机电系统设计
- 格式:doc
- 大小:812.70 KB
- 文档页数:14
机电一体化系统的设计方法
机电一体化系统的设计方法包括以下几个方面:
1. 概念设计:在机电一体化系统的设计初期,需要进行概念
设计,明确系统的功能、性能和结构等需求。
这个阶段需要进行需求分析、方案比较和选优等工作,确定系统的整体框架和设计指标。
2. 结构设计:在概念设计确定后,需要进行具体的结构设计,包括机械结构和电气结构的设计。
机械结构设计要考虑系统的运动学和动力学要求,选择合适的传动方式、机构和零部件等。
电气结构设计要考虑系统的电力和信号传输等需求,选择合适的电源、驱动器和控制器等。
3. 控制设计:机电一体化系统的控制设计是整个系统的关键,需要针对系统的工作原理和特点进行控制算法的设计。
根据系统的动态响应和稳态性能要求,选择合适的控制方法和参数调节方式,设计控制系统的结构和参数。
4. 效能设计:机电一体化系统的效能设计包括能量利用和噪
声控制等。
要在设计过程中考虑到能量的损失和转化效率,提高系统的能效。
同时,要对系统的噪声产生和传播进行分析和控制,减少系统产生的噪声。
5. 可靠性设计:机电一体化系统的可靠性设计是确保系统正
常工作和长期稳定运行的关键。
要进行可靠性分析和评估,识别可能的故障模式和失效原因,并采取相应的设计措施,提高
系统的可靠性和可维护性。
综上所述,机电一体化系统的设计方法涉及概念设计、结构设计、控制设计、效能设计和可靠性设计等方面,需要综合考虑系统的功能需求、结构特点、控制要求和效能指标,以实现系统的整体一体化和优化设计。
机电一体化系统设计原则主要包括以下几个方面:1. 整体性原则:机电一体化系统的设计应从整体出发,将整个系统作为一个有机的整体进行综合考虑,包括系统的功能、性能、约束条件、成本等多个方面,以实现系统的最优性能。
2. 可靠性原则:机电一体化系统的设计应遵循可靠性原则,确保系统的稳定性和安全性。
在设计过程中,应充分考虑系统的硬件和软件,以及系统的维护和故障排除等方面,以提高系统的可靠性和稳定性。
3. 可维护性原则:由于机电一体化系统可能经常需要维护和检修,因此在设计时应遵循可维护性原则。
系统应具有简单易懂的界面和易于理解的故障模式,以便于维护人员进行故障排查和修复。
4. 标准化和模块化原则:为提高系统开发效率和质量,机电一体化系统的设计应遵循标准化和模块化原则。
系统中的硬件和软件应遵循统一的标准和规范,以便于系统的集成、调试和维护。
同时,系统中的各个功能模块应具有通用性和可替换性,以提高系统的灵活性和可扩展性。
5. 安全性原则:在任何情况下,安全性都是机电一体化系统设计的重要原则。
在设计过程中,应充分考虑系统的安全保护措施,包括硬件和软件两个方面。
硬件方面应选择安全性能较高的元器件,软件方面应设计安全可靠的控制算法和程序,以确保系统在运行过程中不会出现安全事故。
6. 经济性原则:在满足系统功能和性能要求的前提下,机电一体化系统的设计应遵循经济性原则。
在系统开发过程中,应合理配置资源、降低成本、提高效益,以达到最佳的经济效益和社会效益。
根据这些原则,在进行机电一体化系统设计时,应该根据具体的项目需求和约束条件进行综合分析和考虑。
下面列举一些具体的设计原则和建议:7. 系统分析:在开始设计前,应对系统的功能、性能、约束条件、成本等进行全面的分析和评估,以确定系统的总体设计方案。
8. 模块化设计:将系统划分为若干个功能模块,每个模块具有相对独立的功能和属性,以便于模块的独立开发和维护。
9. 优化控制算法:根据系统的实际需求,选择合适的控制算法,并进行优化设计,以提高系统的控制精度和效率。
机电一体化系统设计与性能优化机电一体化系统是将机械和电气两个部分完全融合在一起的系统。
它利用计算机技术、自动控制技术、电力电子技术和通信技术,实现机械和电气部分的高效协同工作。
在现代工业中,机电一体化系统已经广泛应用于诸如自动化生产设备、机器人、无人驾驶系统等领域。
设计一套高效稳定的机电一体化系统并优化其性能,对于提高生产效率、降低能源消耗和保证产品质量具有重要意义。
