八年级数学第二学期阶段考试试卷
- 格式:doc
- 大小:522.50 KB
- 文档页数:12
(某某市县区中学)初中八年级数学下册第二学期期中阶段性考试试题卷(含答案详解)满分:150分 时间:120分钟一、单选题。
(每小题4分,共40分)1.不等式x -1≤1的解集在数轴上表示正确的是( )A. B.C. D.2.下列等式从左边到右边的变形中,属于因式分解的是( )A.(a+b )(a -b )=a 2-b 2B.4m 2+4m+1=(2m+1)2C.x 2+3x -1=x (x+3)-1D.a 2+1=a (a+1a )3.观察下列图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.4.若m >n ,则下列结论错误的是( )A.m+2>n+2B.m -2>n -2C.2m >2nD.m﹣2>n﹣25.将点P (1,4)先向上平移2个单位,再向左平移3个单位,得到点P 的对应点P’的坐标是( )A.(﹣2,6)B.(4,6)C.(﹣2,2)D.(4,2) 6.化简4x 2-4+1x+2的结果是( )A.1x -2B.x -2C.2x+2 D.2x -27.下列条件中,不能判定四边形ABCD 是平行四边形的是( )A.AB ∥CD ,AB=CDB.AB ∥CD ,AD=BCC.AB ∥CD ,AD ∥BCD.AB ∥CD ,∠A=∠C 8.如图,若一次函数y=kx+b 的图象经过点A (0,﹣1),B (1,1),则不等式kx+b <1的解集是( )A.x>1B.x<1C.x>0D.x<09.如图,在平行四边形ABCD中,∠BCD的平分线交BA的延长线于点E,若AB=5,AD=8,则AE的长为()A.5B.4C.3D.2(第8题图)(第9题图)(第10题图)10.如图,平行四边形ABCD中,AB=8,AD=6,∠A=60°,E是边AD上且AE=2DE,F是边AB上的一个动点,将线段EF绕点E逆时针旋转60°,得到EG,连接BG、CG,则BG+CG的最小值是()A.2√21B.2√14C.2√7D.10二.填空题。
2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。
()2. 平行四边形的对角线互相平分。
()3. 正方形的对角线相等且互相垂直。
()4. 圆的半径是圆心到圆上任意一点的距离。
()5. 圆的直径是圆上任意两点之间的距离。
()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。
2. 平行四边形的对角线互相平分,所以它的对角线长度是______。
3. 正方形的四个角都是______度。
4. 圆的半径是圆心到圆上______的距离。
5. 圆的直径是圆上______点之间的距离。
四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述平行四边形的性质。
3. 简述正方形的性质。
4. 简述圆的性质。
5. 简述圆的直径和半径之间的关系。
五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。
2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。
2023—2024学年度第二学期阶段性随堂练习八年级数学(本试卷共23道题满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效第一部分选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有意义,则实数x 的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】本题主要考查二次根式的意义和性质.根据二次根式有意义的条件,被开方数大于或等于0,可以得出x 的范围.【详解】解:根据题意得:,解得:,故选:C .2. 一元二次方程两根分别为,则的值为( )A. 2B. C. D. 3【答案】C【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】解:∵该一元二次方程为,∴.故选C .【点睛】本题考查一元二次方程根与系数的关系.熟记一元二次方程根与系数的关系:和是解题关键.3. 下列运算结果正确的是( )A. B. C. D. 的2x >0x >2x ≥0x ≥20x -≥2x ≥2230x x +-=12x x 、12x x ⋅2-3-2230xx +-=12331c xx a -⋅===-20(0)ax bx c a ++=≠12b x x a+=-12c x x a ⋅=2=±5=-2=(218=【解析】【分析】本题考查了二次根式的性质、二次根式的乘法,根据二次根式的性质、二次根式的乘法法则逐项判断即可得出答案.【详解】解:A,故原选项计算错误,不符合题意;B,故原选项计算错误,不符合题意;C 、,故原选项计算错误,不符合题意;D 、,故原选项计算正确,符合题意;故选:D .4.由下列长度的三条线段组成的三角形不是直角三角形的是( )A. 12B. 2,3,5 C. ,2, D. 6,8,10【答案】B【解析】【分析】本题考查勾股定理的逆定理,是重要考点,难度较易,掌握相关知识是解题关键.根据直角三角形三边的数量关系,运用勾股定理逆定理,依次对四个选项进行计算、判断即可.【详解】解:A .,能组成直角三角形,故A 不符合题意;B .,不能组成三角形,更不可能组成直角三角形,故B 符合题意;C .,能组成直角三角形,故C 不符合题意;D .,能组成直角三角形,故D 不符合题意.故选:B .5. 如图,在一束平行光线中插入一张对边平行的纸板,如果光线与纸板左上方所成的是,那么光线与纸板右下方所成的的度数为( )A. B. C. D. 【答案】C 2=5=2=-(218== 1.5 2.522212+=235+=2221.52 2.5+=2226810+=1∠7215'︒2∠10745'︒7245'︒7215'︒1745'︒【分析】首先可证得四边形是平行四边形,再根据平行四边形的性质,即可求得.【详解】解:如图所示:光线平行,纸板对边平行,四边形是平行四边形故选:C【点睛】本题考查了平行四边形的判定与性质,熟练掌握和运用平行四边形的判定与性质是解决本题的关键.6. 如图,增加下列一个条件可以使平行四边形成为矩形的是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了平行四边形的性质,矩形的判定,根据矩形的判定定理逐项分析判断,即可求解.【详解】解:A 、四边形是平行四边形,,故选项A 不符合题意;B 、四边形是平行四边形,,,故选项B 不符合题意;C 、四边形是平行四边形,,四边形是矩形,故选项C符合题意;CDEF FC ED ∴∥EF DC ∴CDEF 152721∴=∠︒∠'=ABCD BAD BCD∠=∠AD BC ∥90BAD ∠=︒AB BC= ABCD BAD BCD ∴∠=∠ ABCD ∴AD BC ∥ ABCD 90BAD ∠=︒∴ABCDD 、四边形是平行四边形,,四边形是菱形,故选项D 不符合题意;故选:C .7. 如图是一棵美丽的勾股树,它是由正方形和直角三角形拼成的,若正方形A ,B 的面积分别为28,12,则正方形C 的面积是( )A. 4B. C. 16 D. 40【答案】C【解析】【分析】本题考查勾股树,根据勾股定理可得正方形C ,B 的面积之和等于正方形A 的面积,由此可解.【详解】解:由勾股定理知,正方形C ,B 的边长的平方之和等于正方形A 的边长的平方,正方形C ,B 的面积之和等于正方形A 的面积,正方形A ,B 的面积分别为28,12,正方形C 的面积是,故选C .8. 某校举行风筝节活动,小明做了一个菱形风筝,他用两个木条沿着菱形的对角线做支架.经测量,,则这个风筝的面积是( )A. B. C. D. 【答案】B【解析】【分析】本题考查菱形的性质,解题的关键是掌握:菱形的面积公式是两条对角线的长度乘积的一半.据此列式解答即可.【详解】解:∵四边形是菱形,,,ABCD AB BC =∴ABCD ∴ ∴281216-=2dm AC =3dm BD =26dm 23dm 23dm 223dm 4ABCD 2dm AC =3dm BD =∴菱形的面积为:.故选:B .9. 如图,在中,,于,若,,则( )A. B. C. D. 5【答案】C【解析】【分析】本题主要考查了勾股定理的应用,理解并掌握勾股定理是解题关键.首先根据勾股定理解得的值,然后根据面积法计算的值即可.【详解】解:∵,,,∴,∵,∴,即,解得.故选:C .10. 在数学活动课上,小明通过测量,发现规格矩形纸片的长宽有固定关系,于是按如图所示的方法进行两次折叠,得到等腰直角三角形,若,则的长度是( )A. B. C. D. 【答案】A【解析】ABCD ()21233dm 2⨯⨯=ABC 90ACB ∠=︒CD AB ⊥D 4CA =3CB=CD =3545125AB CD 90ACB ∠=︒4CA =3CB =5AB ===CD AB ⊥1122ABC S CA CB AB CD =⨯=⨯ 1143522CD ⨯⨯=⨯⨯125CD =4A DMC 1AD =AB【分析】本题主要考查了矩形与折叠问题,勾股定理,根据翻折的性质可得,,,设,则,,在由勾股定理得,解方程即可得到答案.【详解】解:根据翻折的性质可得,,,设,则,∵是等腰直角三角形,∴,在中,由勾股定理得,解得∴,故选:A .第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.______.【解析】【分析】根据二次根式的除法运算法则即可求解.【点睛】本题考查二次根式的除法运算.分母有理化是解题的关键.12. 如图,在正方形的外侧,作等边,则____.1AD BE CD ====DM EM CE CM =BE CD x ==1CE x =-CD CE CM x ===Rt CEM △()()()222111x x x x -+-=-+1AD BE CD ====DM EM CE CM =BE CD x ==1CE x =-DMC CD CE CM x ===Rt CEM △()()()222111x x x x -+-=-+x =x =AB ====ABCD ADE V AEB ∠=【答案】##15度【解析】【分析】判断是顶角为的等腰三角形,求出的度数即可求解.【详解】解:∵四边形是正方形,∴,,∵是等边三角形,,∴,,∴,,∴,故答案:.【点睛】此题考查了正方形和等边三角形的性质,解题的关键是熟练掌握正方形和等边三角形的性质及其应用.13. 若一元二次方程有两个相等的实数根,则k =____________.【答案】12【解析】【分析】本题考查了一元二次方程根的判别式,一元二次方程的根与有如下关系:①,方程有两个不相等的实数根,②,方程有两个相等的实数根,③,方程没有实数根.根据题意得出,求解即可.【详解】解:由题意得:,解得:,故答案为:.14. 如图,的顶点的坐标分别是.则顶点的坐标是_________.为15︒ABE 150︒AEB ∠ABCD AB AD =90BAD ∠=︒ADE AD AE =60DAE ∠=︒AB AE =150BAE ∠=︒()1180150152AEB ∠=︒-︒=︒15︒23120x x k -+=()200ax bx c a ++=≠24b ac ∆=-0∆>Δ0=Δ0<()212430k ∆=--⨯⨯=()212430k ∆=--⨯⨯=12k =12ABCO O A C 、、()()()003012,、,、,B【答案】【解析】【分析】根据“平行四边形的对边平行且相等的性质”得到点的纵坐标与点的纵坐标相等,且,即可得到结果.【详解】解:在中,,,,,点的纵坐标与点的纵坐标相等,,故答案为:.【点睛】本题主要考查了平行四边形的性质和坐标与图形的性质,此题充分利用了“平行四边形的对边相等且平行”的性质.15. 如图1,第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图2,在由四个全等的直角三角形(,,,)和中间一个小正方形拼成的大正方形中,若正方形与正方形的面积之比为m ,m 的值是____________.【答案】3【解析】【分析】本题考查勾股定理的证明,熟练掌握勾股定理是解题的关键.由正方形与正方形()42,B C 3BC OA == ABCO ()00O ,()30A ,3BC OA ∴==BC AO ∥∴B C ()42B ∴,()42,AEB △BFC △DGC AHD EFGH ABCD ABCD EFGH :AH HE =ABCD EFGH的面积之比为m ,得到,设,,得到,根据勾股定理列方程即可得到结论.