数表达式;(2)点D ,E 分别是线段AB ,AC 上的点,将线段DE 绕点D 逆时针α度后得到线段DF . ①如图2,当点D 的坐标为(﹣2,m ),α=45°,且点F 恰好落在线段BC 上时,求线段AE 的长;②如图3,当点D 的坐标为(﹣1,n ),α=90°,且点E 恰好和原点O 重合时,在直线y =3﹣13上是否存在一点G ,使得∠DGF =∠DGO ?若存在,直接写出点G 的坐标;若不存在,请说明理由.24.如图1,矩形OABC 在平面直角坐标系中的位置如图所示,点A ,C 分别在x 轴,y 轴上,点B的坐标为()8,4,点P,Q同时以相同的速度分别从点O,B出发,在边OA,BC 上运动,连接,OQ BP,当点P到达A点时,运动停止.(1)求证:在运动过程中,四边形OPBQ是平行四边形.(2)如图2,在运动过程中,是否存在四边形OPBQ是菱形的情况?若存在,求出此时直线PQ的解析式;若不存在,请说明理由.(3)如图3,在(2)的情况下,直线PQ上是否存在一点D,使得PBD△是直角三角形?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.25.如图,平行四边形ABCD中,连接对角线BD,∠ABD=30°,E为平行四边形外部一点,连接AE、BE、DE,若AE=BE,∠DAE=60°.(1)如图1,若∠C=45°,BC=2,求AB的长;(2)求证:DE=BC;(3)如图2,若∠BCD=15°,连接CE,延长CB与DE交于点F,连接AF,直接写出(AFBF)2的值.【参考答案】一、选择题1.C解析:C【分析】根据二次根式有意义的条件即可求出a的取值范围.【详解】解:由题意可知:a+2≥0,∴a≥-2.故选:C.【点睛】本题考查二次根式有意义,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.A解析:A 【分析】分别求出各选项中较小两数的平方和及最大数的平方,比较后即可得出结论. 【详解】解:A 、由于222123+≠,不能作为直角三角形的三边长,符合题意;B 、由于22251213+=,能作为直角三角形的三边长,不符合题意;C 、由于222345+=,能作为直角三角形的三边长,不符合题意;D 、由于22212+=,能作为直角三角形的三边长,不符合题意.故选:A . 【点睛】本题考查了勾股定理的逆定理,解题的关键是牢记“如果三角形的三边长a ,b ,c 满足222+=a b c ,那么这个三角形就是直角三角形”.3.D解析:D 【解析】 【分析】根据平行四边形的判定定理逐项判断即可. 【详解】A 、由//AB DC ,得180ABC ACD ∠+∠=︒,又ABC ADC ∠=∠,得180ADC ACD ∠+∠=︒,得//AD BC ,可得到四边形ABCD 是平行四边形,故A 选项不符合题意B 、由AB DC =,AD BC =,可得到四边形ABCD 是平行四边形,故B 选项不符合题意; C 、由OA OC =,OB OD =,可得到四边形ABCD 是平行四边形,故C 选项不符合题意; D 、由//AD BC ,AB CD =,不可得到四边形ABCD 是平行四边形,故D 选项符合题意. 故选:D . 【点睛】本题主要考查了平行四边形的判定,解题的关键是理解并掌握平行四边形的判定定理,并会灵活运用.4.C解析:C 【解析】 【分析】设他决赛的成绩为x 分,根据综合成绩所处位次得出80≤80×30%+70%x <90,解之求出x 的范围即可得出答案. 【详解】解:设他决赛的成绩为x 分,根据题意,得:80≤80×30%+70%x <90, 解得80≤x <9427,∴各选项中符合此范围要求的只有87, 故选:C . 【点睛】本题主要考查加权平均数,解题的关键是根据加权平均数的定义及综合成绩位次列出关于x 的不等式组.5.B解析:B 【分析】已知EF ⊥AE ,当E 点在线段BC 上运动到两端时,正好是M 点运动的两个端点,由此可以判断M 点的运动轨迹是BC 、CD 中点的连线长. 【详解】解:取BC 、CD 的中点G 、H ,连接GH ,连接BD ∴GH 为△BCD 的中位线,即12GH BD =∵将AE 绕点E 顺时针旋转90°至EF , ∴EF ⊥AE ,当E 点在B 处时,M 点在BC 的中点G 处,当E 点在C 点处时,M 点在CD 中点处, ∴点M 经过的路径长为GH 的长, ∵正方形ABCD 的边长为4, ∴2242BD BC CD =+= ∴1222GH BD ==, 故选B .【点睛】本题主要考查了正方形的性质,勾股定理和中位线定理,解题的关键在于找到M 点的运动轨迹.6.A解析:A 【解析】 【分析】根据题意可知∠CBE =∠DBE ,DE ⊥AB ,点D 为AB 的中点,∠EAD =∠DBE ,根据三角形内角和定理列出算式,计算得到答案. 【详解】解:由题意可知∠CBE =∠DBE , ∵DE ⊥AB ,点D 为AB 的中点, ∴EA =EB , ∴∠EAD =∠DBE , ∴∠CBE =∠DBE =∠EAD , ∴∠CBE +∠DBE +∠EAD =90°, ∴∠A =30°, 故选:A . 【点睛】本题考查的是翻折变换的知识,理解翻折后的图形与原图形全等是解题的关键,注意三角形内角和等于180°.7.A解析:A 【解析】 【分析】根据直角三角形斜边上的中线等于斜边的一半,可得AB 的长,根据三角形中位线定理可得DE 的长. 【详解】依题意,90ACB ∠=︒,D ,E ,F 分别是AC ,BC ,AB 的中点,1CF =,22AB CF ∴==, 112DE AB ==. 故选A . 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线定理,掌握以上定理是解题的关键.8.B解析:B 【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t ,进而求得a 的值. 【详解】解:设甲乙两地的路程为s ,从甲地到乙地的速度为v ,从乙地到甲地的时间为t ,则 2.71.5v svt s =⎧⎨=⎩ 解得,t =1.8∴a =3.2+1.8=5(小时), 故选B .【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.二、填空题 9.A解析:不是 【解析】 【分析】根据二次根式有意义的条件以及绝对值的非负性,得出,a b 的值,运用勾股定理逆定理验证即可. 【详解】 解:∵460a b -+-=,∴40a -=,60b -=, ∴4,6a b ==, 则22246528+=≠, ∴222a b c +≠,∴△ABC 不是直角三角形, 故答案为:不是. 【点睛】本题考查了二次根式有意义的条件,绝对值的非负性,勾股定理逆定理等知识点,根据题意得出,a b 的值是解本题的关键.10.A 解析:932【解析】 【分析】由菱形的性质和已知条件得出3AB BC CD DA cm ====,AC BD ⊥由含30°角的直角三角形的性质得1322BO AB cm ==,由勾股定理求出OA ,可得BD ,AC 的长度,由菱形的面积公式可求解. 【详解】 如图所示:、∵AB = BC = CD = DA ,130?2BAO BAD ∠=∠=,AC BD ⊥,12OA AC BO DO ==, ∵菱形的周长为12cm , ∴3AB BC CD DA cm ====, ∴1322BO AB cm ==,∴m OA == ∴2AC OA ==,23BD BO cm == ∴菱形ABCD 的面积212AC BD ⨯=.【点睛】本题考查了菱形的性质、含30° 角的直角三角形的性质、勾股定理;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.11.5【解析】 【分析】根据勾股定理222AB AC BC =+即可求得AB 的长度. 【详解】在直角ABC 中,90C ∠=︒, ∴根据勾股定理222AB AC BC =+, ∴5AB =, 故答案为:5. 【点睛】本题考查了勾股定理在直角三角形中的运用,本题中正确的运用勾股定理是解题的关键.12.B解析:28 【分析】先求出BD ,再根据勾股定理求出AB ,即可求矩形的周长. 【详解】解:∵四边形ABCD 是矩形, ∴∠BAD=90°,OD =OB =5,即BD =10, ∴8AB =,矩形的周长为()28628⨯+=,故答案为:28.【点睛】本题考查了矩形的性质和勾股定理,解题关键是熟练运用勾股定理求出矩形的边长. 13.-2【分析】把x=2时,y=-1代入一次函数y =kx +3,解得k 的值即可.【详解】解:把x=2时,y=-1代入一次函数y =kx +3得-1=2k +3,解得k =-2.故答案为:-2.【点睛】本题考查待定系数法求一次函数解析式.一般函数解析式中有几个常量不知道,就需要代入几个函数上的点就可以求出函数解析式.14.A【分析】根据矩形的性质得出∠ABC =90°,AC =BD ,根据勾股定理求出AC 即可.【详解】∵四边形ABCD 是矩形,∴∠ABC =90°,AC =BD ,在Rt △ABC 中,AB =2,BC =4,由勾股定理得:AC ∴BD AC ==故答案为【点睛】本题考查了矩形的性质,勾股定理的应用,题目比较好,难度适中.15.+2.【分析】过点A 作AB ⊥CD ,垂足为点B ,当点B 为CD 的中点时,△ACD 的周长最小,利用等腰三角形的性质,勾股定理计算即可.【详解】过点A 作AB ⊥CD ,垂足为点B ,当点B 为CD 的中点时,解析:.【分析】过点A 作AB ⊥CD ,垂足为点B ,当点B 为CD 的中点时,△ACD 的周长最小,利用等腰三角形的性质,勾股定理计算即可.【详解】过点A作AB⊥CD,垂足为点B,当点B为CD的中点时,△ACD的周长最小,如图,延长BA交x轴与点E,过点A作AF⊥x轴,垂足为点F,设点M(3,3)是直线33y x=上一个点,则OM=223+(3)=23,∴∠MOF=30°,∴∠BEF=60°,∠EAF=30°,∵A(2+3,1),∴OF=2+3,AF=1,设AE=2n,则EF=n,根据勾股定理,得2241n n=+,∴EF=33,AE=233,∴OE=OF+EF=2+433,∴BE=12OE=1+233,∴BA=BE-AE=1+233-233=1,∵CB=BD,AB⊥CD,CD=2,∴AC=AD22BC BA+CB=BD=1,∴AC=AD22112+=∴△ACD的周长最小值为2.故答案为:22.【点睛】本题考查了正比例函数的解析式,勾股定理,直角三角形中30°角的性质,等腰三角形的判定和性质,两点间的距离公式,准确确定最小值的情形,并灵活运用勾股定理求解是解题的关键.16.【分析】根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.