在机电一体化系统设计和性能优化过程中,以下几个关键因素需要被考虑:1. 功能设计:机电一体化系统的功能设计是系统设计的首要任务。
需要明确系统所需完成的功能,并设计相应的机械和电气部分。
例如,在自动化生产设备中,机电一体化系统需要能够实现自动化控制、传感器信号处理和执行器的运动控制。
2. 效率优化:机电一体化系统的效率优化是提高生产效率和降低能源消耗的关键。
在设计中,需要根据实际需求选择合适的传动装置、电机和控制器,以最大限度地提高系统的能效。
此外,还可以利用节能控制策略,如能量回收和动态负载平衡,进一步提高系统的效率。
3. 信号采集和处理:机电一体化系统设计中的另一个重要方面是信号采集和处理。
系统需要能够准确地获取来自各传感器的信号,并实时处理这些信号。
在设计过程中,需要选择合适的传感器和信号处理器,以确保系统能够准确地感知和响应外界环境的变化。
4. 控制策略:控制策略是机电一体化系统性能优化的关键。
根据系统的实际需求,需要选择合适的控制策略。
例如,在机器人系统中,可以采用基于力矩控制的控制策略,以实现更精确的运动控制。
此外,还可以利用自适应控制和模糊控制等先进算法,以进一步优化系统的性能。
5. 系统安全和可靠性:机电一体化系统设计和性能优化中,系统的安全和可靠性是至关重要的。
需要对系统进行全面的风险评估,并采取相应的安全措施,如防护装置、报警系统和紧急停止装置等。
此外,还需要进行系统的可靠性分析,以确保系统在长期运行过程中稳定可靠。
机电产品系统设计教材
以下是一些关于机电产品系统设计的教材推荐:
1.《机电产品设计与制造基础》(郑宝强,龚敏,李东坡编著):该教材详细介绍了机电产品设计与制造的基础理论与方法,包括机械设计、电气控制、传感器技术等方面的内容。
2.《机械电子系统设计》(刘兆学编著):该教材系统地介绍
了机械电子系统的设计理论与实践,包括机械设计、电子工程、控制系统等方面的内容,并以实例分析和案例解决问题,有助于学生将理论知识应用于实际工程中。
3.《机电一体化系统设计与实践》(李洪雷,覃威岳,胡志军
编著):该教材全面介绍了机电一体化系统设计的基础理论与方法,包括系统建模与仿真、控制系统设计、传感器与执行器选择等内容,并通过实例分析和工程项目案例,帮助学生提升实际应用能力。
4.《机电一体化产品设计指南》(张森编著):该教材主要介
绍了机电一体化产品设计的关键技术与方法,包括机械设计、电子设计、控制系统设计等方面的内容,并通过大量实际案例和项目实践,帮助学生全面理解和掌握机电一体化产品设计的流程和要点。
以上是一些较为常见的机电产品系统设计教材,可以根据自己的实际需求和学习目标选择适合的教材。
此外,还可以参考一
些相关学术论文和行业著作,以了解最新的研究进展和实践经验。
机电一体化系统设计第二版课程设计概述本课程设计旨在运用机电一体化的知识,完成一台具有完整机电一体化系统体系结构的机械及其控制系统。
通过本课程设计,希望学生们能够掌握机电一体化系统设计的方法和技能,以及掌握系统设计、机械设计和控制系统设计等方面的综合能力。
设计任务设计一台模拟生产线过程的机械并配备相应的控制系统,以完成自动化生产线上的生产任务。
设计的机械应能够具备多种功能特点,例如自动分拣、切割和堆垛等工作,同时具备跟踪控制,安全保护,维修与调试等多种功能。
设计原则1.设计应具备先进性和实用性,以最大限度地满足实际生产需求。
2.系统应保证运行的可靠性和稳定性,降低因意外故障导致的生产线停顿率。
3.应达到生产效率和质量的双重要求。
4.充分考虑机械、控制系统整体的设计与集成,确保实现机电一体化效果。
设计流程1.确定设计要求,明确机械和控制系统的功能需求及性能标准。
2.进行市场调研,确定可行的方案,考虑机械与控制系统的整体集成,保证机电一体化的效果。
3.进行机械结构设计,包括3D模型设计、零件图纸绘制与操作方案的设计等。
4.进行控制系统设计,涉及电气电子控制系统的设计、PLC控制器的编程、人机界面的设计等环节。
5.进行机械和控制系统的联调,调试并运行检测。