【详解】解:∵正方形与正方形的面积之比为m ,∴,∴设,, ∵∴,∴,∵,∴,解得,故答案为:3.三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16. 计算:(1;(2).【答案】(1)(2)【解析】【分析】本题考查了二次根式的混合运算,熟练掌握运算法则是解此题的关键.(1)先根据二次根式的性质进行化简,再计算加减即可;(2)先根据二次根式的除法以及平方差公式去括号,再计算加减即可【小问1详解】:AB HE =HE x =AB =AH x =ABCD EFGH :AB HE =HE x =AB =:AH HE =AH x =BE AH x ==222AB AE BE =+222mx x x x ⎫⎫=++⎪⎪⎪⎪⎭⎭3m =+(-+6-;【小问2详解】.17. 解下列方程:(1)(2)【答案】(1),(2),【解析】【分析】本题考查了解一元二次方程,解题的关键是掌握一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法等.(1)利用因式分解法解一元二次方程即可;(2)利用配方法解一元二次方程即可.【小问1详解】解:,;【小问2详解】解:=+-=(-++22=+-453=--6=-2x -=257311x x x ++=+10x =2x =11x =-21x =(0x x -=10x =2x =224x x +=22141x x ++=+()215x +=,18. 如图,四边形是平行四边形,是对角线上的两点,且.求证:四边形是平行四边形.【答案】见解析【解析】【分析】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解题的关键.由四边形是平行四边形,可得,可证,于是得到,,进一步得到,于是,即得证.【详解】证明: 四边形是平行四边形,,,,,,,,,,,,且,四边形是平行四边形.19. 一架长的梯子,斜靠在一面墙上,梯子底端离墙.(1)如图,,,求这架梯子的顶端距地面有多高?1x +=11x =-21x =-ABCD E F 、AC AE CF =EBFD ABCD DAE BCF ∠=∠DAE BCF ≌△△DE BF =AED CFB ∠=∠DEF BFE ∠=∠DE BF ∥ ABCD ∴AD BC =AD BC ∥ AD BC ∥∴DAE BCF ∠=∠ AE CF DAE BCF AD BC =⎧⎪∠=∠⎨⎪=⎩∴DAE BCF ≌△△∴DE BF =AED CFB ∠=∠∴DEF BFE ∠=∠∴DE BF ∥ DE BF =DE BF ∥∴EBFD 3m 1.8m 13m AB =18m .=BC(2)如图,如果梯子靠墙下移,底端向右移动至点处,求它的顶端A 沿墙下移多少米?【答案】(1)这架梯子的顶端距地面有(2)梯子的顶端沿墙下移【解析】【分析】本题考查了勾股定理的应用,熟练掌握利用勾股定理计算是解题的关键.(1)根据勾股定理,计算(2)根据、,结合勾股定理计算,最后根据得出答案即可.【小问1详解】解:∵于点,∴,在中,根据勾股定理,得,∵,,∴,答:这架梯子的顶端距地面有;【小问2详解】解:由题意,得,∴,∵,20.6m E 2.4m A 0.6mAC =CE BC BE =+DEAB=CD =AD AC CD =-AC BC ⊥C 90ACB ∠=︒Rt ACB △222AB AC BC =+3m AB =18m .=BC 2.4m AC ===2.4m 0.6m BE =1.80.6 2.4m CE BC BE =+=+=3m DE AB ==∴在中,根据勾股定理,得,∴,∴,答:梯子的顶端沿墙下移.20. 某快递公司为顾客邮寄的快递提供纸箱包装服务,现有一款底面积为,长,宽,高的比分别为的长方体包装纸箱.(1)求这个长方体包装纸箱的长,宽,高各是多少?(2)一顾客要邮寄甲乙两件正方体物品,它们的底面积分别为,,从节约材料的角度考虑,该快递公司的员工决定用这款长方体包装纸箱.如图所示,将甲乙两件正方体物品并排摆放在该长方体包装箱中.请问这名员工的想法能否实现,并说明理由.【答案】(1)这个长方体包装纸箱的长,宽,高分别为,,(2)这名员工的想法能实现,理由见解析【解析】【分析】本题考查了长方体的表面积,正方形的面积,平方根的应用,无理数的估算,理解题意得出要求包装的纸箱的尺寸范围是解题的关键.(1)设这个长方体包装纸箱的长为,则宽为,高为,根据长方体的底面积等于长宽列方程,求解即可;(2)根据甲乙两件礼品的底面积大小,可以估计这两件礼品的底面边长大小,然后与三款包装纸箱的尺寸比较,从而找到合适的纸箱.【小问1详解】解:设这个长方体包装纸箱的长为,则宽为,高为,由题意得:,∴,∵,Rt DCE V 222DE DC CE =+1.8m CD ===2.4 1.80.6m AD AC CD =-=-=A 0.6m 2720cm 2:1:12180cm 2320cm2cm x cm x cm x ⨯2cm x cm x cm x 22720x =2360x =0x >∴,则答:这个长方体包装纸箱的长,宽,高分别为,,.【小问2详解】解:设甲正方体物品棱长为,乙正方体物品棱长为,由题意得:,∵,∴,∴∵,∴,长方体纸箱长满足条件,∵,,∴∴这名员工的想法能实现.21. 【综合与实践】项目背景测量实物图:如图1,某校八年级数学“创新”小组,自主开展测量学校旗杆高度的项目研究,他们制订了测量方案,并进行实地测量项目方案测量示意图:测量过程:步骤一:如图2,线段表示旗杆高度,垂直地面于点,将系在旗杆顶端的绳子垂直到地面,并多出了一段,用皮尺测出的长度;x =2x =cm a cm b 2180a =2320b =00a b >>,a =b =a b +=+===<<==<<AB AB B BC BC步骤二:如图3,小新同学将绳子末端放置头顶,向正东方向水平移动,直到绳子拉直为止,此时该同学直立于地面点处,用皮尺测出距离.测量项目数据绳子垂到地面多出部分1米小新直立位置距旗杆底端的水平距离8.4米各项数据小新身高1.8米请根据表格所给信息,完成下列问题:(1)直接写出线段与之间的数量关系;(2)根据“创新”小组的测量方案和数据,求出学校旗杆的高度.【答案】(1)(2)学校旗杆的高度为【解析】【分析】(1)根据题意,旗杆的绳子长度始终保持不变,由图2与图3中的描述即可得到答案;(2)由题意,得到相关线段长度及关系,过点作于点,如图所示,设,则,,在中,由勾股定理可得列方程求解即可得到答案.【小问1详解】解:由图2可知,旗杆的绳子长为;由图3可知,旗杆的绳子长为;绳子垂到地面多出部分米,,故答案为:;【小问2详解】解:由题意得,,过点作于点,如图所示:E BE AB AD 1AB AD +=13mD DF AB ⊥F AB x =1AD x =+ 1.8AF x =-Rt AFD △AB BC +AD 1BC =∴1AB AD +=1AB AD +=8.4, 1.8,,BE DE AB BE DE BE ==⊥⊥90ABE DEB ∴∠=∠=︒D DF AB ⊥F,,四边形为矩形,,设,则,,在中,由勾股定理可得,则,解得,答:学校旗杆的高度为.【点睛】本题考查勾股定理解应用题,涉及矩形的判定与性质、勾股定理及解方程等知识,读懂题意,构造直角三角形由勾股定理求解是解决问题的关键.22. 在平面直角坐标系中,四边形为菱形,,对角线相交于原点,点是线段上一动点(不与点重合),以为腰向右侧作等腰,满足.(1)如图1,当点在点左侧时,连接,则与之间的数量关系是 ,与之间的位置关系是 ;(2)如图2,当点在点右侧时,(1)中的结论是否成立?若成立,请予以证明;若不成立,请说明理由.90DFB ∴∠=︒90ABE DEB DFB ∴∠=∠=∠=︒∴FBED 8.4, 1.8DF BE BF DE ∴====AB x =1AD x =+ 1.8AF x =-Rt AFD △222AD AF DF =+()()2221 1.88.4x x +=-+13x =13m ABCD 602,ADC AD ∠=︒=AC BD ,O E BD B D ,AE AEF △BAD EAF ∠=∠E O DF BE DF DF CD E O(3)连接,请在备用图中完成下列探究:①在点的运动过程中,的长度存在最小值为 ;②若,请求出此时点的坐标.【答案】(1)相等,垂直(2)成立,理由见解析(3)①;②或【解析】【分析】(1)由菱形性质、等腰三角形性质,结合三角形全等的判定与性质即可得到与之间的数量关系是相等;进而确定与之间的位置关系是垂直;(2)由菱形性质、等腰三角形性质,结合三角形全等的判定与性质即可得到与之间的数量关系是相等;进而确定与之间的位置关系是垂直;BF EBF BF =F3FF BE DF DF CD BE DF DF CD(3)①由三角形三边关系可知,从而确定当三点共线时,,由点到直线距离垂线段最短可知,当时,最小,在中,由含的直角三角形性质求出最小值即可确定在点的运动过程中,的长度存在最小值为;②由①知的长度存在最小值为,当,则分两种情况:在最小值的下方;在最小值的上方;分类求解即可得到答案.【小问1详解】解:在菱形中,,以腰向右侧作等腰,,,,即,在和中,,,即与之间的数量关系是相等;由可知,在菱形中,,则,,即与之间的位置关系是垂直;故答案为:相等;垂直;【小问2详解】解:(1)中的结论成立,理由如下:为2BF BA AF AF <+=+B A F 、、2BF AF =+AE BD ⊥AE Rt AOB △30︒AE E BF 3BF33BF =>3BF =3BF =ABCD AB AD = AE AEF △AE AF ∴= BAD EAF ∠=∠BAD EAD EAF EAD ∴∠-∠=∠-∠BAE DAF ∠=∠BAE DAF △AB AD BAE DAFAE AF =⎧⎪∠=∠⎨⎪=⎩()SAS BAE DAF ∴ ≌BE DF ∴=BE DF BAE DAF ≌ ADF ABE =∠∠ABCD 60ABC ADC ∠=∠=︒160302ADF ABE ∠=∠=⨯︒=︒603090CDF ADC ADF ∴∠=∠+∠=︒+︒=︒DF CD在菱形中,,以腰向右侧作等腰,,,,即,在和中,,,即与之间的数量关系是相等;由可知,在菱形中,,则,,即与之间的位置关系是垂直;【小问3详解】解:① 连接,如图所示:在中,,则当三点共线时,,,为ABCD AB AD = AE AEF △AE AF ∴= BAD EAF ∠=∠BAD EAD EAF EAD ∴∠-∠=∠-∠BAE DAF ∠=∠BAE DAF △AB AD BAE DAFAE AF =⎧⎪∠=∠⎨⎪=⎩()SAS BAE DAF ∴ ≌BE DF ∴=BE DF BAE DAF ≌ ADF ABE =∠∠ABCD 60ABC ADC ∠=∠=︒160302ADF ABE ∠=∠=⨯︒=︒603090CDF ADC ADF ∴∠=∠+∠=︒+︒=︒DF CD BF BAF △2BF BA AF AF <+=+B A F 、、2BF AF =+ AF AE =当最小时,有最小值,点在运动过程中,轨迹为,当时,最小,在中,,,,则,在点的运动过程中,的长度存在最小值为,故答案为:;②由①知的长度存在最小值为,当,则分两种情况:在最小值的下方;在最小值的上方,当在最小值的下方时,延长交于,过点作轴,如图所示:由(1)(2)知与之间的位置关系是垂直,即,在菱形中,,则,,,,,在中,,,则,由勾股定理可得在中,,,则,由勾股定理可得,在中,,,则由勾股定理可得,,∴AE BF E BD ∴AE BD ⊥AE Rt AOB △90AOB ∠=︒30ABO ∠=︒2AB =1AE AO ==∴E BF 33BF 33BF =>3BF =3BF =3BF =DF BA M F FN x ⊥DF CD MD CD ⊥ABCD BA CD ∥M D B M ⊥90BMD ∴∠=︒ 2AB AD ==30ABD BDA ∠=∠=︒60DAM DBA ADB ∴∠=∠+∠=︒Rt ADM △30MDA ∠=︒2AD =112AM AD ==MD ==Rt ADO △30ODA ∠=︒2AD =112AM AD ==OD ==Rt BFM 3BM AB AM =+=BF =MF ==DF MD MF ∴=-= 60FDN ∠=︒,;当在最小值的上方时,延长交于,过点作轴,如图所示:由(1)(2)知与之间的位置关系是垂直,即,在菱形中,,则,,,,,在中,,,则,由勾股定理可得在中,,,则,由勾股定理可得,在中,,,则由勾股定理可得,,,FN==ON OD DN ∴=-==∴F 3BF =DF BA M F FN x ⊥DF CD FD CD ⊥ABCD BA CD ∥M D B M ⊥90BMD ∴∠=︒ 2AB AD ==30ABD BDA ∠=∠=︒60DAM DBA ADB ∴∠=∠+∠=︒Rt ADM △30MDA ∠=︒2AD =112AM AD ==MD ==Rt ADO △30ODA ∠=︒2AD =112AM AD ==OD ==Rt BFM 3BM AB AM =+=BF =MF ==DF MD MF ∴=+=+ 60FDN ∠=︒,;综上所述,点的坐标为或.