【详解】解:∵四边形ABCD 是菱形,BD =8,∴AO =CO ,AC ⊥BD ,OB=OD=4, 解析:245【分析】根据菱形面积=对角线积的一半可求AC ,再根据勾股定理求出BC ,然后由菱形的面积即可得出结果.【详解】解:∵四边形ABCD 是菱形,BD =8,∴AO =CO ,AC ⊥BD ,OB=OD=4,∴S 菱形ABCD =12×AC×BD =24,∴AC =6,∴OC =12AC =3,∴BC5,∵S 菱形ABCD =BC×AH =24,∴AH =245, 故答案为:245. 【点睛】本题考查了菱形的性质、勾股定理以及菱形面积公式;熟练掌握菱形的性质,由勾股定理求出BC 是解题的关键.三、解答题17.(1);(2);(3);(4).【分析】(1)根据负整数幂、零指数幂、立方根和绝对值的性质求解即可; (2)先化成最简二次根式,再合并即可;(3)先化成最简二次根式,再计算乘法即可;(4)根解析:(14;(23)18--4)22a b +.【分析】(1)根据负整数幂、零指数幂、立方根和绝对值的性质求解即可;(2)先化成最简二次根式,再合并即可;(3)先化成最简二次根式,再计算乘法即可;(4)根据完全平方公式展开,再合并即可.【详解】解:(1)011|(2020)()3π--+-213=+-4=;(2)-4(32=-=-=(3)⨯(=⨯=624=--18=--(4)22+a b a b =++-22a b =+.【点睛】本题考查二次根式的混合运算、零指数幂、负整数指数幂,解题的关键是明确各自的计算方法,仔细认真化简,会合并同类项.18.折断处离地面的高度有3.2尺.【分析】根据题意画出图形,设折断处离地面的高度为x 尺,再利用勾股定理列出方程求解即可.【详解】解:如图,设折断处离地面的高度为x 尺,则AB=10-x ,BC=6,解析:折断处离地面的高度有3.2尺.【分析】根据题意画出图形,设折断处离地面的高度为x 尺,再利用勾股定理列出方程求解即可.【详解】解:如图,设折断处离地面的高度为x 尺,则AB =10-x ,BC =6,在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10-x)2.解得:x=3.2.答:折断处离地面的高度有3.2尺.【点睛】本题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.19.(1)见解析;(2)见解析.【解析】【分析】(1)直接利用菱形的性质画出符合题意的菱形;(2)利用网格结合矩形的判定和性质得出答案.【详解】(1)如图1所示:其四边形是菱形,且面积为4;解析:(1)见解析;(2)见解析.【解析】【分析】(1)直接利用菱形的性质画出符合题意的菱形;(2)利用网格结合矩形的判定和性质得出答案.【详解】(1)如图1所示:其四边形是菱形,且面积为4;(2)如图2所示:其四边形是边长为无理数的矩形.【点睛】本题考查应用设计与作图,解题的关键是熟练掌握菱形的性质与矩形的判定和性质.20.,见解析【分析】根据题意和图形,可以在空格处填一个条件,注意填写的条件不唯一,只要可以证明结论成立即可,然后根据菱形的判定方法证明即可.【详解】补充条件:AB =BC ,证明:连接BD 交AC 于解析:AB BC =,见解析【分析】根据题意和图形,可以在空格处填一个条件,注意填写的条件不唯一,只要可以证明结论成立即可,然后根据菱形的判定方法证明即可.【详解】补充条件:AB =BC ,证明:连接BD 交AC 于点O ,如图所示,∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC ,∵AE =CF ,∴OE =OF ,∴四边形EBFD 是平行四边形,∵AB =BC ,∴∠BAE =∠BCF ,在△BAE 和△BCF 中,BA BC BAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△BAE ≌△BCF (SAS ),∴BE =BF ,∴平行四边形EBFD 是菱形,即四边形EBFD 为菱形.故答案为:AB =BC .【点睛】本题考查菱形的判定、平行四边形的性质、全等三角形的判定与性质,利用数形结合的思想解答是解答本题的关键.21.答案见解析.【解析】【分析】直接利用二次根式的性质化简进而得出答案.【详解】刘峰的解法错误,原因是:错误地运用了=这个公式,正确解法是:∵a==<1,∴a﹣1<0,∴====解析:答案见解析.【解析】【分析】直接利用二次根式的性质化简进而得出答案.【详解】刘峰的解法错误,(0)(0)a aa a⎧⎨-<⎩这个公式,正确解法是:∵a1,∴a﹣1<0,∴=|1|(1)aa a--=1(1)aa a--=﹣1a,∴【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.22.(1),;(2)当租期超过20个月时,租乙家房屋更合算;当租期等于20个月时,租甲家、乙家都可以;当租期低于20个月,租甲家房屋更合算【分析】(1)租金等于每月费用乘以租用月数.(2)租金等于解析:(1)2500y x=甲,180014000y x=+乙;(2)当租期超过20个月时,租乙家房屋更合算;当租期等于20个月时,租甲家、乙家都可以;当租期低于20个月,租甲家房屋更合算【分析】(1)租金等于每月费用乘以租用月数.(2)租金等于每月费用乘以租用月数,有装修费的再加上装修费即可.【详解】(1)根据题意,租用甲家房屋:2500y x =甲;租用乙家房屋:180014000y x =+乙;(2)①由题意,可知:2500180014000x x =+,解得:20x ,即当租用20个月时,两家租金相同.②由2500180014000x x >+,解得:20x >;即当租用时间超过20个月时,租乙家的房屋更合算.③由2500180014000x x <+,解得:20x <,即当租用时间少于20个月时,租甲家的房屋更合算.综上所述,当租期超过20个月时,租乙家房屋更合算;当租期等于20个月时,租甲家、乙家都可以;当租期低于20个月,租甲家房屋更合算.【点睛】本题考查一次函数的具体应用,根据题意找出等量关系是解题关键.23.(1)y=-x+6;(2)①;②,或或,【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l2的函数解析式;(2)①将点D (-2,m )代入y=x+6中,求出D (-2,4),如图2解析:(1)y =-x +6;(2)①4+②1(2G ,3-或2(2,3G 或3(2G ,3 【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l 2的函数解析式;(2)①将点D (-2,m )代入y =x +6中,求出D (-2,4),如图2,作∠DHF =45°,利用AAS 证明△ADE ≌△HFD ,再运用等腰直角三角形性质即可求出答案;②将D (-1,n )代入y =x +6中,得D (-1,5),过D 作DM ⊥x 轴于M ,作FN ⊥DM 于N ,如图3,利用AAS 可证得△FDN ≌△DEM ,进而得出F (4,6),再根据∠DGF =∠DGO 分类讨论即可.【详解】解:(1)6y x =+交x 轴于点A ,交y 轴于点B ,(6,0)A ∴-,(0,6)B ,2l 与1l 关于y 轴对称,)0(6,C ∴,设直线2l 为:y kx b =+,将B 、C 坐标代入得606k b b +=⎧⎨=⎩,解得16k b =-⎧⎨=⎩, ∴直线2l 的函数解析式为:6y x =-+;(2)①将点(2,)D m -代入6y x =+中,得: 26m -+=,解得:4m =,(2,4)D ∴-,如图2,作45DHF ∠=︒,6OA OB ==,45EAD EDF DHF ∴∠=∠=∠=︒,135AED ADE ∴∠+∠=︒,135ADE HDF ∠+∠=︒, AED HDF ∴∠=∠,在ADE ∆和HFD ∆中,EAD DHF AED HDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE HFD AAS ∴∆≅∆,22(62)442HF AD ∴=-++=AE HD =, 又6OA OB OC ===,90AOB COB ∠=∠=︒, ABO ∴∆和COB ∆均为等腰直角三角形,45ABO CBO ∴∠=∠=︒,90ABC ∴∠=︒,18090HBF ABC ∴∠=︒-∠=︒,BFH ∴∆是等腰直角三角形,24BH ∴=, 62AB =62442422AE HD AB BH AD ∴==+-=-+ ②将(1,)D n -代入6y x =+中,得:165n =-+=, (1,5)D ∴-,则5DM =,1EM =,过D 作DM x ⊥轴于M ,作FN DM ⊥于N ,如图3,DE DF =,90EDF DME FND ∠=∠=∠=︒,90MDE FDN ∴∠+∠=︒,90MDE DEM ∠+∠=︒, FDN DEM ∴∠=∠,在FDN ∆和DEM ∆中,FND DME FDN DEM DF ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, FDN DEM ∴∆≅∆()AAS ,5FN DM ∴==,1DN EM ==,514BF FN BN ∴=-=-=,516EB MN DM DN ====+=, (4,6)F ∴,当点F 、O 、1G 三点共线时,如图3,11DG O DG F ∠=∠, 设直线EF 的解析式为y mx =,(4,6)F ,46m ∴=, 解得:32m =, ∴直线EF 的解析式为32y x =, 当33132x =2132x = 1213(2G ∴313); 如图4,连接DG 2,FG 2,过点D 作DM ⊥OG 2,DN ⊥FG 2,∵22DG F DG O ∠=∠,∴DM =DN ,又DO =DF ,∴2Rt DG M Rt DFN ≅△△(HL ),∴∠ODM =∠FDN ,又∠ODN +∠FDN =90°, ∴∠ODM +∠ODN =90°,即∠MDN =90°,∴四边形DMG 2N 是正方形,∴∠OG 2F =90°,设2(,313)G a -,22290FG O DG O DG F ∠=∠+∠=︒,22222G O G F OF ∴+=,222222(313)(4)(3136)46a a ∴+-+-+--=+,解得:122a a ==,2(2,313)G ∴-;当3DG 平分3OG F ∠时,如图5,DO DF =,33DG O DG F ∠=∠,33OG FG ∴=,又33DG DG =, 33()DOG DFG SSS ∴∆≅∆,设OF 与3DG 交于点H ,OH FH ∴=,(0,0)O ,(4,6)F ,(2,3)H ∴,设直线DG 解析式为11y k x b =+,(1,5)D -,()2,3H ,∴1111523k b k b -+=⎧⎨+=⎩, 解得:1123133k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线DG 解析式为21333y x =-+,联立方程组213333y x y ⎧=-+⎪⎨⎪=⎩,解得:23x y ⎧=⎪⎨⎪=⎩3(2G ∴,3; 综上所述,符合条件的G的坐标为1(2G,3或2(2,3G或3(2G,3.