6.进行测试和试验,在实际生产环境下检验系统的性能和可靠性。
7.进行方案评估和效果分析,优化系统设计。
设计内容设计内容主要分为两个方面:机械部分和控制系统部分。
机械部分1.确定机械的结构设计方案。
2.设计机械的3D模型。
3.绘制机械零部件图纸。
4.设计机械操作方案。
控制系统部分1.设计电气电子控制系统方案,包括传感器、执行器、驱动器等控制元件的确定。
2.对PLC控制器进行编程。
3.设计和实现人机界面系统。
4.调试控制系统的各个部分,并进行系统集成测试。
设备说明机械设备清单序号设备名称规格型号数量1 传送带宽度1500mm,长度10000mm 12 自动分拣系统– 13 切割系统进口激光数控切割机 14 堆垛系统最大承载1000kg 1控制系统清单序号设备名称规格型号数量1 PLC控制器– 12 人机界面设备– 13 传感器–104 执行器–105 控制柜– 1序号设备名称规格型号数量6 电缆线–若干总结机电一体化系统设计是一个相当有挑战性的任务,需要综合运用机械、电气、电子、自动控制等多学科知识。
机电一体化系统设计一、引言机电一体化系统是指将机械和电气控制系统相结合,实现自动化控制和监测,以提高生产效率和产品质量。
在现代制造业中,机电一体化系统已经成为不可或缺的重要部分。
本文将探讨机电一体化系统设计的重要性、原则和实施步骤。
二、机电一体化系统设计的重要性1.提高生产效率机电一体化系统可以实现自动化生产,减少人为操作,提高生产效率。
通过优化机械和电气系统的配合,可以实现更高的生产速度和稳定性。
2.优化产品质量机电一体化系统可以实现精准控制和监测生产过程,减少因人为因素引起的错误,提高产品质量和一致性。
3.节约能源资源机电一体化系统可以实现能源的合理利用和分配,优化能源消耗结构,降低生产成本。
4.提升生产安全性机电一体化系统可以实现安全监测和自动报警,减少生产过程中的安全隐患,提高生产操作的安全性。
5.降低维护成本机电一体化系统可以实现在线监测和故障诊断,及时发现和排除问题,减少维护和维修成本。
三、机电一体化系统设计的原则1.整体性原则机电一体化系统设计要以整体性为原则,全面考虑机械和电气系统之间的协调和配合,确保系统各部分之间的一致性和稳定性。
2.可靠性原则机电一体化系统设计要考虑到系统的可靠性,选择高品质的机械和电气元器件,确保系统长期稳定运行。
3.灵活性原则机电一体化系统设计要具有一定的灵活性,能够根据生产需求进行调整和改进,适应市场的变化。
4.通用性原则机电一体化系统设计要具有一定的通用性,可以适用于不同的生产场景和环境,提高系统的适用性和可扩展性。
5.安全性原则机电一体化系统设计要考虑到系统的安全性,确保生产过程中的操作安全和人员安全,防止事故的发生。
四、机电一体化系统设计的实施步骤1.需求分析首先进行生产需求分析,明确机电一体化系统的功能和性能要求,确定系统的基本架构和设计方案。
2.系统设计根据需求分析的结果,进行系统设计,包括机械结构设计、电气控制系统设计、传感器和执行器的选择等。
机电系统设计总结一、设计概述本次机电系统设计旨在实现一个高效、稳定、可靠的系统,以满足客户的生产需求。
设计过程中,我们全面考虑了系统的功能需求、性能指标、安全性及可靠性等因素,以确保系统能够长期稳定运行。
二、设计流程1.需求分析:我们首先与客户沟通,明确系统的功能需求、性能要求及技术指标。
然后对现有工艺流程进行分析,找出潜在的问题和改进点。
2.方案设计:根据需求分析结果,我们制定了详细的设计方案,包括系统的整体架构、主要设备选型、控制策略等。
同时,我们还进行了初步的硬件和软件设计。
3.详细设计:在方案设计的基础上,我们对系统进行了详细的硬件设计、软件编程和系统调试。
这一阶段主要关注系统的细节问题,以确保系统的稳定性和可靠性。
4.测试与验证:完成详细设计后,我们对系统进行了全面的测试和验证。
包括功能测试、性能测试、安全性测试等,以确保系统能够满足客户的需求。
三、设计成果经过一系列的设计工作,我们成功地完成了机电系统的设计任务。