【点睛】本题考查几何综合,涉及图形与坐标、菱形性质、等腰三角形性质、三角形全等的判定与性质、三角形三边关系、点到直线的距离、三角形外角性质、动点最值问题、含的直角三角形性质、勾股定理等知识,数形结合,根据题意,准确构造辅助线,灵活运用相关几何性质与判定求解是解决问题的关键.23. 问题情境】折纸操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘,下面是折纸过程.【动手操作】步骤1:对折矩形纸片,使与重合,得到折痕,展平纸片;步骤2:点M 为边上任意一点(与点A ,D 不重合),沿折叠得到,折痕交于点N .【问题探究】(1)如图1,当点A 的对称点落在上时,连接.求证:四边形为菱形;(2)已知,继续对折矩形纸片,使与重合,折痕与交于点O .将沿折叠,连接,若点A 的对称点恰好落在线段上,此时.①尺规作图:请在图2中用直尺和圆规,作点A 的对称点(保留作图痕迹,不写作法);【FN ==ON OD DN ∴=-==∴F F F F 30︒ABCD AD BC EF AD ABM BM A BM '△BM EFA 'EF AN ANA M '2BC AB =ABCD AB DC GH EF ABM BM MO A 'MO 2AM =A '②求的长度;【拓展迁移】如图3,在矩形纸片的边上取一点P ,折叠纸片,使P ,B 两点重合,展平纸片,得到折痕;点为EF 上任意一点(与点E ,F 不重合),折叠纸片使B ,两点重合,得到折痕l 及点P 的对应点,折痕l 交EF 于点K ,展平纸片,连接, .(3)猜想与的数量关系,并证明.【答案】(1)见解析;(2)①见解析;②;(3),理由见解析【解析】【分析】(1)根据折叠可得出,,,,证明,利用平行线的性质得出,则,利用等角对等边得出,即可得证;(2)①以M 为圆心,为半径画弧交于即可;②利用折叠的性质,矩形的判定与性质可得出,证明,得出,在中,根据勾股定理,可求出,进而求出;(3)连接,,延长交于点M ,可证明,得出,,由折叠可得,利用等边对等角和三线合一的性质可得出,, ,利用线段垂直平分线的性质,利用三线合一性质可得出,则,由(1)中,可得出,即可得证.【详解】(1)证明:连接,AB ABCD AB EF B 'B 'P 'BP 'KP 'P B K ∠'BC P '∠6AB =3P BC BP K ''∠∠=NA NA '=MA MA '=AMB A MB '∠=∠AD EF ∥AMB MNA '∠=∠A MB MNA ''∠=∠MA NA ''=MA MO A '2BH AB A B AG OG '====()HL OA B OHB ' ≌OA OH OG '==Rt MGO △OG AB PK BK BK P B ''EB B MBB ''≌ BE B M '=90FEB BMB '∠=∠=︒BK PK P K B K ''===P BK BP K ''∠=∠KBB KB B ''∠=∠MB MP ''=BP BB ''=P BK KBB ''∠=∠P BK BP K KBB KB B ''''∠=∠=∠=∠BC EF ∥B BC KB B ''∠=∠AA '∵沿折叠,得到,∴垂直平分,∴,,,由折叠可知:,∵,∴,∵四边形为矩形,∴,∴,∴,∴,∴,∴,∴,∴四边形为菱形;(2)如图点即为所求,解:连接,由折叠可知:,,,,,由(1)得,∴四边形为矩形,∴,∵,ABM BM A BM '△BM AA 'NA NA '=MA MA '=AMB A MB '∠=∠AEF BEF ∠=∠180AEF BEF ∠+∠=︒90BEF ∠=︒ABCD 90DAB ∠=︒90BEF DAB ∠=∠=︒AD EF ∥AMB MNA '∠=∠A MB MNA ''∠=∠MA NA ''=MA NA NA MA ''===ANA M 'A 'BO AB A B '=2MA MA '==OH OG =2BC BH =A MA B '∠=∠90GHB HGA ∠=∠=︒ABHG BH AG =2AB BC =∴,∵,∴,∴,∴在中,根据勾股定理,得∴,即,∴,∴;(3)证明:连接,,延长交于点M ,∵l 为折痕,∴,,l 垂直平分,∴, ,∴,∵,∴,∴,,由折叠可知:,,,∴,∴,∴,∴,由(1)可知,∴,∴.2BH AB A B AG OG '====OB OB =()HL OA B OHB ' ≌OA OH OG '==Rt MGO △222OM OG MG =+()()222222OG OG OG +=+-3OG =6AB =PK BK BK P B ''P B B PBB '''∠=∠BP B P ''=BB 'KP KP '=KB KB '=KBB KB B ''∠=∠B B BB ''=()ASA EB B MBB '' ≌BE B M '=90FEB BMB '∠=∠=︒KP KB =EP EB =90FEB ∠=︒KP KB '=KP KB ''=P BK BP K ''∠=∠MB MP ''=BP BB ''=P BK BP K KBB KB B ''''∠=∠=∠=∠BC EF ∥B BC KB B ''∠=∠3P BC BP K ''∠=∠【点睛】本题考查了矩形与折叠,等腰三角形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质等知识,明确题意,灵活运用所学知识解决问题是解题的关键.。
一、选择题(每题2分,共20分)1. 已知a、b是方程2x²-5x+2=0的两个根,则a+b的值为()A. 2B. 3C. 4D. 52. 在直角坐标系中,点A(-2,3),点B(2,-3),则线段AB的中点坐标为()A.(0,0)B.(-2,-3)C.(0,-3)D.(2,3)3. 若一个长方形的长是8cm,宽是5cm,则它的对角线长为()A. 13cmB. 12cmC. 11cmD. 10cm4. 在△ABC中,∠A=45°,∠B=60°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°5. 若x=2是方程2(x-3)(x+1)=0的解,则x+3的值为()A. 1B. 2C. 3D. 46. 已知等腰三角形ABC中,AB=AC,BC=6cm,则底边BC上的高AD的长度为()A. 3cmB. 4cmC. 5cmD. 6cm7. 在平面直角坐标系中,点P(2,3)关于y轴的对称点为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)8. 若一个数的平方等于100,则这个数是()A. 10B. -10C. 10或-10D. 09. 若一个三角形的内角和为180°,则这个三角形是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形10. 若一个长方体的长、宽、高分别为a、b、c,则它的体积为()A. abcB. a²b²c²C. a²+b²+c²D. ab+bc+ac二、填空题(每题2分,共20分)11. 若a=3,b=5,则a²+b²=______。
12. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数为______。
13. 已知等腰三角形ABC中,AB=AC,BC=6cm,则底边BC上的高AD的长度为______。
2023-2024学年度第二学期期终考试八年级数学试题注意事项:1、本试卷考试时间为100分钟,试卷满分120分,考试形式闭卷。
2、本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分。
3、答題前,务必将自己的学校、班组、姓名、准考证号填写在答题纸上相应位置。
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸上相应位置)1.以下调查中,适宜普查的是( )A .了解全班同学每周体育锻炼的时间B .了解夏季冷饮市场上冰淇淋的质量C .了解串场河中鱼的种类D .了解一批洗衣机的使用寿命2.反比例函数的图像一定经过的点( )A .(-3,2)B.(2,3)C .(-2,3)D .(2,-3)3.下列二次根式中,属于最简二次根式的是( )A BC D 4.菱形具有矩形不一定具有的性质是( )A .对边相等B .对边平行C .对角线互相平分D .对角线互相垂直5.若分式中x 、y 的值都变为原来的3倍,则分式的值( )A .不变B .是原来的3倍C .是原来的D .是原来的6.估计 )A .2和3B .3和4C .4和5D .5和67.顺次连接四边形四边中点所得的四边形一定是( )A .平行四边形B .矩形C .菱形D .正方形8.照相机成像时,照相机镜头的焦距f ,物体到镜头的距离u ,胶片(像)到镜头的距离满足.已知f 、v .则( )A .B .C .D .6y x =33x x y -1319()111v f f u v=+≠u =fvf v -f vfv -fvv f -v ffv-二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程,请将答案直接写在答题纸上相应位置)9.若有意义,则x 的取值范围是___________.10___________.11___________.12.抛掷一枚质地均匀的正方体骰子一次,下列3个事件:①向上一面的点数是奇数;②向上一面的点数是3的倍数:③向上一面的点数不小于3.其中发生的可能性最小的事件是___________.(填序号)13.在平面直角坐标系中,若点,在反比例函数的图像上,则___________.(填 “”“”或“”).14.如图,菱形的面积为24,若,则___________.15.已知,且,则的值为___________.16.如图,在矩形纸片中,,,E 是边上一点,先将沿折叠,点B 落在点处,与交于点F ;再折叠矩形纸片,使得点C 与点重合,点D 落在点处,折痕为.则___________.三、解答题(本大题共有9小题,共72分,请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)1722x -=()11,A y ()22,B y ()0k y k x=<1y 2y >=<ABCD 8AC =BD =111x y -=2x y ≠2xy x x y--ABCD 4AB =16BC =BC ABE AE B 'EB 'AD ABCD B 'D ¢EG FG =18.解分式程:.19.先化简,再求值,其中.20.密闭容器内有一定质量的二氧化碳,当容器的体积V (单位:)变化时,气体的密度(单位:)随之变化.已知密度与体积V 是反比例函数关系,它的图象如图所示,当时,.(1)求密度ρ关于体积V 的函数表达式;(2)当时,求二氧化碳密度ρ的值.21.为了解某初中校学生最喜爱的球类运动项目,给学校提出更合理的配置体育运动器材和场地的建议.兴趣小组随机抽取部分学生进行问卷调查,被调查学生须从“篮球、乒乓球、足球、排球、羽毛球”中选择自己最喜爱的一个球类运动项目,根据调查结果绘制了如下所示的不完整的统计图.根据统计图信息,解答下列问题:(1)在扇形统计图中,“乒乓球”所在扇形的圆心角为________.(2)将条形统计图补充完整;(3)估计该校800名初中生中最喜爱篮球项目的人数;23122x x x--=--2121121a a a a a +⎛⎫+÷ ⎪--+⎝⎭1a +3m ρ3kg/m ρ32.5m V =34kg /m ρ=35m V =(4)根据调查结果,请你向学校提一条合理建议.22.观察下列等式:,…解答下列问题:(1)根据上面3个等式的规律,写出第⑤个等式:_______;(2)用含n (n 为正整数)的等式表示上面各个等式的规律,并加以证明.23.四边形是平行四边形,E 、F 分别是、上的点,连接.(1)如图1,对角线、相交于点O ,若经过点O ,求证:.(2)在如图2中,仅用无刻度的直尺作线段,使它满足:①点M 、N 分别在、上;②.(不写画法,保留画图痕迹)24.定义图形如图1,在四边形中,M 、N 分别是边、的中点,连接.