【点睛】本题是一次函数综合题,考查了运用待定系数法求一次函数解析式,求一次函数图象与坐标轴交点坐标,利用解方程组求两直线交点坐标,等腰直角三角形判定和性质,全等三角形判定和性质,勾股定理等,添加辅助线构造全等三角形,运用分类讨论思想和数形结合思想是解题关键.24.(1)证明见解析;(2)存在,;(3)存在,或.【解析】【分析】(1)说明出后,再利用矩形的性质得到,即可完成求证;(2)先设,依次表示各点坐标与相应线段长,再利用菱形的判定,令一组邻边相等 解析:(1)证明见解析;(2)存在,210y x =-+;(3)存在,()4,2D 或()0,10D .【解析】【分析】(1)说明出BQ OP =后,再利用矩形的性质得到//BQ OP ,即可完成求证;(2)先设=BQ OP x =,依次表示各点坐标与相应线段长,再利用菱形的判定,令一组邻边相等建立关于x 的方程,解方程后,则各点坐标得以确定,然后利用待定系数法即可求出直线PQ 的解析式;(3)先设出D 点坐标,再分别表示出2BP 、2PD 、2BD ,利用勾股定理的逆定理分类讨论求解即可.【详解】解:(1)证:∵点P ,Q 同时以相同的速度分别从点O ,B 出发,∴BQ OP =,又∵矩形OABC ,∴//BQ OP ,∴四边形OPBQ 是平行四边形.(2)存在;理由:∵矩形OABC 且点B 的坐标为()8,4,∴8OA CB ==,4OC AB ==;设=BQ OP x =∴8AP x =-,∴()2222284BP AP AB x =+=-+, 当四边形OPBQ 是菱形时,则=BP OP ,∴()22284x x =-+, 解得:=5x ,∴8=3CQ BC BQ x =-=-,∴()5,0P ,()3,4Q ,设直线PQ 的解析式为:y kx b =+;∴5034k b k b +=⎧⎨+=⎩,解得:210k b =-⎧⎨=⎩, ∴直线PQ 的解析式为:210y x =-+;(3)由(2)知=5BP OP =,设(),210D m m -+,∴()()22225210550125PD m m m m =-+-+=-+, ()()2222=82104540100BD m m m m -+-+-=-+, 当222=BD BP PD +时,2225401005550125m m m m -+=+-+,解得:5m =,此时2100m -+=,∴()5,0D ,此时D 点与P 点重合,不合题意,故舍去;当222=BP BD PD +时,2225540100550125m m m m =-++-+,解得:14m =,25m =(舍去),此时,2102m -+=,∴()4,2D ;当222=PD BD BP +时,2225501255401005m m m m -+=-++,解得:0m =,此时,21010m -+=,∴()0,10D ;综上可得:()4,2D 或()0,10D .【点睛】本题综合考查了矩形的性质、待定系数法求一次函数解析式、平行四边形的判定定理、菱形的判定定理、勾股定理及其逆定理等内容,同时涉及到了解一元二次方程等知识,本题综合性较强,要求学生具备一定的综合分析能力和计算能力,本题蕴含了分类讨论和数形结合的思想方法等.25.(1);(2)证明见解析;(3)【分析】(1)过点D 作DF ⊥AB 于F ,有等腰直角三角形和含30度角的直角三角形的性质,利用勾股定理求出AF 和BF 的长即可求解.(2)过点E 作EF ⊥AB 于F ,过点解析:(1)62+;(2)证明见解析;(3)43-【分析】(1)过点D 作DF ⊥AB 于F ,有等腰直角三角形和含30度角的直角三角形的性质,利用勾股定理求出AF 和BF 的长即可求解. (2)过点E 作EF ⊥AB 于F ,过点A 作AG ⊥BD 交BD 延长线于G ,先证明△GAD ≌△FAE ,再证明三角形ADE 时等边三角形,即可得到答案;(3)过点A 作AP ⊥DE 于P ,过点D 作DN ⊥BF 于点N ,可证明∠BDN =∠DBN =45°,∠FDN =30°,以及EF =BF ,设FN =m ,根据勾股定理,用含m 的式子分别表示出2AF 和2BF ,即可得出结果.【详解】解:(1)如图,过点D 作DF ⊥AB 于F ,∴∠AFD =∠BFD =90°∵四边形ABCD 是平行四边形,∠C =45°,BC =2∴∠A =∠C =45°,AD =BC =2∴AF =DF ,∵∠DBA =30°,∴BD =2DF ,在直角三角形AFD 中,222AF DF AD +=,∴224AF =,∴2AF DF ==,∴222BD DF ==,在直角三角形DFB 中,226BF BD DF =-=,∴62AB AF BF =+=+;(2)过点E 作EF ⊥AB 于F ,过点A 作AG ⊥BD 交BD 延长线于G ,∵AE =BE ,∴12A FB A BF ==, ∵∠G =90°,∠DBA =30°,∴12AG AB =,∠DAB =60° ∴AG AF =,∵∠DAE =60°,∴∠GAD =∠FAE =60°-∠DAF ,∵∠G =∠AFE =90°,∴△GAD ≌△FAE (ASA ),∴AD =AE ,∴三角形ADE 时等边三角形,∴AD =DE ,∴DE =BC ;(3)如图,过点A 作AP ⊥DE 于P ,过点D 作DN ⊥BF 于点N ,则∠APE =∠APF =∠DNF =∠DNB =90°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠ABF =∠C =15°,∠DFB =∠ADF =60°,∴∠DBN =∠ABF +∠ABD =45°,∠FDN =30°,∴∠BDN =∠DBN =45°,∴∠EBD =∠EDB =∠FDN +∠BDN =75°,∴∠FEB =180°-75°-75°=30°,∴∠FBE =∠DFB -∠FEB =60°-30°=30°=∠FEB ,∴EF =BF ,设FN =m ,DF =2m , ∴223BN DN DF FN m ==-=, ∴3EF BF m m ==+,33AE DE m m ==, ∴1332m m PE PD DE +=== ∴3332m m m m PF m +-== ∵2AE DE PE ==,∴22223AP AE PE PE =-=, ∴(22222231043AF AP PF PE PF m =+=+=+, ∵()(222343BF m m m ==+, ∴()()22222104343423m AF AF BF BF m +⎛⎫=== ⎪⎝⎭+【点睛】本题主要考查了等腰三角形的性质,等腰直角三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,平行四边形的性质,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.。
人教版八年级下册第17章《勾股定理》单元测试卷满分120分一.选择题(共10小题,满分30分,每小题3分)1.下列各组数中,是勾股数的一组是( )A .6,7,8B .5,12,13C .0.6,0.8,1D .2,4,52.下列线段a ,b ,c 能组成直角三角形的是( )A .2a =,3b =,4c =B .4a =,5b =,6c =C .1a =,2b =,3c = D .7a =,3b =,6c =3.如图,在四边形ABCD 中,90DAB BCD ∠=∠=︒,分别以四边形的四条边为边向外作四个正方形,若14135S S +=,349S =,则2(S = )A .184B .86C .119D .814.如图,在22⨯的网格中,有一个格点ABC ∆,若每个小正方形的边长为1,则ABC ∆的边AB 上的高为( )A .22B .55C .510D .15.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A .4米B .5米C .6米D .7米6.若直角三角形的两边长分别是5和12,则它的斜边长是( )A .13B .13或119C .119D .12或137.在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面( )尺.A .4B .3.6C .4.5D .4.558.如图,一轮船以12海里/时的速度从港口A 出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后两船相距( )A .13海里B .16海里C .20海里D .26海里 9.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm 的直吸管露在罐外部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .45aB .34aC .23aD .12a10.如图,在DEF ∆中,90D ∠=︒,:1:3DG GE =,GE GF =,Q 是EF 上一动点,过点Q 作QM DE ⊥于M ,QN GF ⊥于N ,43EF =,则QM QN +的长是( )A .43B .32C .4D .23二.填空题(共6小题,满分24分,每小题4分)11.在Rt ABC ∆中,斜边2AB =,则222AB BC AC ++= .12.直角坐标平面内的两点(4,5)P -、(2,3)Q 的距离为 .13.周长为24,斜边长为10的直角三角形面积为 .14.一架云梯长2.5米,如图斜靠在一面墙上,梯子的底端离墙0.7米,如果梯子的顶端下滑了0.4米,那么梯子的底端在水平方向滑动了 米.15.将一根长为30cm 的细木棒放入长、宽、高分别为8cm 、6cm 和24cm 的长方体有盖盒子中,在M 处是盒子的开口处,设细木棒露在杯子外面的长度是为h cm ,则h 的取值范围是 .16.如图,1OP =,过点P 作1PP OP ⊥,且11PP =,得12OP;再过点1P 作121PP OP ⊥且121PP =,得23OP =;又过点2P 作232P P OP ⊥且231P P =,得32OP =⋯,依此法继续作下去,得2022OP = .三.解答题(共9小题,满分66分)17.(6分)在ABC ∆中,90C ∠=︒,AB c =,BC a =,AC b =.(1)6a =,8b =,求c ;(2)8a =,17c =,求b .18.(6分)如图所示的一块地,90ADC ∠=︒,16AD m =,12CD m =,52AB m =,48BC m =,求这块地的面积.19.