以下是主要的设计成果:1.系统架构:我们采用了先进的分布式架构,将系统分为多个子系统,每个子系统都具有独立的功能和作用。
这种架构使得系统的维护和扩展更加方便。
2.设备选型:根据需求分析,我们选择了高品质的设备,包括电机、泵、阀门、传感器等。
这些设备具有高效率、低能耗、易于维护等特点。
3.控制策略:我们采用了先进的控制算法和策略,实现了对系统的精确控制。
同时,我们还为客户提供了定制化的控制界面,使得客户可以更加方便地操作和维护系统。
4.安全性与可靠性:我们充分考虑了系统的安全性与可靠性问题。
采用了多种安全措施,如过载保护、短路保护、超温保护等。
同时,我们还对系统进行了全面的可靠性设计和容错处理。
四、经验总结在本次机电系统设计过程中,我们积累了一些经验教训。
以下是主要的经验总结:1.需求分析是关键:在设计过程中,我们发现需求分析是非常关键的一步。
只有深入了解客户的需求和现有工艺流程的问题,才能制定出切实可行的设计方案。
《机电一体化系统设计课程设计》设计说明书一、课程设计的目的机电一体化系统设计是一门综合性很强的课程,通过本次课程设计,旨在让我们将所学的机电一体化相关知识进行综合运用,培养我们独立设计和解决实际问题的能力。
具体来说,课程设计的目的包括以下几个方面:1、加深对机电一体化系统概念的理解,掌握系统设计的基本方法和步骤。
2、熟悉机械、电子、控制等多个领域的知识在机电一体化系统中的融合与应用。
3、培养我们的工程实践能力,包括方案设计、图纸绘制、参数计算、器件选型等。
4、提高我们的创新思维和团队协作能力,为今后从事相关工作打下坚实的基础。
二、课程设计的任务和要求本次课程设计的任务是设计一个具有特定功能的机电一体化系统,具体要求如下:1、确定系统的功能和性能指标,包括运动方式、精度要求、速度范围等。
2、进行系统的总体方案设计,包括机械结构、驱动系统、控制系统等的选择和布局。
3、完成机械结构的详细设计,绘制装配图和零件图。
4、选择合适的驱动电机、传感器、控制器等器件,并进行参数计算和选型。
5、设计控制系统的硬件电路和软件程序,实现系统的控制功能。
6、对设计的系统进行性能分析和优化,确保满足设计要求。
三、系统方案设计1、功能需求分析经过对任务要求的仔细研究,确定本次设计的机电一体化系统为一个小型物料搬运机器人。
该机器人能够在规定的工作空间内自主移动,抓取和搬运一定重量的物料,并放置到指定位置。
2、总体方案设计(1)机械结构采用轮式移动平台,通过直流电机驱动轮子实现机器人的移动。
机械手臂采用关节式结构,由三个自由度组成,分别实现手臂的伸缩、升降和旋转,通过舵机进行驱动。
抓取机构采用气动夹爪,通过气缸控制夹爪的开合。
(2)驱动系统移动平台的驱动电机选择直流无刷电机,通过减速器与轮子连接,以提供足够的扭矩和速度。
机械手臂的关节驱动选择舵机,舵机具有控制精度高、响应速度快等优点。
抓取机构的气缸由气泵提供气源,通过电磁阀控制气缸的动作。
机电的一体化系统设计机电一体化系统设计是指将机械、电子、电气、自动化等技术相结合的一种综合性设计。
它通过将机械结构、电气设备、传感器、执行器和控制系统等有机地结合在一起来实现系统的功能。
一体化设计能够提高系统的整体性能和运行效率。
因为机械、电子和自动化等不同专业领域的知识被集成在一起,可以更好地协同工作,提升系统的综合效益。
在机电一体化系统设计中,首先需要进行系统分析和需求分析,明确系统的功能和性能要求。
然后进行系统设计,包括机械结构设计、电气设计、自动化控制设计等方面。
机械结构设计是机电一体化系统设计的重要组成部分。
在设计机械结构时,需要考虑系统的稳定性、刚度和强度等因素。
同时还需要考虑材料的选择和加工工艺的优化,以提高系统的可靠性和寿命。
电气设计是机电一体化系统设计的另一个重要方面。
在电气设计时,需要选择适当的电气设备和元件,并设计电路图和布线图。
同时还需要进行电气参数计算和控制系统设计,以实现对整个系统的控制和监测。
此外,还需要考虑系统的电磁兼容性和安全性等因素。
自动化控制设计是机电一体化系统设计中的关键一环。