若两侧的图形面积相等,则称为四边形的“对中平分线”===ABCD AD BC EF AC BD EF OE OF =MN AD BC MN EF =ABCD AD BC MN MN MN ABCD提出问题有对中平分线的四边形具有怎样的性质呢?分析问题(1)如图2,为四边形的“对中平分线”,连接,,由M 为的中点,知与的面积相等,则,有怎样的位置关系呢?请说明理由.(2)在(1)的基础上,小明提出了下列三个命题,其中假命题的是_____(请把你认为假命题的序号都填上)①若,则四边形是平行四边形;②若,则四边形是菱形;③若,则四边形是矩形.深入探究如图3,四边形有两条对中平分线,分别是,,且相交于点O ,若.请探索四边形的形状并说明理由.25.如图,直线轴于点H ,且与反比例函数及反比例函数与的图像分别交于点A 、B .(1)若,,连接、.①的面积为_______;②当时,求点B 的坐标.(2)若点,过点A 作x 轴的平行线,与一次函数的图像交于点D ,点D 在直线l 的左侧,若和变化时,的值始终不变,求对应k 的值.MN ABCD AN DN AD AMN DMN AD BC MN AB ABCD MN AB =ABCD MN BC ⊥ABCD ABCD MN EF MN EF =ABCD l x ⊥()110,0k y k x x =>>2k y x=()200k x ,18k =22k =-OA OB ABO OA OB ⊥()20H ,()2102y kx k k =+≠1k 2k +AB AD参考答案1.解:A 、了解全班同学每周体育锻炼的时间,适合普查,故本选项符合题意;B 、了解夏季冷饮市场上冰淇淋的质量,适合抽样调查,故本选项不符合题意;C 、了解串场河中鱼的种类,适合抽样调查,故本选项不符合题意;D 、了解一批洗衣机的使用寿命,适合抽样调查,故本选项不符合题意;故选:A .2解:反比例函数中,A 、∵,∴此点不在函数图象上,故本选项不符合题意;B 、∵,此点在函数图象上,故本选项符合题意;C 、∵,∴此点不在函数图象上,故本选项不合题意;D 、∵,∴此点不在函数图象上,故本选项不符合题意.故选:B .3,选项A 、B、C 都不是最简二次根式,故选:D .4.解:菱形的性质有:对边平行且相等;对角相等,邻角互补;对角线互相垂直平分;矩形的性质有:对边平行且相等;四个角都是直角;对角线互相平分;根据菱形和矩形的性质得出:菱形具有而矩形不一定具有的性质是对角线互相垂直;故选:D .5.解:∵分式中的、的值都变为原来的倍.∴,∴此分式的值不变.故选:A .6又∵,,∴,∴4和5两个整数之间,6y x=6k =()3266-⨯=-≠236⨯=2366-⨯=-≠()2366⨯-=-≠===33x x y-x y 3()()333333333x y x x x x y y x x x y --=--===162025<<<<45<<故选:C .7.解:如图,∵为中点,为中点,∴,,同理,∴,∴四边形是平行四边形.故选:A .8.解:∵,∴,∴,故选:C .9.解:由题意得:,解得:,故答案为:.10.1112.解:①“向上一面的点数是奇数”的概率为,②“向上一面的点数是3的倍数”的概率为,③“向上一面的点数不小于”的概率为,,故其中发生的可能性最小的事件是②,故答案为:②.E ADF AB 12EF BD =EF BD ∥GH BD GH BD =,∥EF GH EF GH =∥,EFGH ()111v f f u v =+≠111v f u v fvf -=-=fv u v f =-20x -≠2x ≠2x ≠==1213323231123>>13.解:∵,∴反比例函数的图象在二、四象限,∵,∴点,在第四象限,y 随x 的增大而增大,∴.故答案为:.14.解:∵四边形是菱形,面积为24,且,∴.故答案为:6.15.解:∵,∴,∴,故答案为:.16.解:∵四边形为矩形,∴,,,,根据折叠可知:,,,,,,∴,∵,∴,∵,∴,∴,∴,设,则,在中,根据勾股定理得:,即,解得:,∴,0k <()0k y k x=<210>>()11,A y ()22,B y 21y y ><ABCD 8AC =2426BD AC ⨯==111x y-=xy y x =-21222xy x y x x y x x y x y x y----===----1-ABCD 4AB DC ==16AD BC ==90B C D ∠=∠=∠=︒AD BC ∥BE B E '=CE B E '=4AB AB '==AEB AEB '∠=∠90AB F B '∠=∠=︒CEG B EG '∠=∠BE CE =16BE CE BC +==8BE CE B E '===AD BC ∥AEB EAF ∠=∠AEB EAF '∠=∠AF EF =EF AF x ==8B F x '=-Rt AB F '△222AF B F AB ''=+()22248x x =+-5x =5EF =∵,∴,∴,∴.故答案为:5.17.18.解:,去分母得:,整理得:,此方程无解,∴原方程无解.19.解:,把代入得:原式.20.(1)解:∵密度与体积V 是反比例函数关系,∴设,∵当时,.∴,∴,∴密度关于体积V 的函数解析式为:;(2)解:把代入得:,AD BC ∥AGE CEG ∠=∠AGE GEF ∠=∠5FG EF ==5=-5=23122x x x--=--232x x +-=-12x x -=-2121121a a a a a +⎛⎫+÷ ⎪--+⎝⎭()2112111a a a a a a +-⎛⎫+÷ =⎪--⎝⎭-()21212a a a a -=⋅-1a =-1a =11=-=ρ()0,0k V k Vρ=>≠32.5m V =34kg /m ρ=4 2.5k =2.5410k =⨯=ρ()100V Vρ=>5V =()100V V ρ=>1025ρ==当时,求二氧化碳密度ρ的值为.21.(1)解:在扇形统计图中,“乒乓球”所在扇形的圆心角为:.(2)解:被抽查的总人数为:(名),∴被抽查的100人中最喜爱羽毛球的人数为:(名),被抽查的100人中最喜爱篮球的人数为:(名),补全图形如图所示:(3)解:(名),答:估计该校800名初中生中最喜爱篮球项目的人数为320名.(4)解:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.(答案不唯一)22.(1(2)解:第1个等式中分母为,第2个等式中分母为,第3个等式中分母为,第4个等式中分母为,35m V =32kg /m 36030%108︒÷=︒3030%100÷=1005%5⨯=∴100301015540----=40800320100⨯==1=======2211=+2521=+21031=+21741=+得第个等式中分母为应为:∴第∵左边右边∴左边右边.23.(1)证明:∵四边形为平行四边形,∴,,∴,,∴,∴.(2)解:如图,即为所求作的线段;∵四边形为平行四边形,∴,,∴,,∴,∴,同理可得:,∴,∴,即,∵,∴四边形为平行四边形,∴.24.解:分析问题:(1);理由如下:过点A 作于点E ,过点D 作于点F ,如图所示:n 21n +n ======ABCD OA OC =AD BC ∥AEO CFO ∠=∠EAO FCO ∠=∠AOE COF △≌△OE OF =MN ABCD OA OC =AD BC ∥AMO CFO ∠=∠MAO FCO ∠=∠AOM COF ≌AM CF =AOE CON ≌△△AE CN =AM AE CF CN -=-ME FN =ME FN ∥MNFE MN EF =AD BC ∥AE BC ⊥DF BC ⊥∵,,∴,∵为四边形的“对中平分线”,∴,∵M 是的中点,∴,∴,∴,∴,∵N 是的中点,∴,∴,∴四边形为平行四边形,∴,即;(2)①∵,∴,∵,∴四边形为平行四边形,∴,∵M 、N 分别是边、的中点,∴,,∴,∵,AE BC ⊥DF BC ⊥AE DF ∥MN ABCD ABNM CDMN S S =四边形四边形AD AMN DMN S S = AMN DMN ABNM CDMN S S S S -=- 四边形四边形ABN DCN S S =V V 1122BN AE CN DF ⨯=⨯BC BN CN =AE DF =AEFD AD EF ∥AD BC ∥AD BC ∥AM BN ∥MN AB ABNM AM BN =AD BC 12AM AD =12BN BC =AD BC =AD BC ∥∴四边形为平行四边形,故①是真命题;②当四边形为平行四边形时,,,∵M 、N 分别是边、的中点,∴,,∴,∵,∴四边形为平行四边形,∴,∴当四边形为平行四边形,而不是菱形时,,故②是假命题;③当四边形为等腰梯形时,延长、交于点E ,如图所示:∵四边形为等腰梯形,∴,∴,∵点N 为的中点,∴,∴,∵,∴,∴,∵,,∴,ABCD ABCD AD BC ∥AD BC =AD BC 12AM AD =12BN BC =AM BN =AM BN ∥ABNM AB MN =ABCD AB MN =ABCD BA CD ABCD B C ∠=∠EB EC =BC EN BC ⊥90BNE ∠=︒AD BC ∥90AME BNE ∠=∠=︒EM AD ⊥EB EC =EA ED =EB AB EC CD -=-即,∴,∴四边形为等腰梯形,,∴时,四边形不一定是矩形,故③是假命题;综上分析可知:真命题为①.(3)四边形为菱形;理由如下:∵四边形有两条对中平分线,分别是,,∴根据解析(1)可得:,,∴四边形为平行四边形,∴,∵M 、N 分别是边、的中点,∴,,∴,∵,∴四边形为平行四边形,∴,同理可得:四边形为平行四边形,∴,∵,∴,∴四边形为菱形.25.(1)解:①∵,,直线轴于点H ,∴,,∴;EA ED =AM DM =ABCD MN BC ⊥MN BC ⊥ABCD ABCD ABCD MN EF AD BC ∥AB CD ∥ABCD AD BC =AD BC 12AM AD =12BN BC =AM BN =AM BN ∥ABNM AB MN =EBCF EF BC =MN EF =AB BC =ABCD 18k =22k =-l x ⊥1118422AOH S k ==⨯= 2112122OBH S k ==⨯-= 415AOB AOH OBH S S S =+=+=②设,则,,,,∵,∴为直角三角形,∴,∴,解得:,负值舍去,∴点B 的坐标为;(2)解:∵点,∴,,∴,∵过点A 作x 轴的平行线,与一次函数的图像交于点D ,∴把代入得:,解得:,∴,∴,∴,∵和变化时,的值始终不变,∴为定值,∴为定值,∴,∴.()2,0B m m m -⎛⎫> ⎪⎝⎭8A m m ⎛⎫ ⎪⎝⎭,2224OB m m =+22264OA m m =+22282100AB m m m ⎛⎫=+= ⎪⎝⎭OA OB ⊥AOB 222AB OA OB =+22222100644m m m m m =+++2m =()2,1-()20H ,12,2k A ⎛⎫ ⎪⎝⎭22,2k B ⎛⎫ ⎪⎝⎭122k k AB -=()2102y kx k k =+≠12k y =()2102y kx k k =+≠()121022k kx k k =+≠122k k x k-=121,22k k k D k -⎛⎫ ⎪⎝⎭1222k k AD k -=-1212222k k k AB AD k k ---+=+1k 2k +AB AD 1212222k k k k k ---+()()()()121212121212222222k k k k k k k k k k k k k k k -------+-=+=+10k -=1k =。
一、选择题1. 答案:D。
解析:选项A、B、C的值都小于1,而选项D的值为1,符合题意。
2. 答案:C。
解析:选项A、B、D的结果都是负数,而选项C的结果是正数,符合题意。
3. 答案:B。
解析:选项A、C、D的结果都大于10,而选项B的结果是10,符合题意。
4. 答案:D。
解析:选项A、B、C的面积都小于20,而选项D的面积是20,符合题意。
5. 答案:A。
解析:选项B、C、D的周长都大于20,而选项A的周长是20,符合题意。
二、填空题6. 答案:2。
解析:由题意可知,2的平方根是±2,而题目要求的是正数,所以答案是2。
7. 答案:-3。
解析:由题意可知,-3的立方是-27,所以答案是-3。
8. 答案:-1/2。
解析:由题意可知,-1/2的平方是1/4,所以答案是-1/2。
9. 答案:4。
解析:由题意可知,4的立方根是2,所以答案是4。
10. 答案:π。
解析:由题意可知,圆的周长公式是C=2πr,其中r是半径,所以答案是π。
三、解答题11. 答案:x=2。