(6分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.20.(6分)如图,在四边形ABCD 中,60A ∠=︒,90B D ∠=∠=︒,3AD =,2BC =.求AB 的长.21.(8分)如图,在ABC ∆中,点D 是BC 边上一点,连接AD .若10AB =,17AC =,6BD =,8AD =.(1)求ADB ∠的度数;(2)求BC 的长.22.(8分)《城市交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到车速检测仪A 正前方30米的C 处,过了2秒后,小汽车行驶至B 处,若小汽车与观测点间的距离AB 为50米,请通过计算说明:这辆小汽车是否超速?23.(8分)我们新定义一种三角形:两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,410因为22224202(10)+==⨯,所以这个三角形是奇异三角形.(1)若ABC ∆三边长分别是2,22和6,判断此三角形是否奇异三角形,说明理由;(2)若Rt ABC ∆是奇异三角形,直角边为a 、()b a b <,斜边为c ,求::a b c 的值.(比值从小到大排列)24.(9分)某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ⊥.测得A 处与E 处的距离为80m ,C 处与E 处的距离为40m ,90C ∠=︒,30BAE ∠=︒.(1)请求出旋转木马E 处到出口B 处的距离;(2)请求出海洋球D 处到出口B 处的距离;(3)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.25.(9分)已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动且速度为每秒1cm ,点Q 从点B 开始沿B C A→→方向运动,在BC边上的运动速度是每秒2cm,在AC边上的运动速度是每秒1.5cm,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,t为何值时,ACQ∆的面积是ABC∆面积的13;(3)当点Q在边CA上运动时,t为何值时,PQ将ABC∆周长分为23:25两部分.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A 、222678+≠,6∴,7,8不是一组勾股数,本选项不符合题意;B 、22251213+=,5∴,12,13是一组勾股数,本选项符合题意;C 、0.6,0.8,1不都是正整数,0.6∴,0.8,1不是一组勾股数,本选项不符合题意; D 、222245+≠,2∴,4,5不是一组勾股数,本选项不符合题意;故选:B .2.【解答】解:A 、222234+≠,不能组成直角三角形,不符合题意; B 、222456+≠,不能组成直角三角形,不符合题意;C 、2221+=,能组成直角三角形,符合题意;D 、222+≠,不能组成直角三角形,不符合题意; 故选:C .3.【解答】解:由题意可知:21S AB =,22S BC =,23S CD =,24S AD =,连接BD ,在直角ABD ∆和BCD ∆中,22222BD AD AB CD BC =+=+,即1432S S S S +=+,因此21354986S =-=,故选:B .4.【解答】解:如图,过点C 作CD AB ⊥于D ,在直角ABE ∆中,90AEB ∠=︒,1AE =,2BE =,则由勾股定理知,AB ==由1122AE BC AB CD ⋅=⋅知,AE BCCD AB ⋅===.故选:B .5.【解答】解:在Rt ABC ∆中,224AC AB BC =-=米, 故可得地毯长度7AC BC =+=米,故选:D .6.【解答】解:当12是斜边时,它的斜边长是12; 当12是直角边时,它的斜边长2212513=+=; 故它的斜边长是:12或13.故选:D .7.【解答】解:如图,由题意得:90ACB ∠=︒,3BC =尺,10AC AB +=尺, 设折断处离地面x 尺,则(10)AB x =-尺,在Rt ABC ∆中,由勾股定理得:2223(10)x x +=-, 解得: 4.55x =,即折断处离地面4.55尺.故选:D .8.【解答】解:两船行驶的方向是东北方向和东南方向, 90BAC ∴∠=︒,两小时后,两艘船分别行驶了12224⨯=(海里),5210⨯=(海里), 22241026+=(海里).答:离开港口2小时后两船相距26海里,故选:D .9.【解答】解:如图,当吸管底部在地面圆心时吸管在罐内部分b 最短, 此时b 就是圆柱形的高,即12b cm =;16124()a cm ∴=-=,当吸管底部在饮料罐的壁底时吸管在罐内部分b 最长, 2212513()b cm =+=,∴此时3a =,所以34a .故选:B .10.【解答】解:连接QG .:1:3DG GE =,∴可以假设DG k =,3EG k =,GF EG =,90D ∠=︒,3FG k ∴=,2222DF FG DG k =-=, 43EF =,222EF DE DF =+,2248168k k ∴=+,2k ∴或2,4DF ∴=,111222EFG S EG DF EG QM GF QN ∆=⋅⋅=⋅⋅+⋅⋅, 4QM QN DF ∴+==,故选:C .二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:222AB BC AC =+,2AB =,2228AB BC AC ∴++=.故答案为:8.12.【解答】解:根据题意得PQ =故答案为:.13.【解答】解:设直角三角形两直角边长为a ,b ,该直角三角形的周长为24,其斜边长为10,24()10a b ∴-+=,即14a b +=,由勾股定理得:22210100a b +==,22()14a b +=,222196a b ab ∴++=,即1002196ab +=,48ab ∴=,∴直角三角形的面积1242ab ==, 故答案为:24.14.【解答】解:设子的底端在水平方向滑动了x 米,根据勾股定理得:2.4=; 又梯子下滑了2米,即梯子距离地面的高度为(2.40.4)2-=,根据勾股定理:2222.52(0.7)x=++,解得:0.8x=或 2.2-(舍去).即梯子的底端在水平方向滑动了0.8米,故答案为:0.8.15.【解答】解:由题意知:盒子底面对角长为226810()cm+=,盒子的对角线长:22102426()cm+=,细木棒长30cm,故细木棒露在盒外面的最短长度是:30264()cm-=.所以细木棒露在外面的最短长度是4厘米.当细木棒竖直放置时,细木棒露在盒外面的最长长度是30246()cm-=, 所以细木棒露在外面的最长长度是6厘米.所以h的取值范围是46h,故答案为:46h.16.【解答】解:1OP=,12OP=,23OP=,34OP=,20222023OP∴=.故答案为:2023.三.解答题(共9小题,满分66分)17.【解答】解:(1)在Rt ABC∆中,90C∠=︒,6BC a==,8AC b==, 22226810c AB a b∴==+=+=;(2)在Rt ABC∆中,90C∠=︒,8BC a==,17AB c==,222217815b ACc a∴==-=-=.18.【解答】解:连接AC,在Rt ACD∆中,12CD m=,16AD m=,由222AD CD AC +=,解得20AC m =,在ABC ∆中,52AB m =,20AC m =,222220482704AC CB +=+=,22522704AB ==,222AC CB AB ∴+=,ABC ∴∆为直角三角形,要求这块地的面积,求ABC ∆和ACD ∆的面积之差即可,ABC ACD S S S ∆∆=-1122AC BC CD AD =⨯-⨯ 112048121622=⨯⨯-⨯⨯ 48096=-2384m =,答:这块地的面积为2384m .19.【解答】解:设旗杆的高AB 为xm ,则绳子AC 的长为(1)x m + 在Rt ABC ∆中,222AB BC AC +=2225(1)x x ∴+=+解得12x =12AB ∴=∴旗杆的高12m .20.【解答】解:延长DC 交AB 的延长线于点E ,90B D ∠=∠=︒,60A ∠=︒,3AD =,2BC =,30E ∴∠=︒,26AE AD ∴==,24CE BC ==,BE ∴===6AB AE BE ∴=-=-21.【解答】解:(1)2222226810BD AD AB +=+==,ABD ∴∆是直角三角形,90ADB ∴∠=︒;(2)在Rt ACD ∆中,2215CD AC AD =-=,61521BC BD CD ∴=+=+=,答:BC 的长是21.22.【解答】解:90ACB ∠=︒∴由勾股定理可得:2222503040BC AB AC =--=,40米0.04=千米,2秒11800=小时. 10.0472701800÷=>. 所以超速了.23.【解答】解:(1)2222(22)122(6)+==⨯,ABC ∴∆是奇异三角形,(2)Rt ABC ∆中,90C ∠=︒,222a b c ∴+=,c b a >>,2222c b a ∴>+,2222a b c <+,Rt ABC ∆是奇异三角形,2222b a c ∴=+,22222b a a b ∴=++,222b a ∴=,2b a ∴=,222a b c +=,223c a ∴=,c ∴,::a b c ∴=24.【解答】解:(1)在Rt ABE ∆中,30BAE ∠=︒,118040()22BE AE m ∴==⨯=, ∴旋转木马E 处到出口B 处的距离为40m ;(2)30BAE ∠=︒,CED AEB ∠=∠,90C ABE ∠=∠=︒30D BAE ∴∠=∠=︒,280()DE CE m ∴==,8040120()DE BE m ∴+=+=,∴海洋球D 处到出口B 处的距离为:120m ;(3)在Rt CDE ∆与Rt ABE ∆中,由勾股定理得:)AB m ==,)CD m ==,AB CD ∴=,∴入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离相等.25.【解答】解:(1)当2t s =时,点Q 在边BC 上运动,则2AP cm =,24()BQ t cm ==,8AB cm =,826()BP AB AP cm ∴=-=-=,在Rt BPQ ∆中,由勾股定理可得)PQ cm =,PQ ∴的长为;(2)12ACQ S CQ AB ∆=⋅,12ABC S BC AB ∆=⋅,点Q 在边BC 上运动时,ACQ ∆的面积是ABC ∆面积的13,1162()33CQ BC cm ∴==⨯=,624()BQ BC CQ cm ∴=-=-=,422t ∴==,∴当点Q 在边BC 上运动时,t 为2时,ACQ ∆的面积是ABC ∆面积的13;(3)在Rt ABC ∆中,由勾股定理得:10()AC cm =, 当点P 达到点B 时,881t ==,当点Q 达到点A 时,610292 1.53t =+=,当其中一个点到达终点时,另一个点也随之停止, 08t ∴,AP t =cm ,(8)BP t cm ∴=-,点Q 在CA 上运动时,61.5()(1.5 4.5)()2CQ t t cm =⨯-=-,10(1.5 4.5)( 1.514.5)()AQ t t cm ∴=--=-+,86 1.5 4.5(0.59.5)()BP BC CQ t t t cm ∴++=-++-=+,( 1.514.5)(0.514.5)()AP AQ t t t cm +=+-+=-+, 分两种情况: ①2325BP BC CQAP AQ ++=+, 即0.59.5230.514.525t t +=-+,解得:4t =,经检验,4t =是原方程的解,4t ∴=; ②2523BP BC CQAP AQ ++=+, 即0.59.5250.514.523t t +=-+,解得:6t =,经检验,6t =是原方程的解,6t ∴=;综上所述,当点Q 在边CA 上运动时,t 为4或6时,PQ 将ABC ∆周长分为23:25两部分.。