通过使用传感器和执行器,可以实现对系统的自动化控制。
在自动化控制设计中,需要选择合适的传感器和执行器,并进行控制算法的设计和优化。
同时还需要进行系统的建模和仿真,以验证设计的正确性和可行性。
在机电一体化系统设计中,还需要考虑系统的可拓展性和模块化设计。
通过模块化设计,可以将整个系统划分为若干个独立的子系统,每个子系统都具有独立的功能和自主控制。
这样可以提高系统的灵活性和可维护性,同时也方便对系统进行拓展和更新。
此外,在机电一体化系统设计中还需要考虑系统的能效和环保性。
通过优化设计和选择节能设备和材料,可以提高系统的能源利用效率和减少对环境的影响。
综上所述,机电一体化系统设计是一项复杂而综合的工作。
它需要综合运用机械、电子、自动化等多个学科的知识,进行系统的分析、设计和优化。
只有通过科学的设计和综合考虑各个方面的因素,才能确保机电一体化系统具有良好的性能和可靠性。
简述机电一体化系统(或产品)的设计类型机电一体化系统是指将机械、电子、控制等多个领域的技术、部
件与系统互相组合、集成在一起,形成一个功能完善、效率高、可靠
性好的系统或产品。
机电一体化系统的设计类型主要包括以下几种:
1. 集成式设计:将不同领域的技术、部件与系统互相集成在一起,以达到整体性能的优化。
这种设计类型的优点在于能够满足各种复杂
的工程需求,减少工具与设备的使用,可以大大减少设备的维护成本。
2. 模块化设计:将机电一体化系统划分成多个模块,每个模块都
包含特定的功能,模块之间可以灵活地组合,以适应不同的应用场景。
这种设计类型的优点在于可重用性高,模块化设计可以大大缩短产品
研发时间,降低生产成本。
3. 统一控制设计:将机械、电子、控制等领域的技术整合到一起,实现针对多种工况下的统一控制,协同运作,以达到最佳的性能表现。
这种设计类型的优点在于可以提高整体工作效率,保障系统的可靠性
和稳定性。
4. 软件定义设计:对于机电一体化系统而言,软件是一个至关重
要的部分。
在软件定义设计中,利用软件对系统进行调整和升级,实
现更快、更稳定和更高效的性能,达到最佳性价比。
这种设计类型的
优点在于可以提高系统的灵活性和可扩展性,适用于各个行业领域的
不同应用场景。
机电一体化的机械系统设计环节
机电一体化的机械系统设计主要包括两个环节:静态设计和动态设计。
1、静态设计
静态设计是指依据系统的功能要求,通过讨论制定出机械系统的初步设计方案。
该方案只是一个初步的轮廓,包括系统主要零、部件的种类,各部件之间的联接方式,系统的掌握方式,所需能源方式等。
有了初步设计方案后,开头着手按技术要求设计系统的各组成部件的结构、运动关系及参数;零件的材料、结构、制造精度确定;执行元件(如电机)的参数、功率及过载力量的验算;相关元、部件的选择;系统的阻尼配置等。
以上称为稳态设计。
稳态设计保证了系统的静态特性要求。
2、动态设计
动态设计是讨论系统在频率域的特性,是借助静态设计的系统结构,通过建立系统组成各环节的数学模型和推导出系统整体的传递函数,利用自动掌握理论的方法求得该系统的频率特性(幅频特性和相频特性)。
系统的频率特性体现了系统对不同频率信号的反应,打算了系统的稳定性、最大工作频率和抗干扰力量。
静态设计是忽视了系统自身运动因素和干扰因素的影响状态下进行的产品设计,对于伺服精度和响应速度要求不高的机电一体化系统,静态设计就能够满意设计要求。
对于精密和高速智能化机电一体化系
统,环境干扰和系统自身的结构及运动因素对系统产生的影响会很大,因此必需通过调整各个环节的相关参数,转变系统的动态特性以保证系统的功能要求。
动态分析与设计过程往往会转变前期的部分设计方案,有时甚至会推翻整个方案,要求重新进行静态设计。
机电一体化系统的控制与优化设计机电一体化系统是指将机械、电子、计算机等各种技术结合在一起,实现自动控制和优化设计的系统。
在现代制造业中,机电一体化系统被广泛应用于各个领域,例如机械制造、自动化设备、智能机器人等。
本文将详细介绍机电一体化系统的控制与优化设计的相关内容。
一、机电一体化系统的控制机电一体化系统的控制是指对系统的各个组成部分进行协调和控制,使其能够按照预定的要求完成各项任务。