解析:由题意可知,方程为x-1=3,移项得x=4,所以答案是x=2。
12. 答案:y=1/2。
解析:由题意可知,方程为2y+1=0,移项得2y=-1,再除以2得y=-1/2,所以答案是y=1/2。
13. 答案:长方形的长是10cm,宽是5cm。
解析:由题意可知,长方形的面积是50cm²,设长为x,宽为y,则xy=50。
又因为长方形的周长是30cm,所以2(x+y)=30,解得x=10,y=5,所以长方形的长是10cm,宽是5cm。
14. 答案:梯形的面积是35cm²。
解析:由题意可知,梯形的上底是10cm,下底是20cm,高是7cm,梯形的面积公式是S=(a+b)h/2,代入数据得S=(10+20)×7/2=35cm²。
15. 答案:圆的半径是3cm。
解析:由题意可知,圆的直径是6cm,所以半径是直径的一半,即3cm。
一、选择题 1.已知PA 2PB 4==,,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧.当∠APB=45°时,PD 的长是( );A .25B .26C .32D .52.如图, ABCD 为正方形, O 为 AC 、 BD 的交点,在RT DCE 中,DEC ∠= 90︒, DCE ∠= 30︒,若OE =62+,则正方形的面积为( )A .5B .4C .3D .23.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连结BF ,交AC 于点M ,连结DE ,BO .若60BOC ∠=︒,FO FC =,则下列结论:①AE CF =;②BF 垂直平分线段OC ;③EOB CMB ∆∆≌;④四边形是BFDE 菱形.其中正确结论的个数是( )A .1个B .2个C .3个D .4个4.如图,正方形纸片ABCD ,P 为正方形AD 边上的一点(不与点A ,点D 重合).将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于点H ,折痕为EF ,连接,,BP BH BH 交EF 于点M ,连接PM .下列结论:①BE PE =;②BP EF =;③PB 平分APG ∠;④PH AP HC =+;⑤MH MF =,其中正确结论的个数是( )A .5B .4C .3D .25.如图,在正方形ABCD 中,点G 是对角线AC 上一点,且CG =CB ,连接BG ,取BG 上任意一点H ,分别作HM ⊥AC 于点M ,HN ⊥BC 于点N ,若正方形的边长为2,则HM +HN 的值为( )A .2B .1C .3D .226.如图,在Rt ABC 中,90ACB ∠=︒,若CD ,CM 分别是斜边AB 上的高和中线,则下列结论中错误的是( )A .MCB MCA ∠=∠B .MCB ACD ∠=∠C .B ACD ∠=∠D .MCA BCD ∠=∠ 7.如图,正方形ABCD 的边长为5,4AG CH ==,3BG DH ==,连接GH ,则线段GH 的长为( )A .435B .75 C .2 D .52-8.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分DCB ∠交BD 于点F ,且60ABC ∠=︒,2AB BC =,连接OE ,下列结论:①30ACD ∠=︒;②·ABCD S AC BC =;③:1:4OE AC =.其中正确的有( )A .0个B .1个C .2个D .3个9.如图,菱形ABCD 中,过顶点C 作CE BC ⊥交对角线BD 于E 点,已知134A ∠=︒,则BEC ∠的大小为( )A .23︒B .28︒C .62︒D .67︒10.如图,ABCD 的对角线AC 、BD 相较于点O ,AE 平分∠BAD 交BC 于点E ,∠ADC =60°,AB =12BC ,连接OE ,下列结论:①∠CAD =30°;②·ABCD A S AB C =;③OA =OB ;④OE =14B C .其中成立的个数是( )A .1B .2C .3D .4二、填空题11.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是_____.12.如图,在矩形ABCD 中,4AB =,2AD =,E 为边CD 的中点,点P 在线段AB 上运动,F 是CP 的中点,则CEF ∆的周长的最小值是____________.13.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.14.如图,长方形纸片ABCD 中,AB =6 cm,BC =8 cm 点E 是BC 边上一点,连接AE 并将△AEB 沿AE 折叠, 得到△AEB′,以C ,E ,B′为顶点的三角形是直角三角形时,BE 的长为___________cm.15.在锐角三角形ABC 中,AH 是边BC 的高,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG=CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM=∠ABC .其中正确的是_________.16.如图,有一张矩形纸条ABCD ,AB =10cm ,BC =3cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为_____cm .17.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).18.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.19.如图,矩形ABCD 中,CE CB BE ==,延长BE 交AD 于点M ,延长CE 交AD 于点F ,过点E 作EN BE ⊥,交BA 的延长线于点N ,23FE AN ==,,则BC =_________.20.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.三、解答题21.如图,在矩形ABCD 中,点E 是AD 上的一点(不与点A ,D 重合),ABE ∆沿BE 折叠,得BEF ,点A 的对称点为点F .(1)当AB AD =时,点F 会落在CE 上吗?请说明理由.(2)设()01AB m m AD =<<,且点F 恰好落在CE 上. ①求证:CF DE =.②若AE n AD=,用等式表示m n ,的关系. 22.如下图1,在平面直角坐标系中xoy 中,将一个含30的直角三角板如图放置,直角顶点与原点重合,若点A 的坐标为()1,0-,30ABO ∠=︒.(1)旋转操作:如下图2,将此直角三角板绕点O 顺时针旋转30时,则点B 的坐标为 .(2)问题探究:在图2的基础上继续将直角三角板绕点O 顺时针60︒,如图3,在AB 边上的上方以AB 为边作等边ABC ,问:是否存在这样的点D ,使得以点A 、B 、C 、D 四点为顶点的四边形构成为菱形,若存在,请直接写出点D 所有可能的坐标;若不存在,请说明理由.(3)动点分析:在图3的基础上,过点O 作OP AB ⊥于点P ,如图4,若点F 是边OB 的中点,点M 是射线PF 上的一个动点,当OMB △为直角三角形时,求OM 的长.23.正方形ABCD 中,对角线AC 与BD 交于点O ,点P 是正方形ABCD 对角线BD 上的一个动点(点P 不与点B ,O ,D 重合),连接CP 并延长,分别过点D ,B 向射线作垂线,垂足分别为点M ,N .(1)补全图形,并求证:DM =CN ;(2)连接OM ,ON ,判断OMN 的形状并证明.24.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.25.如图平行四边形ABCD ,E ,F 分别是AD ,BC 上的点,且AE =CF ,EF 与AC 交于点O . (1)如图①.求证:OE =OF ;(2)如图②,将平行四边形ABCD (纸片沿直线EF 折叠,点A 落在A 1处,点B 落在点B 1处,设FB 交CD 于点G .A 1B 分别交CD ,DE 于点H ,P .请在折叠后的图形中找一条线段,使它与EP 相等,并加以证明;(3)如图③,若△ABO 是等边三角形,AB =4,点F 在BC 边上,且BF =4.则CF OF= (直接填结果).26.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B ∠=︒,3AB =,6=BC ,求OAC 的面积;(3)如果30B ∠=︒,23AB =,当AED 是直角三角形时,求BC 的长.27.如图1,在正方形ABCD (正方形四边相等,四个角均为直角)中,AB =8,P 为线段BC 上一点,连接AP ,过点B 作BQ ⊥AP ,交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC ′,延长QC ′交AD 于点N .(1)求证:BP =CQ ;(2)若BP =13PC ,求AN 的长; (3)如图2,延长QN 交BA 的延长线于点M ,若BP =x (0<x <8),△BMC '的面积为S ,求S 与x 之间的函数关系式.28.已知E ,F 分别为正方形ABCD 的边BC ,CD 上的点,AF ,DE 相交于点G ,当E ,F 分别为边BC ,CD 的中点时,有:①AF=DE ;②AF ⊥DE 成立.试探究下列问题:(1)如图1,若点E 不是边BC 的中点,F 不是边CD 的中点,且CE=DF ,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.29.如图,在平行四边形 ABCD中,AD=30 ,CD=10,F是BC 的中点,P 以每秒1 个单位长→→→路径以每秒3个度的速度从 A向 D运动,到D点后停止运动;Q沿着A B C D单位长度的速度运动,到D点后停止运动.已知动点 P,Q 同时出发,当其中一点停止后,另一点也停止运动.设运动时间为 t秒,问:(1)经过几秒,以 A,Q ,F ,P 为顶点的四边形是平行四边形(2)经过几秒,以A ,Q ,F , P为顶点的四边形的面积是平行四边形 ABCD面积的一半?30.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】过P作PB的垂线,过A作PA的垂线,两条垂线相于与E,连接BE,由∠APB=45°可得∠EPA=45°,可得△PAE是等腰直角三角形,即可求出PE的长,根据角的和差关系可得∠EAB=∠PAD,利用SAS可证明△PAD≌△EAB,可得BE=PD,利用勾股定理求出BE的长即可得PD的长.【详解】过P作PB的垂线,过A作PA的垂线,两条垂线相交与E,连接BE,∵∠APB=45°,EP⊥PB,∴∠EPA=45°,∵EA⊥PA,∴△PAE是等腰直角三角形,∴PA=AE,PE=2PA=2,∵四边形ABCD是正方形,∴∠EAP=∠DAB=90°,∴∠EAP+∠EAD=∠DAB+∠EAD,即∠PAD=∠EAB,又∵AD=AB,PA=AE,∴△PAD≌△EAB,∴PD=BE=22PE PB+=2224+=25,故选A.【点睛】本题考查正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质及勾股定理,熟练掌握相关性质并正确作出辅助线是解题关键.2.B解析:B【解析】【分析】过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,判断出四边形OMEN是矩形,根据矩形的性质可得∠MON=90°,再求出∠COM=∠DON,根据正方形的性质可得OC=OD,然后利用“角角边”证明△COM和△DON全等,根据全等三角形对应边相等可得OM=ON,然后判断出四边形OMEN是正方形,设正方形ABCD的边长为2a,根据直角三角形30°角所对的直角边等于斜边的一半可得DE=12CD,再利用勾股定理列式求出CE,根据正方形的性质求出2a,然后利用四边形OCED的面积列出方程求出2a,再根据正方形的面积公式列式计算即可得解.【详解】解:如图,过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,∵∠CED=90°,∴四边形OMEN 是矩形,∴∠MON=90°,∵∠COM+∠DOM=∠DON+∠DOM ,∴∠COM=∠DON ,∵四边形ABCD 是正方形,∴OC=OD ,在△COM 和△DON 中,==CMO=90COM DON N OC OD ∠∠⎧⎪∠∠⎨⎪=⎩,∴△COM ≌△DON (AAS ),∴OM=ON ,∴四边形OMEN 是正方形,设正方形ABCD 的边长为2a ,则222a a = ∵∠CED=90°,∠DCE=30°,∴DE=12CD=a , 由勾股定理得,2222(2)3CD DE a a a -=-= ,∴四边形OCED 的面积=2111623(2)(2)()222a a a a ++=⨯, 解得21a =,所以,正方形ABCD 的面积=22(2)4414a a ==⨯=.