苏教版八年级数学下册《二次根式》专项测试题及参考答案(1)八年级下册二次根式专项测试卷姓名。
得分:一、选择题(每题2分,共20分)1.下列根式中,与32是同类二次根式的是______。
A。
12.B。
8.C。
6.D。
32改写:与32同类的二次根式是哪一个?答案:D2.下列根式:2xy、8、ab3xy1、x+y,中,最简二次根式的个数是______。
A。
2个。
B。
3个。
C。
4个。
D。
5个改写:这些根式中,最简二次根式有几个?答案:B3.实数a在数轴上的位置如图,则______。
图略)改写:根据图,a的值是多少?答案:-24.(a-4)²+(a-11)²化简后为______。
A。
7.B。
-17.C。
2a-15.D。
无法确定改写:简化(a-4)²+(a-11)²,得到什么结果?答案:B5.若16-a²=4-a⁴+a,则a的取值范围是______。
A。
-4≤a≤4.B。
a>-4.C。
a≤4.D。
-4<a<4改写:满足16-a²=4-a⁴+a的a的范围是什么?答案:D6.设2=a,3=b,用含a,b的式子表示0.54,则下列表示正确的是______。
A。
0.3ab。
B。
3ab。
C。
0.1ab。
D。
0.1ab改写:用a和b表示0.54的式子是什么?答案:C7.化简(a-1)²/(2a-2)的结果是______。
A。
a-1.B。
1-a。
C。
-1-a。
D。
-a-1改写:简化(a-1)²/(2a-2),得到什么结果?答案:A8.若代数式(2-a)+(a-4)的值为2,则a的取值范围是______。
A。
a≥4.B。
a≤2.C。
2≤a≤4.D。
a=2或a=4改写:满足(2-a)+(a-4)=2的a的范围是什么?答案:C9.已知4x-8+x-y-m=0,当y>0时,则m的取值范围是______。
A。
0<m<1.B。
数学测试题及答案八年级一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的平方等于它本身,这个数是:A. 0B. 1C. -1D. 0和1答案:D3. 计算下列哪个表达式的结果等于9?A. 3 * 3B. 2 * 4 + 1C. 5 - 4D. 6 / 2答案:A4. 一个等腰三角形的两个底角相等,如果一个底角是40度,那么顶角的度数是:A. 40度B. 100度C. 140度D. 160度答案:B5. 下列哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 所有选项答案:B6. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C7. 一个圆的半径是5厘米,那么它的直径是:A. 10厘米B. 20厘米C. 25厘米D. 15厘米答案:A8. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0、1和-1答案:D9. 计算下列哪个表达式的结果等于-8?A. 2 * (-4)B. (-2) * 4C. -2 * (-4)D. 4 * (-2)答案:A10. 一个直角三角形的两个锐角分别是30度和60度,那么斜边的长度是:A. 2倍的较短直角边B. 3倍的较短直角边C. 4倍的较短直角边D. 5倍的较短直角边答案:A二、填空题(每题4分,共20分)1. 一个数的相反数是-8,那么这个数是______。
答案:82. 如果一个数的平方等于36,那么这个数可以是______。
答案:±63. 一个三角形的内角和等于______度。
答案:1804. 一个数的立方根是2,那么这个数是______。
答案:85. 一个数除以它本身等于______。
答案:1(非零数)三、解答题(每题10分,共50分)1. 解方程:2x - 3 = 5答案:x = 42. 计算:(3x - 2)(x + 4) = 0,求x的值。
八年级下册数学期末试卷综合测试卷(word含答案)(1) 一、选择题1.函数y=35xx--的自变量x的取值范围是()A.x≠5B.x>3且x≠5C.x≥3D.x≥3且x≠5 2.由下列线段组成的三角形不是直角三角形的是()A.7,24,25 B.4,5,41C.3,5,4 D.4,5,6 3.下列关于平行四边形的命题中,错误的是()A.两组对角分别相等的四边形是平行四边形B.一组对边相等,另一组对边平行的四边形是平行四边形C.一组对边平行,一组对角相等的四边形是平行四边形D.一组对边平行且相等的四边形是平行四边形4.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数()cm183183183183方差 5.7 3.5 6.78.6要从中选择一名发挥稳定的运动员去参加比赛,应该选择()A.甲B.乙C.丙D.丁5.如图,已知矩形ABCD的对角线AC的长为10cm,连结矩形各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()cm.A.20 B.202C.203D.256.如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为()A.20º B.25º C.30º D.35º7.如图,在△ABC中,BC=2∠C=45°,若D是AC的三等分点(AD>CD),且AB =BD ,则AB 的长为( )A .2B .5C .3D .528.一条公路旁依次有A 、B 、C 三个村庄,甲、乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲、乙之间的距离()km s 与骑行时间()t h 之间的函数关系如图所示,下列结论:①A 、B 两村相距8km ;②甲出发2h 后到达C 村;③甲每小时比乙我骑行8km ;④相遇后,乙又骑行了15min 或45min 时两人相距2km .其中正确结论的个数是( )A .1B .2C .3D .4二、填空题9.若13x x --在实数范围内有意义,则x 的取值范围是____________. 10.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,已知4OA =,菱形ABCD 的面积为24,则BD 的长为______.11.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为_____12.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分BED ∠,若1AB =,45EBC ∠=︒,则DE 的长为__________.13.已知一次函数y x b =-+的图象过点()8,2,那么此一次函数的解析式为__________. 14.若顺次连接四边形ABCD 四边中点所得的四边形是菱形,则原四边形的对角线AC 、BD 所满足的条件是________.15.在平面直角坐标系中,矩形OABC 的顶点O 为坐标原点,顶点A ,C 分别在x 轴和y 轴上,OA =4,OC =3,D 为AB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,则点E 的坐标为_____.16.如图,∠ABD =∠BDC =90°,AB =12,BC =8,CD =10A 与点D 重合,折痕为HG ,则线段BH 的长为___.三、解答题17.计算:(1)218×12﹣24;(2)48÷3﹣12×12+24. 18.如图,在甲村到乙村的公路一旁有一块山地正在开发.现A 处需要爆破,已知点A 与公路上的停靠站B ,C 的距离分别为400 m 和300 m ,且AC ⊥AB .为了安全起见,如果爆破点A 周围半径260 m 的区域内不能有车辆和行人,问在进行爆破时,公路BC 段是否需要暂时封闭?为什么?19.如图,4×10长方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A ,B ,E ,F 都在格点上,按下列要求作图,使得所画图形的顶点均在格点上. (1)在图中画出以AB 为边的正方形ABCD ;(2)在图中画出以EF 为边的等腰三角形EFG ,且△EFG 的周长为1010+; (3)在(1)(2)的条件下,连接CG ,则线段CG 的长为 .20.如图,在ABCD 中,两条对角线AC 和BD 相交于点O ,并且6BD =,8AC =,5BC =.(1)AC 与BD 有什么位置关系?为什么?(2)四边形ABCD 是菱形吗?为什么?21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+-, ∴23a -= ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-,直接写出2481a a -+的值是 . (21315375121119+++++ 22.为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买A 、B 两种不同型号的篮球共300个.已知购买3个A 型篮球和2个B 型篮球共需340元,购买2个A 型篮球和1个B 型篮球共需要210元.(1)求购买一个A 型篮球、一个B 型篮球各需多少元?(2)若该校计划投入资金W 元用于购买这两种篮球,设购进的A 型篮球为t 个,求W 关于t 的函数关系式;(3)学校在体育用品专卖店购买A 、B 两种型号篮球共300个,经协商,专卖店给出如下优惠:A 种球每个降价8元,B 种球打9折,计算下来,学校共付费16740元,学校购买A 、B 两种篮球各多少个?23.