控制系统主要包括传感器、执行器、控制器和人机界面等组成部分。
1. 传感器:传感器是机电一体化系统的感知装置,能够将各种物理量转换为电信号,并传递给控制器进行处理。
常见的传感器有温度传感器、压力传感器、位移传感器等。
通过传感器的使用,控制系统能够及时获取相关的数据,并作出相应的调整。
2. 执行器:执行器是机电一体化系统的执行部件,能够根据控制信号进行运动或动作。
常见的执行器有电动机、液压缸、气动阀等。
通过控制器的输出信号,执行器能够精确地完成各种动作,实现对系统的控制。
3. 控制器:控制器是机电一体化系统的核心部件,能够对传感器获取的信号进行处理,并根据事先设定的控制策略生成相应的控制信号。
常见的控制器有PLC (可编程逻辑控制器)和单片机等。
控制器可以根据实际需求选择不同的控制算法,如PID控制、模糊控制等。
4. 人机界面:人机界面是机电一体化系统与操作人员进行交互的接口,能够实现人机之间的信息传递和指令输入。
常见的人机界面有触摸屏、按钮开关、显示屏等。
通过人机界面,操作人员可以方便地对机电一体化系统进行监测和操作。
二、机电一体化系统的优化设计机电一体化系统的优化设计是指通过对系统各个组成部分的参数、结构和控制策略等进行优化,使其在性能、稳定性和效率等方面得到最佳的改善。
1. 参数优化:包括优化执行器的参数设置和传感器的参数选择。
执行器参数的优化可以使其在运行中更加稳定和高效,例如优化电机的工作电压、功率和转速等;传感器参数的优化可以提高传感器的精度和响应速度,例如优化温度传感器的测量范围和精度。
1、比例阀与伺服阀的结构及工作原理阀口可以根据需要打开任意一个开度,由此控制通过流量的大小,这类阀有手动控制的,如节流阀,也有电控的,如比例阀、伺服阀。
所以使用比例阀或伺服阀的目的就是:以电控方式实现对流量的节流控制(当然经过结构上的改动也可实现压力控制等),既然是节流控制,就必然有能量损失,伺服阀和其它阀不同的是,它的能量损失更大一些,因为它需要一定的流量来维持前置级控制油路的工作。
1.1伺服阀的结构及工作原理伺服阀的主阀一般来说和换向阀一样是滑阀结构,只不过阀芯的换向不是靠电磁铁来推动,而是靠前置级阀输出的液压力来推动,这一点和电液换向阀比较相似,只不过电液换向阀的前置级阀是电磁换向阀,而伺服阀的前置级阀是动态特性比较好的喷嘴挡板阀或射流管阀。
也就是说,伺服阀的主阀是靠前置级阀的输出压力来控制的,而前置级阀的压力则来自于伺服阀的入口p,假如p口的压力不足,前置级阀就不能输出足够的压力来推动主阀芯动作。
而我们知道,当负载为零的时候,如果四通滑阀完全打开,p口压力=t口压力+阀口压力损失(忽略油路上的其它压力损失),如果阀口压力损失很小,t口压力又为零,那么p 口的压力就不足以供给前置级阀来推动主阀芯,整个伺服阀就失效了。
所以伺服阀的阀口做得偏小,即使在阀口全开的情况下,也要有一定的压力损失,来维持前置级阀的正常工作。
伺服阀其实缺点极多:能耗浪费大、容易出故障、抗污染能力差、价格昂贵等等,好处只有一个:动态性能是所有液压阀中最高的。
就凭着这一个优点,在很多对动态特性要求高的场合不得不使用伺服阀,如飞机火箭的舵机控制、汽轮机调速等等。
动态要求低一点的,基本上都是比例阀的天下了。
一般说来,好像伺服系统都是闭环控制,比例多用于开环控制;其次比例阀类型多,有比例压力阀、流量控制阀等,控制比伺服要灵活一些。
从他们内部结构看,伺服阀多是零遮盖,比例阀则有一定的死区,控制精度要低,响应要慢。
但从发展趋势看,特别在比例方向流量控制阀和伺服阀方面,两者性能差别逐渐在缩小,另外比例阀的成本比伺服阀要低许多,抗污染能力也强。
(1)力反馈式电液伺服阀力反馈式电液伺服阀的结构和原理如图28所示,无信号电流输入时,衔铁和挡板处于中间位置。
这时喷嘴4二腔的压力pa=pb,滑阀7二端压力相等,滑阀处于零位。
输入电流后,电磁力矩使衔铁2 同挡板偏转θ角。
设θ为顺时针偏转,则由于挡板的偏移使pa>pb,滑阀向右移动。