故选B .【点睛】本题考查了正方形的性质和判定,全等三角形的判定与性质,勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点. 3.C解析:C【分析】通过证△AEO ≌CFO 可判断①;利用矩形的性质证△OCB 是正三角形,可得②;因OB≠MB ,得到③错误;通过证△EOB ≌△FCB 得到EB=FB ,从而证④.【详解】∵四边形ABCD 是矩形∴AB ∥DC,AO=OC∴∠AEO=∠CFO,∠EAO=∠FCO∴△AEO ≌CFO(AAS)∴AE=FC ,①正确∵四边形ABCD 是矩形∴OC=OB∵∠BOC=60°∴△OCB 是正三角形,∴OB=OC∵FO=FC∴FB 是线段OC 的垂直平分线,②正确∵BM ⊥OC ,∴△OMB 是直角三角形,∴OB >BM∴EOB CMB ∆∆≌是错误的,即③错误∵四边形ABCD 是矩形∴EB ∥DF ,AB=DC∵AE=FC∴EB=DF∴四边形EBFD 是平行四边形∵△AEO ≌△CFO ,OF=FC ,∴AE=EO=OF=FC∵△OBC 是正三角形,∴∠BOC=60°=∠BCO ,BC=BO∴∠FCO=30°,∴∠FOC=30°∴∠FOB=30°+60°=90°∴∠EOB=90°=∠FCB∴△EOB ≌△FCB(SAS)∴EB=FB∴平行四边形EBFD 是菱形,④正确故选:C【点睛】本题考查矩形的性质和证明,解题关键是证明△AOE ≌△COF 和证明△BOC 是正三角形.4.B解析:B【分析】①③利用正方形的性质、翻折不变性即可解决问题;②构造全等三角形即可解决问题;④如图2,过B 作BQ ⊥PH ,垂足为Q .证明△ABP ≌△QBP (AAS ),以及△BCH ≌△BQH 即可判断;⑤利用特殊位置,判定结论即可;【详解】解:根据翻折不变性可知:PE=BE,故①正确;∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH−∠EPB=∠EBC−∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.,故③正确;∴∠APB=∠BPH,即PB平分APG如图1中,作FK⊥AB于K.设EF交BP于O.∵∠FKB=∠KBC=∠C=90°,∴四边形BCFK是矩形,∴KF=BC=AB,∵EF⊥PB,∴∠BOE=90°,∵∠ABP+∠BEO=90°,∠BEO+∠EFK=90°,∴∠ABP=∠EFK,∵∠A=∠EKF=90°,∴△ABP≌△KFE(ASA),∴EF=BP,故②正确,如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB =∠BPH ,在△ABP 和△QBP 中,∠APB =∠BPH ,∠A =∠BQP ,BP =BP ,∴△ABP ≌△QBP (AAS ).∴AP =QP ,AB =BQ .又∵AB =BC ,∴BC =BQ .又∵∠C =∠BQH =90°,BH =BH ,∴△BCH ≌△BQH (HL )∴QH=HC ,∴PH=PQ+QH=AP+HC ,故④正确;当点P 与A 重合时,显然MH >MF ,故⑤错误,故选:B .【点睛】本题考查正方形的性质、翻折变换、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题属于中考选择题中的压轴题.5.A解析:A【分析】连接CH ,过G 点作GP ⊥BC 于点P ,根据BHC GHC BCG S S S ∆∆∆+=将HM HN +转化为GP 的长,再由等腰直角三角形的性质进行求解即可得解.【详解】连接CH ,过G 点作GP ⊥BC 于点P ,如下图所示:由题可知:12HBC S BC HN ∆=⨯,12HGC S GC HM ∆=⨯,12BGC S BC GP ∆=⨯ ∵BHC GHC BCG S S S ∆∆∆+= ∴111222BC HN GC HM BC GP ⨯+⨯=⨯ ∵CG =CB ,∴HN HM GP += ∵四边形ABCD 是正方形,正方形的边长为2∴45BCA ∠=︒,22AC =∴222CB CG AC === ∵GP ⊥BC∴GPC ∆是等腰直角三角形 ∴222GP ==∴2HN HM +=,故选:A.【点睛】 本题主要考查了三角形的面积求法,正方形的性质,等腰直角三角形的性质等,熟练掌握相关知识点是解决本题的关键.6.A解析:A【分析】根据三角形的内角和定理,直角三角形的性质及判定,等腰三角形的性质,等腰三角形的判定逐项判断即可.【详解】解:A.不能推出MCB MCA ∠=∠,故本选项符合题意;B. ∵∠MCB=∠B=∠ACD ,故本选项不符合题意;C.∵∠ACB=90°,CD 是高,∴∠A+∠ACD=90°,∠A+∠B=90°,∴∠ACD=∠B ,故本选项不符合题意;D. ∵∠ACB=90°,CM 是斜边的中线,∴CM=BM ,∴∠MCB=∠B=∠ACD ,∴∠ACM=∠BCD ,故本选项不符合题意;故选:A .【点睛】本题主要考查了对三角形的内角和定理,直角三角形的性质及判定,等腰三角形的性质,等腰三角形的判定等考点的理解.7.C解析:C【分析】延长BG 交CH 于点E ,根据正方形的性质证明△ABG ≌△CDH ≌△BCE ,可得GE=BE-BG=1,HE=CH-CE=1,∠HEG=90°,由勾股定理可得GH 的长.【详解】解:如图,延长BG 交CH 于点E ,在△ABG 和△CDH 中,AB CD AG CH BG DH =⎧⎪=⎨⎪=⎩,∴△ABG ≌△CDH (SSS ),AG 2+BG 2=AB 2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG 和△BCE 中,1324AB BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABG ≌△BCE (ASA ),∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,∴GE=BE -BG=4-3=1,同理可得:HE=1,在Rt △GHE 中,=故选:C.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE 为等腰直角三角形是解题的关键.8.C解析:C【分析】由四边形ABCD 是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE 是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC ⊥BC ,得到S ▱ABCD =AC •BC ,故②正确,根据直角三角形的性质得到AC =,根据三角形的中位线的性质得到OE=12BC ,于是得到OE :∶6;故③错误;【详解】解:∵四边形ABCD 是平行四边形, 60ABC ADC ∴∠=∠=︒,120BCD ∠=︒∵CE 平分BCD ∠交AB 于点E ,∴60DCE BCE ∠=∠=︒,∴CBE △是等边三角形,∴BE BC CE ==.∵2AB BC =,∴AE BE CE ==,∴90ACB ∠=︒,∴30ACD CAB ∠=∠=︒,故①正确;∵AC BC ⊥,∴ABCD S AC BC =⋅,故②正确;在Rt ACB △中,90ACB ∠=︒,30CAB ∠=︒,∴AC =.AO OC =,AE BE =, ∴1OE BC 2=, 1::62OE AC BC ∴==,故③错误. 故选:C .【点睛】此题考查了平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE 是等边三角形,OE 是△ABC 的中位线是关键.9.D解析:D【分析】先说明ABD=∠ADC=∠CBD ,然后再利用三角形内角和180°求出即可∠CBD 度数,最后再用直角三角形的内角和定理解答即可.【详解】解:∵菱形ABCD∴AB=AD∴∠ABD=∠ADC∴∠ABD=∠CBD又∵134A ∠=︒∴∠CBD=∠BDC=∠ABD=∠ADB=12(180°-134°)=23° ∴BEC ∠=90°-23°=67°故答案为D.【点睛】本题主要考查了菱形的性质,解题的关键是掌握菱形的对角线平分每一组对角和三角形内角和定理. 10.C解析:C【分析】①先根据平行四边形的性质可得120,60,BAD ABC OA OC ∠=︒∠=︒=,再根据角平分线的定义可得60=︒∠BAE ,然后根据等边三角形的判定与性质可得AB AE BE ==,60AEB ∠=︒,又根据等腰三角形的性质、三角形的外角性质可得30ACE CAE ∠=∠=︒,最后根据角的和差即可得;②由①已推得90BAC ∠=︒,再根据2ABCD ABC S S =即可得;③在Rt AOB 中,根据直角边小于斜边即可得;④在ABC 中,利用三角形中位线定理可得12OE AB =,再根据12AB BC =即可得. 【详解】 四边形ABCD 是平行四边形,60ADC ∠=︒,120,60,BAD ABC OA OC ∴∠=︒∠=︒=,AE ∵平分BAD ∠,1602BAE BAD ∴∠=∠=︒, ABE ∴是等边三角形,,60AB AE BE AEB ∴==∠=︒, 12AB BC =, AB AE BE CE ∴===,ACE CAE ∴∠=∠,60AEB ACE CAE ∠=∠+∠=︒,30ACE CAE ∴∠=∠=︒,90,30BAC BAE CAE CAD BAD BAC ∴∠=∠+∠=︒∠=∠-∠=︒,则结论①成立, AB AC ∴⊥,122··2ABCD ABC AB AC AB AC S S ==⨯=∴,则结论②成立, 在Rt AOB 中,OA 是直角边,OB 是斜边, OA OB ∴<,则结论③不成立,,OA OC BE CE ==,OE ∴是ABC 的中位线,11112224OE AB BC BC ∴==⨯=,则结论④成立, 综上,结论成立的个数是3个,故选:C .【点睛】本题考查了平行四边形的性质、三角形中位线定理、等边三角形的判定与性质等知识点,熟练掌握并灵活运用各判定定理与性质是解题关键.二、填空题11.(-10,3)【解析】试题分析:根据题意可知△CEF∽△OFA,可根据相似三角形的性质对应边成比例,可求得OF=2CE ,设CE=x ,则BE=8-x ,然后根据折叠的性质,可得EF=8-x ,根据勾股定理可得2224(8)x x +=-,解得x =3,则OF=6,所以OC=10,由此可得点E 的坐标为(-10,3). 故答案为:(-10,3)12.2【分析】由题意根据三角形的中位线的性质得到EF=12PD ,得到C △CEF =CE+CF+EF=CE+12(CP+PD )=12(CD+PC+PD )=12C △CDP ,当△CDP 的周长最小时,△CEF 的周长最小;即PC+PD 的值最小时,△CEF 的周长最小;并作D 关于AB 的对称点D ′,连接CD ′交AB 于P ,进而分析即可得到结论.【详解】解:∵E为CD中点,F为CP中点,∴EF=12 PD,∴C△CEF=CE+CF+EF=CE+12(CP+PD)=12(CD+PC+PD)=12C△CDP∴当△CDP的周长最小时,△CEF的周长最小;即PC+PD的值最小时,△CEF的周长最小;如图,作D关于AB的对称点T,连接CT,则PD=PT,∵AD=AT=BC=2,CD=4,∠CDT=90°,∴22224442CT CD DT++=∵△CDP的周长=CD+DP+PC=CD+PT+PC,∵PT+PC≥CT,∴PT+PC≥42∴PT+PC的最小值为2,∴△PDC的最小值为4+42∴C△CEF=12C△CDP=222.故答案为:222.【点睛】本题考查轴对称-最短距离问题以及三角形的周长的计算等知识,解题的关键是学会利用轴对称解决最值问题.13.2【分析】首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC 和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.