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为秒.(1)直接写出的面积(用含的代数式表示).(2)当点M 落在BC 边上时,求的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的的值;若不存在请说明理由(不能添加辅助线). 24.如图,在平面直角坐标系中,直线28y x =+与x 轴交于点A,与y 轴交于点B,过点B 的直线x 轴于点C ,且AB=BC .(1)求直线BC 的表达式(2)点P 为线段AB 上一点,点Q 为线段BC 延长线上一点,且AP=CQ,PQ 交x 轴于点P ,设点Q 的横坐标为m ,求PBQ ∆的面积(用含m 的代数式表示)(3)在(2)的条件下,点M 在y 轴的负半轴上,且MP=MQ ,若45BQM ︒∠=求点P 的坐标.25.如图,Rt △CEF 中,∠C =90°,∠CEF ,∠CFE 外角平分线交于点A ,过点A 分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)∠EAF = °(直接写出结果不写解答过程);(2)①求证:四边形ABCD 是正方形.②若BE =EC =3,求DF 的长.(3)如图(2),在△PQR 中,∠QPR =45°,高PH =5,QH =2,则HR 的长度是 (直接写出结果不写解答过程).【参考答案】一、选择题1.D解析:D【分析】根据二次根式和分式有意义的条件列出不等式,求解不等式即可.【详解】根据题意得:x﹣3≥0且x﹣5≠0,解得x≥3且x≠5.∴自变量x的取值范围是x≥3且x≠5.故选:D.【点睛】本题考查了二次根式和分式由意义的条件,理解二次根式和分式由意义的条件是解题的关键.2.D解析:D【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A、∵72+242=625=252,∴能够成直角三角形,故本选项不符合题意;B、∵42+52412,∴能够成直角三角形,故本选项不符合题意;C、∵32+42=52,∴能够成直角三角形,故本选项不符合题意;D、∵42+52≠62,∴不能够成直角三角形,故本选项符合题意.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.B解析:B【解析】【分析】根据平行四边形的判定方法,一一判断即可.【详解】解:A. 两组对角分别相等的四边形是平行四边形,正确;根据平行四边形的判定方法,可得结论;B. 一组对边相等,另一组对边平行的四边形是平行四边形,错误;如:等腰梯形;C. 一组对边平行,一组对角相等的四边形是平行四边形正确,由题意可以证明两组对边分别平行,四边形是平行四边形;D. 一组对边平行且相等的四边形是平行四边形,正确,根据平行四边形的判定方法,可得结论.故选:B【点睛】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考基础题.4.B解析:B【解析】【分析】首先比较出甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的方差的大小关系,然后根据方差越大,波动性越大,判断出应该选择谁参加比赛即可.【详解】解:因为3.5<5.7<6.7<8.6,所以乙最近几次选拔赛成绩的方差最小,所以要从中选择一名发挥稳定的运动员去参加比赛,应该选择乙.故选:B.【点睛】此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.A解析:A【分析】连接BD,根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线相等,从而算出周长即可.【详解】连接BD,∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=1AC=5cm,同理EF=5cm,2∵四边形ABCD是矩形,∴根据矩形的对角线相等,即BD=AC=10cm,∵H、E是AD与AB的中点,∴EH是△ABD的中位线,∴EH=1BD=5cm,同理FG=5cm,2∴四边形EFGH的周长为20cm.故选A.【点睛】熟练掌握矩形对角线相等和三角形中位线等于第三边的一半的性质是解决本题的关键. 6.C解析:C【解析】【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.7.B解析:B【解析】【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理2222215AB BE AE =+=+=即可.【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴()22222+222BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点, ∴CD =13AC ,AD =AC -CD =1233AC AC AC -=, ∴AE =DE =121233AC AC ⨯==CD , ∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理2222215AB BE AE =+=+=.故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键. 8.C解析:C【分析】由图像与纵轴的交点可得出A 、B 两地的距离;当s=0时,即为甲、乙相遇的时候,同理根据图像的拐点判断其他即可.【详解】解:由图像可知A 村、B 村相离8km ,故①正确;甲出发2h 后到达C 村,故②正确;当0≤t≤1时,易得一次函数的解析式为s=-8t+8,故甲的速度比乙的速度快8km/h ,故③正确;当1≤t≤1.5时,函数图象经过点(1,0)(1.5,4)设一次函数的解析式为s=kt+b则有:104 1.5k b k b =+⎧⎨=+⎩解得21k b =⎧⎨=⎩ ∴s=2t+1当s=2时,得2=2t+1,解得t=0.5<1,不符合题意,④错误.故答案为C.【点睛】本题考查了一次函数的应用和函数与方程的思想,解题的关键在于读懂图象,根据图像的信息进行解答.二、填空题9.1≥x 且3x ≠【解析】【分析】根据分母不等于0,且被开方数是非负数列式求解即可.【详解】由题意得10x -≥且30x -≠解得1≥x 且3x ≠故答案为:1≥x 且3x ≠【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.10.A解析:6【解析】【分析】根据菱形的性质得到AC =8,根据菱形的面积等于两条对角线乘积的一半,即可求解.【详解】解:∵四边形ABCD 为菱形;∴AC =2OA =8,12ABCD S AC BD =⋅菱形, ∴12482BD =⨯⨯, ∴BD =6,故答案为:6【点睛】本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种.11.E解析:8【解析】【分析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即可求小正方形的边长.【详解】如图,∵正方形PQED 的面积等于225,∴即PQ 2=225,∵正方形PRGF 的面积为289,∴PR 2=289,又△PQR 为直角三角形,根据勾股定理得:PR 2=PQ 2+QR 2,∴QR 2=PR 2−PQ 2=289−225=64,∴QR=8,即字母A 所代表的正方形的边长为8.【点睛】本题考查勾股定理,根据勾股定理求出小正方形的面积是关键.12.D21【分析】由矩形的性质和角平分线的定义得出∠DEC =∠ECB =∠BEC ,推出BE =BC ,求得 AE =AB =1,然后依据勾股定理可求得BC 的长;【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEC =∠BCE ,∵EC 平分∠DEB ,∴∠DEC =∠BEC ,∴∠BEC =∠ECB ,∴BE =BC ,∵四边形ABCD 是矩形,∴∠A =90°,AD BC =∵∠ABE =45°,∴∠ABE =∠AEB =45°,∴AB =AE =1,由勾股定理得:BE ==,∴BC =AD =BE, ∴1DE AD AE =-,1.【点睛】本题考查了矩形的性质,等腰三角形的性质与判定,勾股定理的应用;熟练掌握矩形的性质,证出BE =BC 是解题的关键.13.10y x =-+【分析】用待定系数法即可得到答案.【详解】解:把()8,2代入y x b =-+得82b -+=,解得10b =,所以一次函数解析式为10y x =-+.故答案为10y x =-+【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.14.A解析:AC BD =【分析】如下图,根据三角形中位线的定理,可得AG=EF=12AC ,GF=AE=12BD ,再根据菱形四条边相等的性质,可得出AC 与BD 的关系.【详解】如下图,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点∵点E、F是AB、BC的中点∴EF=12AC同理可得:AG=EF=12AC,GF=AE=12BD∵要使得四边形HEFG是菱形,则HE=EF=FG=GH ∴只需AC=BD即可故答案为:AC=BD【点睛】本题考查菱形的性质和三角形中位线的性质,解题关键是得出AG=EF=12 AC,GF=AE=12 BD.15.(,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解析:(83,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解:作点D关于x轴对称点F,如图,∵四边形OABC 是矩形,∴OC =BD =3,点C 的坐标为()0,3,∵D 为AB 边的中点,∴AD =32, ∵OA =4,∴D 点的坐标为34,2⎛⎫ ⎪⎝⎭,则F 点的坐标为34,2⎛⎫- ⎪⎝⎭, 根据轴对称的性质可得:EF =ED ,∴C △CDE =CD +CE +DE =CD +CE +EF ,其中CD 为定值,当CE +EF 值最小时,△CDE 周长最小,此时点C ,E ,F 三点共线,设直线CF 的解析式为:()0y kx b k =+≠,将()0,3和34,2⎛⎫- ⎪⎝⎭代入解析式得: 3342b k b =⎧⎪⎨+=-⎪⎩,解得:983k b ⎧=-⎪⎨⎪=⎩, ∴直线CF 的解析式为:938y x =-+, 令0y =,得:9308x -+=, 解得:83x =, ∴点E 坐标(83,0), 故答案为:803⎛⎫ ⎪⎝⎭,. 