滑阀的移动,通过反馈弹簧片又带动挡板和衔铁反方向旋转(逆时针),二喷嘴压力差又减小。
在衔铁的原始平衡位置(无信号时的位置)附近,力矩马达的电磁力矩、滑阀二端压差通过弹簧片作用于衔铁的力矩以及喷嘴压力作用于挡板的力矩三者取得平衡,衔铁就不再运动。
同时作用于滑阀上的油压力与反馈弹簧变形力相互平衡,滑阀在离开零位一段距离的位置上定位。
这种依靠力矩平衡来决定滑阀位置的方式称为力反馈式。
如果忽略喷嘴作用于挡板上的力,则马达电磁力矩与滑阀二端不平衡压力所产生的力矩平衡,弹簧片也只是受到电磁力矩的作用。
因此其变形,也就是滑阀离开零位的距离和电磁力矩成正比。
同时由于力矩马达的电磁力矩和输入电流成正比,所以滑阀的位移与输入的电流成正比,也就是通过滑阀的流量与输入电流成正比,并且电流的极性决定液流的方向,这样便满足了对电液伺服阀的功能要求。
由于采用了力反馈,力矩马达基本上在零位附近工作,只要求其输出电磁力矩与输入电流成正比(不象位置反馈中要求力矩马达衔铁位移和输入电流成正比),因此线性度易于达到。
另外滑阀的位移量在电磁力矩一定的情况下,决定于反馈弹簧的刚度,滑阀位移量便于调节,这给设计带来了方便。
采用了衔铁式力矩马达和喷嘴挡板使伺服阀结构极为紧凑,并且动特性好。
但这种伺服阀工艺要求高,造价高,对于油的过滤精度的要求也较高。
所以这种伺服阀适用于要求结构紧凑,动特性好的场合。
力反馈式电液伺服阀的方框图29。
图29力反馈式伺服阀方框图(2)位置反馈式伺服阀图30为二级滑阀式位置反馈伺服阀结构。
该类型电液伺服阀由电磁部分,控制滑阀和主滑阀组成。
电磁部分是一只力马达,原理如前所述。
动圈靠弹簧定位。
前置放大器采用滑阀式(一级滑阀)。
如图所示,在平衡位置(零位)时,压力油从P腔进入,分别通过P腔槽,阀套窗口,固定节流孔3、5 到达上、下控制窗口,然后再通过主阀(二级阀芯)的回油口回油箱。
输入正向信号电流时,动圈向下移动,一级阀芯随之下移。
这时,上控制窗口的过流面积减小,下控制窗口的过流面积增大。
所以上控制腔压力升高而下控制腔的压力降低,使作用在主阀芯(二级阀芯)两端的液压力失去平衡。
主阀芯在这一液压力作用下向下移动。
主阀芯下移,使上控制窗口的过流面积逐渐增大,下控制窗口的过流面积逐渐缩小。
当主阀芯移动到上、下控制窗口过流面积重新相等的位置时,作用于主阀芯两端的液压力重新平衡。
主阀芯就停留在新的平衡位置上,形成一定的开口。
这时,压力油由P腔通过主阀芯的工作边到A腔而供给负载。
回油则通过B腔,主阀芯的工作边到T腔回油箱。
输入信号电流反向时,阀的动作过程与此相反。
油流反向为P→B,A→T。
上述工作过程中,动圈的位移量,一级阀芯(先导阀芯)的位移量与主阀芯的位移量均相等。
因动圈的位移量与输入信号电流成正比,所以输出的流量和输入信号电流成正比。
二级滑阀型位置反馈式伺服阀的方框图31所示。
该型电液伺服阀具有结构简单,工作可靠,容易维护,可在现场进行调整,对油液清洁度要求不太高。
图31位置反馈式电液伺服阀方框图伺服阀的工作原理图2是伺服阀的工作原理图。
伺服阀是双喷嘴挡板式伺服阀,由两级液压放大及机械反馈系统所组成。
第一级液压放大是双喷嘴和挡板系统;第二级功率放大是滑阀系统。
伺服阀线圈接受一正向电流指令信号时,线圈将会产生电磁力作用于衔铁的两端,衔铁因此而带动挡板偏转,挡板的偏转将减少某一个喷嘴的流量,进而改变了与此喷嘴相通的滑阀一侧的压力,推动滑阀朝一边移动,滑阀上的凸肩打开了EH压力油供油口,同时滑阀另一凸肩打开油动机的进油口,油动机进油,汽门打开,汽门的位置发送器LVDT 输出的反馈信号增大,指令与反馈信号的偏差在不断减少,至伺服阀的开阀驱动指令也在不断减小,当伺服阀的输出指令与弹簧回复力平衡时,挡板回到中间位置,滑阀处于平衡状态,油动机此时停止进油,汽门位置保持不变;反之线圈接受负向电流信号时,滑阀向另一边移动,滑阀凸肩关闭进油口,另一凸肩打开回油口,油动机泄油,其它动作与开阀原理相同。
电液伺服阀是有机械零偏的,其主要作用是当伺服阀失去控制信号或线圈损坏时,靠它的机械偏置使滑阀移动打开泄,使油动机下缸与回油相通,使气门关闭,防止气门突开引起机组超速。