【详解】解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 为平行四边形,∴∠ADF=∠ABE ,∵两纸条宽度相同,∴AF=AE ,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE ,∴AD=AB ,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD=22242AB AO -=故本题答案为:42【点睛】本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.14.3或6【详解】①∠B′EC=90°时,如图1,∠BEB′=90°,由翻折的性质得∠AEB=∠AEB′=12×90°=45°, ∴△ABE 是等腰直角三角形,∴BE=AB=6cm ;②∠EB′C=90°时,如图2, 由翻折的性质∠AB′E=∠B=90°,∴A、B′、C在同一直线上,AB′=AB,BE=B′E,由勾股定理得,AC=2222+=+=10cm,68AB BC∴B′C=10-6=4cm,设BE=B′E=x,则EC=8-x,在Rt△B′EC中,B′E2+B′C2=EC2,即x2+42=(8-x)2,解得x=3,即BE=3cm,综上所述,BE的长为3或6cm.故答案为3或6.15.①②③④【分析】根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP =GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.【详解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;设BG、CE相交于点N,AC、BG相交于点K,如图1,∵△ABG≌△AEC,∴∠ACE=∠AGB,∵∠AKG=∠NKC,∴∠CNG=∠CAG=90°,∴BG ⊥CE ,故②正确;过点E 作EP ⊥HA 的延长线于P ,过点G 作GQ ⊥AM 于Q ,如图2,∵AH ⊥BC ,∴∠ABH +∠BAH =90°,∵∠BAE =90°,∴∠EAP +∠BAH =90°,∴∠ABH =∠EAP ,即∠EAM =∠ABC ,故④正确;∵∠AHB =∠P =90°,AB =AE ,∴△ABH ≌△EAP (AAS ),∴EP =AH ,同理可得GQ =AH ,∴EP =GQ ,∵在△EPM 和△GQM 中,90P MQG EMP GMQ EP GQ ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△EPM ≌△GQM (AAS ),∴EM =GM ,∴AM 是△AEG 的中线,故③正确.综上所述,①②③④结论都正确.故答案为:①②③④.【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.16101【分析】探究点E 的运动轨迹,寻找特殊位置解决问题即可.【详解】如图1中,当点M 与A 重合时,AE =EN ,设AE =EN =xcm ,在Rt △ADE 中,则有x 2=32+(9﹣x )2,解得x =5,∴DE =10﹣1-5=4(cm ),如图2中,当点M 运动到MB ′⊥AB 时,DE ′的值最大,DE ′=10﹣1﹣3=6(cm ),如图3中,当点M 运动到点B ′落在CD 时, 22221310NB C N C B ''''=+=+=DB ′(即DE ″)=10﹣1﹣10=(9﹣10)(cm ),∴点E 的运动轨迹E →E ′→E ″,运动路径=EE ′+E ′B ′=6﹣4+6﹣(910101)(cm ).101.【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.17.②③【分析】根据菱形的性质可知AC ⊥BD ,所以在Rt △AFP 中,AF 一定大于AP ,从而判断①;设∠BAE=x ,然后根据等腰三角形两底角相等表示出∠ABE ,再根据菱形的邻角互补求出∠ABE ,根据三角形内角和定理列出方程,求出x 的值,求出∠BFE 和∠BE 的度数,从而判断②③.【详解】解:在菱形ABCD 中,AC ⊥BD ,∴在Rt △AFP 中,AF 一定大于AP ,故①错误;∵四边形ABCD 是菱形,∴AD ∥BC ,∴∠ABE+∠BAE+∠EAD=180°,设∠BAE=x°,则∠EAD=2x°,∠ABE=180°-x°-2x°,∵AB=AE ,∠BAE=x°,∴∠ABE=∠AEB=180°-x°-2x°,由三角形内角和定理得:x+180-x-2x+180-x-2x=180,解得:x=36,即∠BAE=36°,∠BAE=180°-36°-2×36°=70°,∵四边形ABCD 是菱形,∴∠BAD=∠CBD=12∠ABE=36°, ∴∠BFE=∠ABD+∠BAE=36°+36°=72°,∴∠BEF=180°-36°-72°=72°,∴BE=BF=AF .故③正确∵∠AFD=∠BFE=72°,∠EAD=2x°=72°∴∠AFD=∠EAD∴AD=FD又∵AD=AB=AE∴AE=FD ,故②正确∴正确的有②③故答案为:②③【点睛】本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE 的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.18.1或7.【分析】存在2种情况满足条件,一种是点P 在BC 上,只需要BP=CE 即可得全等;另一种是点P 在AD 上,只需要AP=CE 即可得全等【详解】设点P 的运动时间为t 秒,当点P 在线段BC 上时,则2BP t ,∵四边形ABCD 为长方形,∴AB CD =,90B DCE ∠=∠=︒,此时有ABP DCE ∆∆≌,∴BP CE =,即22t =,解得1t =;当点P 在线段AD 上时,则2BC CD DP t ++=,∵4AB =,6AD =,∴6BC =,4CD =,∴()()6462162AP BC CD DA BC CD DP t t =++-++=++-=-,∴162AP t =-,此时有ABP CDE ∆∆≌,∴AP CE =,即1622t -=,解得7t =;综上可知当t 为1秒或7秒时,ABP ∆和CDE ∆全等.故答案为:1或7.【点睛】本题考查动点问题,解题关键是根据矩形的性质可得,要证三角形的全等,只需要还得到一条直角边相等即可19.663【分析】通过四边形ABCD 是矩形以及CE CB BE ==,得到△FEM 是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM ,NK ,KE 的值,进而得到NE 的值,再利用30°直角三角形的性质及勾股定理得到BN ,BE 即可.【详解】解:如图,设NE 交AD 于点K ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,∴∠MFE=∠FCB ,∠FME=∠EBC∵CE CB BE ==,∴△BCE 为等边三角形,∴∠BEC=∠ECB=∠EBC=60°,∵∠FEM=∠BEC ,∴∠FEM=∠MFE=∠FME=60°,∴△FEM 是等边三角形,FM=FE=EM=2,∵EN ⊥BE ,∴∠NEM=∠NEB=90°,∴∠NKA=∠MKE=30°,∴KM=2EM=4,NK=2AN=6,∴在Rt △KME 中,=∴NE=NK+KE=6+∵∠ABC=90°,∴∠ABE=30°,∴BN=2NE=12+43,∴BE=22663BN NE-=+,∴BC=BE=663,故答案为:663【点睛】本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.20.【分析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后确定CM的范围.【详解】解:作AB的中点M,连接EM、CM.在Rt△ABC中,AB=22AC BC+=2286+=10,∵M是直角△ABC斜边AB上的中点,∴CM=12AB=5.∵E是BD的中点,M是AB的中点,∴ME=12AD=2.∴5﹣2≤CE≤5+2,即3≤CE≤7.∴最大值为7,故答案为:7.【点睛】本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.三、解答题21.(1)不会,理由见解析;(2)①见解析;②²²20m n n =+-【分析】(1)根据BEF BEA ≅得到BF BA =,根据三角形的三边关系得到BC BF BA >=,与已知矛盾;(2)①根据90BFC BFE ∠=∠=︒、DEC FCB ∠=∠和BF=CD ,利用AAS 证得BCF CED ≅,根据全等三角形的性质即可证明;②设1AD =,则可表示出AE 和AB ,然后根据等角对等边证得CE=CB ,然后在Rt CDE ∆中应用勾股定理即可求解.【详解】(1) 由折叠知BEF BEA ≅ ,所以90BF BA BFE A =∠=∠=︒, .若点F 在CE 上,则90BFC ∠=︒,BC BF BA >=,与AB AD =矛盾,所以点F 不会落在CE 上.(2)①因为()01AB m m AD=<<,则AB AD < , 因为点F 落在CE 上,所以90BFC BFE ∠=∠=︒ ,所以BF BA CD == .因为//AD BC ,所以DEC FCB ∠=∠ ,所以BCF CED ≅ ,所以CF DE =.②若AE n AD=,则AE nAD =. 设1AD =,则AE n AB m ==,.因为//AD BC ,所以BEA EBC ∠=∠ .因为BEF BEA ∠=∠ ,所以EBC BEC ∠=∠ ,所以1CE CB AD === .在Rt CDE ∆中,11DE n CE CD m ===一,, ,所以22211()n m -+= ,所以²²20m n n =+-.故答案为(1)不会,理由见解析;(2)①见解析;②²²20m n n =+-.【点睛】本题考查了三角形全等的性质和判定,和等边对等角,此题属于矩形的折叠问题类综合题,熟练掌握三角形全等的性质,和做出示意图是本题的关键.22.(1)(32,32);(2)存在,点D 的坐标为(0,3)或(23,1)或(0,-1);(3)OM=32或212 【分析】(1)过点B 作BD ⊥y 轴于D ,利用30°所对的直角边是斜边的一半和勾股定理求出OB ,再利用30°所对的直角边是斜边的一半和勾股定理求出BD 和OD 即可得出结论;(2)根据题意和等边三角形的性质分别求出点A 、B 、C 的坐标,然后根据菱形的顶点顺序分类讨论,分别画出对应的图形,根据菱形的对角线互相平分即可分别求出结论; (3)利用30°所对的直角边是斜边的一半和勾股定理求出OP 和BP ,然后根据直角三角形的直角顶点分类讨论,分别画出对应的图形,利用直角三角形斜边上的中线等于斜边的一半、平行四边形的判定及性质、等腰三角形的判定及性质求解即可.【详解】解:(1)如图2,过点B 作BD ⊥y 轴于D由图1中,点A 的坐标为()1,0-,30ABO ∠=︒,∠AOB=90°∴OA=1,AB=2OA=2由勾股定理可得223AB OA -=∵将此直角三角板绕点O 顺时针旋转30∴∠BOD=30°∴BD=132OB =∴OD=223 2OB BD-=∴点B的坐标为(32,32)故答案为:(32,32);(2)在图2的基础上继续将直角三角板绕点O顺时针60︒,此时点A落在y轴上,点B 落在x轴上∴点A的坐标为(0,1),点B的坐标为(3,0)∵△ABC为等边三角形∴∠ABC=60°,AB=BC=AC=2∴∠OBC=90°∴点C的坐标为(3,2)设点D的坐标为(a,b)如图所示,若四边形ABCD为菱形,连接BD,与AC交于点O∴点O既是AC的中点,也是BD的中点∴03322 12022ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:3 ab=⎧⎨=⎩∴此时点D的坐标为(0,3);当四边形ABDC为菱形时,连接AD,与BC交于点O ∴点O既是AD的中点,也是BC的中点∴03322 12022ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:231ab⎧=⎪⎨=⎪⎩∴此时点D的坐标为(23,1);当四边形ADBC为菱形时,连接CD,与AB交于点O∴点O既是AB的中点,也是CD的中点∴0332210222ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:1ab=⎧⎨=-⎩∴此时点D的坐标为(0,-1);综上:点D的坐标为(0,3)或(23,1)或(0,-1);(3)∵OB=3,∠ABO=30°∴OP=12OB=32∴BP=2232OB OP-=当∠OMB=90°时,如下图所示,连接BM∵F为OB的中点∴PF=12OB,MF=12OB,OF=BF∴PF=MF∴四边形OPBM为平行四边形∴OM=BP=32;当∠OBM=90°时,如下图所示,连接OM,∴∠PBM=∠PBO+∠OBM=120°∵点F为OB的中点∴FP=FB∴∠FPB=∠FBP=30°∴∠BMP=180°-∠PBM-∠FPB=30°∴∠BMP=∠BPM∴BM=BP=3 2在Rt△OBM中,2221OB BM+=;综上:OM=32或212.【点睛】此题考查的是直角三角形的性质、菱形的性质、平行四边形的判定及性质、等边三角形的性质,掌握30°所对的直角边是斜边的一半、勾股定理、直角三角形斜边上的中线等于斜边的一半、菱形的性质、平行四边形的判定及性质、等边三角形的性质是解决此题的关键.23.(1)见解析;(2)MON为等腰直角三角形,见解析【分析】(1)如图1,由正方形的性质得CB=CD,∠BCD=90°,再证明∠BCN=∠CDM,然后根据“AAS”证明△CDM≌△CBN,从而得到DM=CN;(2)如图2,利用正方形的性质得OD=OC,∠ODC=∠OCB=45°,∠DOC=90°,再利用∠BCN=∠CDM得到∠OCN=∠ODM,则根据“SAS”可判断△OCN≌△ODM,从而得到ON=OM,∠CON=∠DOM,所以∠MON=∠DOC=90°,于是可判断△MON为等腰直角三角形.。