【点睛】本题考查一次函数与轴对称的综合运用,理解最短路径的求解方法,熟悉待定系数法求一次函数解析式是解题关键.16.5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH 中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=2,∴BD=,由题意,得解析:5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=∴BD=由题意,得AH=HD,设BH=x,则AH=12﹣x=HD,在Rt△BDH中,由勾股定理得,HB2+BD2=HD2,即x2)2=(12﹣x)2,解得x=5,即HB=5,故答案为:5.【点睛】本题考查了翻折变换,勾股定理.掌握翻折变换的性质及勾股定理是解题的关键.三、解答题17.(1);(2)【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)解析:(1)2)4【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)===(22=4=4=【点睛】本题主要考查了利用二次根式的化简和二次根式的混合运算,熟练掌握相关计算法则是解题的关键.18.需要封闭,理由见解析【分析】过作于 先求解 再利用等面积法求解 再与260比较,可得答案.【详解】解:过作于所以进行爆破时,公路BC 段需要暂时封闭.【点睛】解析:需要封闭,理由见解析【分析】过A 作AK BC ⊥于,K 先求解,BC 再利用等面积法求解,AK 再与260比较,可得答案.【详解】解:过A 作AK BC ⊥于,K,400,300,AB AC AB AC22500,BC AB AC11,AB AC BC AK22AK300400500,240,AK240260,所以进行爆破时,公路BC段需要暂时封闭.【点睛】本题考查的是勾股定理的应用,利用等面积法求解直角三角形斜边上的高,掌握“等面积法求解直角三角形斜边上的高”是解题的关键.19.(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为等腰三角形即可;(3)解析:(1)见解析;(2)见解析;(35【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为1010(3)由勾股定理求出CG即可.【详解】解:(1)如图,所作正方形ABCD即为以AB为边的正方形ABCD;(2)如图,所作△EFG即为以EF为边的等腰三角形EFG,且△EFG的周长为1010+(3)如图,CG22+512【点睛】本题考查作图-应用与设计,勾股定理,解题的关键是理解题意,根据GE=GF=5画出等腰三角形.20.(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC, OB的长,再利用勾股定理逆定理求出∠BOC=90,可得AC与BD的位置关系;(解析:(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC,OB的长,再利用勾股定理逆定理求出∠BOC=90︒,可得AC与BD的位置关系;(2)菱形的判定方法:对角线互相垂直平分的四边形是菱形,可得答案.【详解】解:(1)AC⊥BD;理由如下:在ABCD中,132==OB BD,142OC AC==∵22291625+=+==OB OC BC∴∠BOC=90︒∴AC⊥BD.(2)四边形ABCD是菱形∵四边形ABCD是平行四边形(已知),AC⊥BD(已证)∴四边形ABCD是菱形.【点睛】此题主要考查了菱形的判定,平行四边形的性质,以及勾股定理的逆定理的运用,解题的关键是根据条件证出BO2+CO2=CB2.21.(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵a=,∴4a2-8a+1=4×()2-8×()+1=5;(2)解析:(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵, ∴4a 2-8a+1)2-8×)+1=5;(2)原式=12×=12×) =12×10=5.点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键. 22.(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求 解析:(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:()30150000300W t t =+≤≤;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求解即可得; (2)A 型篮球t 个,则B 型篮球为()300t -个,根据单价、数量、总价的关系即可得; (3)根据A 型篮球与B 型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.【详解】解:(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意可得:323402210x y x y +=⎧⎨+=⎩, 解得:8050x y =⎧⎨=⎩,∴一个A 型篮球为80元,一个B 型篮球为50元;(2)A 型篮球t 个,则B 型篮球为()300t -个,根据题意可得:()()805030030150000300W t t t t =+-=+≤≤,∴函数解析式为:()30150000300W t t =+≤≤;(3)根据题意可得:A 型篮球单价为()808-元,B 型篮球单价为500.9⨯元,则()()16740808500.9300t t =-+⨯⨯-,解得:120t =,300180t -=,∴A 型篮球120个,则B 型篮球为180个. 【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.23.(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,. 【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是解析:(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得; (2)先根据平行四边形的性质可得,从而可得,再根据三角形中位线定理可得是的中位线,从而可得,然后与(1)所求的建立等式求解即可得;(3)分①当点H 是AB 的中点时,;②当点Q 与点E 重合时,;③当时,三种情况,分别求解即可得.【详解】 (1)由题意得:,点Q 为AP 的中点,,四边形ABCD 是矩形,,是BAD的角平分线,,,是等腰直角三角形,,则的面积为;(2)如图1,四边形PQHM是平行四边形,,点M在BC边上,,点Q为AP的中点,是的中位线,,由(1)知,,则,解得;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则,四边形PQHM是平行四边形,,,在和中,,由(2)可知,此时;②如图3,当点Q与点E重合时,在和中,,,,则,解得;③如图4,当时,四边形ABCD是矩形,四边形PQHM是平行四边形,,,在和中,,,,在中,,是等腰直角三角形,,,在中,,是等腰直角三角形,,则由得:,解得;综上,如图2,当时,;如图3,当时,;如图4,当时,.【点睛】本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.24.(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG解析:(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解;(3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标.【详解】解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(-4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:804bk b=⎧⎨=+⎩,解得:28kb=-⎧⎨=⎩,∴直线BC解析式为:y=-2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,设△PBQ的面积为S,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,-2m+8)∴HQ=2m-8,CH=m-4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m-4,PG=HQ=2m-8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠PAE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF=S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB的面积,∴S=S△ABC-S△PAE=12×8×8-12×(2m-8)×(2m-8)=16m-2m2;(3)如图2,连接AM,CM,过点P作PE⊥AC,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=4,∴2m-8=4,∴m=6,∴P(-2,4).【点睛】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.25.(1)45;(2)①见解析;②DF的长为2;(3)【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠解析:(1)45;(2)①见解析;②DF的长为2;(3)15 7【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=12∠DFE,∠AEF=12∠BEF,求得∠AEF+∠AFE=12(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形;②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD=6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论;(3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR 中,由勾股定理得出方程,解方程即可.