1.2伺服阀与比例阀的区别伺服阀与比例阀之间的差别并没有严格的规定,因为比例阀的性能越来越好,逐渐向伺服阀靠近,所以近些年出现了比例伺服阀。
比例阀和伺服阀的区别主要体现在以下几点:1.驱动装置不同。
比例阀的驱动装置是比例电磁铁;伺服阀的驱动装置是力马达或力矩马达;2.性能参数不同。
滞环、中位死区、频宽、过滤精度等特性不同,因此应用场合不同,伺服阀和伺服比例阀主要应用在闭环控制系统,其它结构的比例阀主要应用在开环控系统及闭环速度控制系统 3.伺服阀中位没有死区,比例阀有中位死区;4.伺服阀的频响(响应频率)更高,可以高达200Hz左右,比例阀一般最高几十Hz;5.伺服阀对液压油液的要求更高,需要精过滤才行,否则容易堵塞,比例阀要求低一些;6.阀芯结构及加工精度不同。
比例阀采用阀芯+阀体结构,阀体兼作阀套。
伺服阀和伺服比例阀采用阀芯+阀套的结构。
7.中位机能种类不同。
比例换向阀具有与普通换向阀相似的中位机能,而伺服阀中位机能只有O型(Rexroth产品的E型)。
8.阀的额定压降不同。
而比例伺服阀性能介于伺服阀和比例阀之间。
比例换向阀属于比例阀的一种,用来控制流量和流向。
2、气动无杆活塞缸的组成及特点气动夹具因使用空气作为工作介质而有“绿色夹具”之美誉,设备成本低,结合PLC控制可实现高度的自动化装夹,广泛应用于各自动化设备的夹紧装置中。
然而气体的可压缩性使气动系统的压力不高(≤0.8MPa),如何让气动系统配合有效增力机构,使设备完成更多工作,是人们追寻的一个目标。
传统的基于有杆活塞缸的气动夹具如图1所示。
由于铰杆增力机构中间的铰接点A绕B点作摆动运动,需要选用铰接式气缸来增加自由度,其缺点是结构刚性较固定式气缸要低,在工作过程中会产生摆动,易造成冲击和噪声,而固定式无杆活塞缸能较好地解决这一问题。
固定式无杆活塞缸如图2所示,它与普通气缸的不同在于其活塞径向有一过渡滑块,其两端对称地铰接两个铰杆,当活塞在压力作用下左右运动时,滑块可在垂直方向滑动。
当系统夹紧时,铰点B将绕A点摆动,而滑块垂直方向的运动可增加一个自由度,补偿B点垂直方向的位移。
图2所示系统可看出,采用过渡滑块在活塞径向孔中的直线运动代替了图1系统中整个气缸的摆动,结构紧凑、刚性好。
图2所示的无杆活塞缸当压力气体作用于活塞时产生的推力为(1)式中,D——活塞直径(mm);p—无杆活塞缸输人压力(SPa)。
在加人铰杆Ad3、BC后,若忽略摩擦力等因素时,该系统的理论输出力为(2)式中,a——理论压角(rad或。
)。
而系统的实际输出力为(3)式中,β——铰链副的当量摩擦角,β=arcsin (r为铰链轴半径;z为铰链上两铰链孔的中心距;f为铰链副的摩擦因数);ηl——气缸的机械效率,通常取0.9。
固定式无杆活塞缸由于在其活塞上增加了一个滑块而增加了一个自由度,配合增力机构可提高夹紧力,避免了气动系统因气体压缩性而使系统压力不高的弱点,将其与具有可移动支点的杠杆式压板配合使用,可在不改变气动系统配置的情况下,配合机械增力机构,可以得到较大力放大系数,从而可代替容易产生污染的液压夹具。
3、气动技术应用情况及研究和发展的重要性随着科学技术的发展,自动控制技术已被广泛应用于工农业生产和国防建设。
实现自动化的技术手段,在目前主要有两个:电气(电子)控制和流体动力控制。
流体动力控制有三类:(1) 液压控制,工作流体主要是矿物油。
(2) 气压控制,工作介质主要是压缩空气,还有燃气和蒸气。
(3) 射流技术,工作介质有气体也有液体,该技术在一些多管道的生产流程中得到应用。
气压伺服控制是以气体为工作介质,实现能量传递、转换、分配及控制的一门技术。
气动系统因其节能、无污染、结构简单、价格低廉、高速、高效、工作可靠、寿命长、适应温度范围广、工作介质具有防燃、防爆、防电磁干扰等一系列的优点而得到了迅速的发展。
众多的报道表明,气动技术是实现现代传动和控制的关键技术,它的发展水平和速度直接影响机电产品的数量和水平,采用气动技术的程度已成为衡量一个国家的重要标志。