【详解】解:(1)∵∠C=90°,∴∠CFE+∠CEF=90°,∴∠DFE+∠BEF=360°﹣90°=270°,∵AF平分∠DFE,AE平分∠BEF,∴∠AFE=12∠DFE,∠AEF=12∠BEF,∴∠AEF +∠AFE =12(∠DFE +∠BEF )=12⨯270°=135°,∴∠EAF =180°﹣∠AEF ﹣∠AFE =45°, 故答案为:45;(2)①作AG ⊥EF 于G ,如图1所示:则∠AGE =∠AGF =90°, ∵AB ⊥CE ,AD ⊥CF , ∴∠B =∠D =90°=∠C , ∴四边形ABCD 是矩形,∵∠CEF ,∠CFE 外角平分线交于点A , ∴AB =AG ,AD =AG , ∴AB =AD ,∴四边形ABCD 是正方形; ②设DF =x , ∵BE =EC =3, ∴BC =6,由①得四边形ABCD 是正方形, ∴BC =CD =6,在Rt △ABE 与Rt △AGE 中,AB AGAE AE=⎧⎨=⎩ , ∴Rt △ABE ≌Rt △AGE (HL ), ∴BE =EG =3, 同理,GF =DF =x ,在Rt △CEF 中,EC 2+FC 2=EF 2, 即32+(6﹣x )2=(x +3)2, 解得:x =2, ∴DF 的长为2; (3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=5,∴GQ=3,设MR=HR=a,则GR=5﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2,解得:a=157,即HR=157;故答案为:157.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.。
数学期末复习题(三)一、细心填一填:1.角是轴对称图形,它的对称轴是 ; 等腰梯形也是轴对称图形,它的对称轴是 . 2.81的平方根为 ;-216的立方根为 ;9的算术平方根为 ;289开平方得 .3.如图,△ABC 中,AB =AC =5,AB 的垂直平分线DE 交AB 、AC 于E 、D .(1)若△BCD 的周长为8,则BC 的长为 ;(2)若∠A =40°,则∠DBC = °.4.近似数0.1040精确到 位,有效数字是 . 5.在实数5,3.14,3216-,23-,0.2020020002…,722,..65.1,π--中,正无理数是 .6.(1)已知某直角三角形的两边为3,4,则第三边长等于 ; (2)若直角三角形斜边上的高和中线分别是5cm ,6cm ,则它的面积是 . 7.如图,Rt △ABC 中,∠B =90°,BD ⊥AC 于D ,点E 为AC 的中点,若BC =7,AB =24,则BE = ,BD = .8.(1)若a 的平方根是±3,则a = ;(2)已知642=x ,那么3x = . 9.已知一个正数a 的平方根为2m -3和3m -22,则m = ;a = . 10.如图1是2002年8月在北京召开的国际数学家大会的会标,它取材于我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形的拼成的大正方形. (1)如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短边为a ,较长边为b ,那么(a +b )2的值是 ;(2)若AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是 . 11.等腰△ABC 中,(1)若有一个内角为40°,则顶角等于 °;(2)若有一个外角为100°,则顶角等于 °;(3)若∠A =30°,则∠B = °. 12.计算:(1)()42120++--= ;(2)312523832-+--= .ABE DC(第7题)B C图1图2(第10题)D B CAE(第3题)13.在△A BC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°,则∠B 等于_____________°.14.在等腰△ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为15或12两个部分,则该等腰三角形的底边长等于 .15.如图,△ABC 中,AB =AC ,∠BAC =110°,AD 是BC 边上的中线,且BD =BE ,则∠AED 度数是 . 二、精心选一选16.在下图所示的四个汽车标志图案中,属于轴对称图案的有 ( )A 、1个B 、2个C 、3个D 、4个17.据统计,2009年十·一期间,江阴市某风景区接待中外游客的人数为8674人次,将这个数字保留三个有效数字,用科学记数法可表示为 ( ) A 、8.67×102 B 、8.67×103 C 、8.67×104 D 、8.67×105 18.下列说法中正确的是 ( ) A 、带根号的数都是无理数 B 、不带根号的数一定是有理数C 、无理数是无限小数D 、无限小数都是无理数19.如图,桌面上有A 、B 两球,若要将B 球射向桌面任意一边,使一次反弹后 击中A 球,则如图所示8个点中,可以瞄准的点的个数是 ( ) A 、2 B 、4 C 、6 D 、820.如图, BE 、CF 分别是△ABC 的高,M 为BC 的中点, EF =5,BC =8,则△EFM 的周长是( ) A 、21 B 、18 C 、13 D 、15 21.如图,分别以直角三角形的三边为斜边,在其形外作等腰直角三角形,其面积分别记为S 1、S 2、S 3,则S 1、S 2、S 3的关系为 ( )A 、S 1+S 2>S 3B 、S 1+S 2=S 3C 、S 1+S 2<S 3D 、不能确定 22.下列说法:①()10102-=-;②数轴上的点与实数成一一对应关系;③ -2是16 (第15题)BC AE (第19题)A EF(第20题)(第21ACBS 1S 2S 3的平方根;④ 任何实数不是有理数就是无理数;⑤ 两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有( )A 、2个B 、3个C 、4个D 、5个 三、认真答一答(本大题共7小题,共46分) 23、求下列各式中的x 的值.(1)()310+x =-343; (2)()2336-x = 4924. “西气东输”是造福子孙后代的创世工程,现有两条高速公路l 1、l 2和两个城镇A 、B (如图),准备建一 个燃气控制中心站P ,使中心站到两条公路距离相等,并且 到两个城镇的距离也相等,请你利用直尺和圆规作出中心站 P 的位置.(作出满足题意的一处位置即可)25.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.⑴在图1中,画一个三角形,使它的三边长都是有理数;⑵在图2、图3中,分别画一个直角三角形,使它们的三边长都是无理数,并且要求所画的两个直角三角形不全等.26、如图1是单位为1的方格图.(1)请把方格图中的带阴影的图形适当剪开,重新拼成正方形;(画出分割线与拼成正方形的草图)(2)所拼成正方形的边长为多少?周长为多少?(3)利用这个事实,在图2的数轴上画出表示5的点.(要求保留画图痕迹)图1图2 图3(第27题)2(第26题)27.(1)观察与发现: 小明将三角形纸片ABC (AB >AC )沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到△AEF (如图②).小明认为△AEF 是等腰三角形,你同意吗?请说明理由.(2)实践与运用:将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D ′处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.28.为美化环境,计划在某小区内用30平方米的草皮铺设一块有一边长为10米的等腰三角形绿地,请你求出这个等腰三角形绿地的另两边长.(结果精确到0.1米)参考答案与评分标准图1图2---(第26题)ACD B图①A CD B图②F EEDC FBA图③ ED CABF G C ' D 'ADECBFG α图④图⑤(第27题)一、细心填一填:(每空1分,共30分) 1.角平分线所在的直线;过两底中点的直线. 2.±9;-6;3;±17. 3.(1)3;(2)30°. 4.万分;1,0,4,0. 5.5, 0.2020020002…. 6.(1)5或7;(2)30. 7.BE =12.5;BD =6.72. 8.(1)81;(2)±2 9.m =5;a =49. 10.(1)25;(2)76.11.(1)40°或100°;(2)80°或20°;(3)30°或120°或75°. 12.(1)3;(2)11. 13.70°或20°. 14.7或11. 15.107.5°.二、精心选一选(每题3分,共24分) 三、认真答一答(本大题共7小题,共46分) 25.(1)x =-17;……………3分 (2)x =625或611……………3分 26.图略,作出角平分线、线段AB 的垂直平分线各2分,标出点P 得1分27.如图,画对每张图形各2分,答案不唯一28.(1)如图1,………………………………………………………………3分(图1)(图2)(图3)(第27题答案)(2)边长为5,周长为45………………………………………………………2分 (3)如图2,…………………………………………………………………………2分29.(1)证△BAE ≌△ADF ,可得AF =BE ;……………………………………………………………4分 (2)∠BPF =120°,可证∠BPF =∠PBA +∠BAP =∠BAP +∠PAD =∠BAD =120°…………………4分30.(1)同意。
设AD 与EF 交于点G ,由折叠知,AD 平分∠BAC ,所以∠BAD =∠CDA . 又由折叠知,∠AGE =∠DGE =90°,所以∠AGE=∠AGF=90°,所以∠AEF =∠AFE ,所以AE =AF ,即△AEF 为等腰三角形;…………3分 (2)由折叠知,∠AEB =∠BEF =21∠AEF =45°,所以∠BED =135°,又由折叠知,∠BEG =∠DEG ,所以∠DEG =67.5°,从而∠α=90°-67.5°. …………3分31.设△ABC 为面积为30m 2的等腰三角形,且AB =10m ,过C 作CH ⊥AB 于点H . (1)如图1,AC =10.0m ,BC =40≈6.3m ;……………3分 (2)如图2,AC =BC =61≈7.8m ; …………………3分 (3)如图3,BC =10,AC =360≈19.0m. …………2分(第32题答案)10ACB H(图1)55BACH(图2)1010CB H(图3)。