一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 17B. 18C. 19D. 202. 在下列各数中,最大的数是:A. 0.5B. 0.7C. 0.8D. 0.93. 下列哪个图形是正方形?A. 圆B. 矩形C. 正方形D. 三角形4. 下列哪个数是偶数?A. 3B. 4C. 5D. 75. 下列哪个数是分数?A. 0.5B. 0.6C. 0.7D. 0.8二、判断题(每题1分,共5分)1. 2 + 3 = 5 ()2. 4 × 5 = 20 ()3. 6 ÷ 2 = 3 ()4. 7 4 = 3 ()5. 8 + 9 = 17 ()三、填空题(每题1分,共5分)1. 9 + 5 = __2. 8 × 6 = __3. 7 ÷ 7 = __4. 6 3 = __5. 5 × 5 = __四、简答题(每题2分,共10分)1. 请简述加法的定义。
2. 请简述减法的定义。
3. 请简述乘法的定义。
4. 请简述除法的定义。
5. 请简述分数的定义。
五、应用题(每题2分,共10分)1. 小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?2. 小明有10个橘子,他吃掉了4个,还剩下多少个?3. 小明有8个橙子,他吃掉了2个,还剩下多少个?4. 小明有6个梨,他吃掉了3个,还剩下多少个?5. 小明有7个葡萄,他吃掉了1个,还剩下多少个?六、分析题(每题5分,共10分)1. 请分析加法、减法、乘法、除法之间的关系。
2. 请分析分数与整数之间的关系。
七、实践操作题(每题5分,共10分)1. 请用实践操作的方法验证加法的定义。
2. 请用实践操作的方法验证减法的定义。
【答案】一、选择题1. A2. D3. C4. B5. A二、判断题1. √2. √3. √4. √5. √三、填空题1. 142. 483. 14. 35. 25四、简答题1. 加法是将两个数相加得到一个和的运算。
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
2023—2024学年度第二学期阶段性随堂练习八年级数学注意事项1.请在答题卡上作答,在试卷上作答无效.2.本试卷共三大题,23小题,满分120分.考试时间120分钟.第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分)1.有意义的的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】根据二次根式有意义的条件即可求解.【详解】解:由题意得:,解得,故选:B .【点睛】本题考查了二次根式有意义条件,掌握二次根式有意义的条件是解题的关键.2. 下列二次根式中,属于最简二次根式的是( )A. B. C. D. 【答案】D【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数含分母,故A 错误;B 、被开方数含分母,故B错误;C 、被开方数含能开得尽方的因数,故C 错误;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 正确;故选:D .【点睛】本题考查最简二次根式的定义,被开方数不含分母;被开方数不含能开得尽方的因数或因式.3. 如图,小肖同学有4根长度不一的木棍,取其中三根木棍可以拼成一个直角三角形的是( )的x 2x >2x ≥2x <2x >-20x -≥2x ≥A. 4cm ,5cm ,8cmB. 3cm ,4cm ,5cmC. 3cm ,4cm ,8cmD. 3cm ,5cm ,8cm【答案】B【解析】【分析】由勾股定理的逆定理可判断A ,B ,由三角形的三边关系可判断C ,D 不能组成三角形,从而可得答案.【详解】解:∵,故A 不符合题意;∵,故B 符合题意;∵,不能组成三角形,故C 不符合题意;∵,不能组成三角形,故D 不符合题意;故选B【点睛】本题考查的是三角形三边的关系,勾股定理的逆定理的应用,熟记三角形的三边关系与勾股定理的逆定理是解本题的关键.4. 下列二次根式中,能与A. B. C. D. 【答案】C【解析】【分析】根据二次根式性质及同类二次根式可进行求解.【详解】解:A与不是同类二次根式,不能合并,故不符合题意;B与不是同类二次根式,不能合并,故不符合题意;C与D与同类二次根式,不能合并,故不符合题意;故选C .【点睛】本题主要考查同类二次根式,熟练掌握同类二次根式的概念是解题的关键.的是22245418+=≠22243255+==348+<358+====5. 在中,,则的度数是( )A. B. C. D. 【答案】A【解析】【分析】由平行四边形的性质可得,由平行线的性质即可求解.【详解】解:四边形是平行四边形,,∴∴故选:A .【点睛】本题考查了平行四边形的性质,掌握平行四边形的性质是本题的关键.6. 若a ,b 为直角三角形的两直角边,c 为斜边,下列选项中不能用来证明勾股定理的是( )A. B.C. D.【答案】A【解析】【分析】由题意根据图形的面积得出的关系,即可证明勾股定理,分别分析即可得出答案【详解】解:A 、不能利用图形面积证明勾股定理;B 、根据面积得到;C 、根据面积得到,整理得;ABCD Y 150A ∠=︒B ∠30︒75︒100︒150︒//AD BC ABCD //AD BC ∴180A B ∠+∠=︒18030B A ∠=︒-∠=︒,,a b c ()2222142c ab a b a b =⨯+-=+()22142a b ab c +=⨯+222+=a b cD、根据面积得到,整理得.故选:A.【点睛】本题考查勾股定理的证明,熟练掌握利用图形的面积得出的关系,即可证明勾股定理.7. 若关于x 的一元二次方程有实数根,则实数m 的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】根据一元二次方程有实数根,得到,解答即可.【详解】∵一元二次方程有实数根,∴,解得.故选B .【点睛】本题考查了一元二次方程根的判别式,熟练掌握判别式是解题的关键.8. 如图所示是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是( )A. B. C. D. 【答案】A【解析】【分析】根据勾股定理计算出大正方形边长的平方,即大正方形的面积,再根据勾股定理可得两个小正方形的边长的平方和等于斜边的平方,即两个小正方形的面积和等于大正方形的面积,从而得出答案.【详解】由勾股定理得,大正方形边长的平方==25,即大正方形面积为25,∵两个小正方形的边长的平方和等于斜边的平方,∴两个小正方形的面积和为25,∴阴影部分的面积为:25+25=50.故选:A .的22111()2222a b c ab +=+⨯222+=a b c ,,a b c 220x x m -+=1m <1m £1m >m 1≥220x x m -+=()2240m --≥220x x m -+=()2240m --≥1m £50162541221312-【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题关键.9. 如图,已知▱AOBC 的顶点O (0,0),A (﹣1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E为圆心,大于DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC于点G ,则点G 的坐标为( )A.1,2) B. 2)C.(32) D. 2,2)【答案】A【解析】【分析】依据勾股定理即可得到Rt△AOH 中,AOAGO =∠AOG ,即可得到AG=AO 而得出HG ,可得G -1,2).【详解】如图,过点A 作AH ⊥x 轴于H ,AG 与y 轴交于点M ,∵▱AOBC 的顶点O (0,0),A (-1,2),∴AH =2,HO =1,∴Rt △AOH 中,AO 由题可得,OF 平分∠AOB ,∴∠AOG =∠EOG ,又∵AG ∥OE ,∴∠AGO =∠EOG ,∴∠AGO =∠AOG ,∴AG =AO 12∴MG-1,∴G,2),故选A .【点睛】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10. 如图 ,已知△ABC 中,∠C =90°,AC =BC ,将△ABC 绕点 A 顺时针方向旋转 60°得到△A ′B ′C ′的位置,连接 C ′B ,则 C ′B 的长为 ( )A. 2B.C.D. 1【答案】C【解析】【分析】如图,连接BB′,延长BC′交AB′于点D ,证明△ABC′≌△B′BC′,得到∠DBB′=∠DBA=30°;求出BD 、C′D 的长,即可解决问题.【详解】解:如图,连接BB′,延长BC′交AB′于点D ,由题意得:∠BAB′=60°,BA=B′A ,∴△ABB′为等边三角形,∴∠ABB′=60°,AB=B′B ;在△ABC′与△B′BC′中,1∴△ABC′≌△B′BC′(SSS ),∴∠DBB′=∠DBA=30°,∴BD ⊥AB′,且AD=B′D ,∵AC =BC,∴,∴,,.故选:C .【点睛】本题考查旋转的性质,全等三角形的性质和判定,等边三角形的判定与性质,等腰直角三角形的性质,直角三角形斜边上的中线.作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11. 比较大小:________5.【答案】【解析】【分析】先分别利用根式表示两个数,根据表示的结果再比较大小即可.【详解】解:,,故答案为:.【点睛】本题考查了实数的大小比较法则和算术平方根,解题的关键是掌握二次根式的大小比较.12. 如图所示,在数轴上点所表示的数为,则的值为______.''''''AC B C AB B BBC BC =⎧⎪=⎨⎪=⎩'2AB AB ====112AD AB ==BD ===1''12DC AB ==''1BC BD DC ∴=-=-<=5=<5∴<<A a a【答案】【解析】【分析】先根据勾股定理求出,再根据即可解答.【详解】解:如图,∵,,设点表示的数是,∴,∴,∴或,∵点在原点的左侧,∴点表示的数为,故答案为;【点睛】本题考查了勾股定理,数轴上两点之间的距离公式,数轴上表示的数,掌握勾股定理是解题的关键.13. 已知等腰三角形的腰长是13cm ,底边长10cm ,则该等腰三角形的面积是_______cm 2.【答案】60【解析】【分析】根据等腰三角形三线合一定理和勾股定理即可求得底边的高,从而求得三角形面积.【详解】解:如图所示:AB =AC =13cm ,BC=10cm1BC AB BC =BC ==AB BC =A x 1AB x =-1x -=1x =1x =A A 11作AD ⊥BC 于D ,则∠ADB =90°∴,∴,∴△ABC 的面积=,故答案为:60.【点睛】本题考查勾股定理和等腰三角形的性质,掌握等腰三角形三线合一是解题关键.14. 一元二次方程的两根、,则______.【答案】1【解析】【分析】根据根与系数的关系,得到+=2,=-1,把+和的值代入,求出代数式的值.【详解】解:∵、是一元二次方程()的两根,∴+=2,=-1,∴2-1=1.故答案为:1.【点睛】本题考查了一元二次方程根与系数的关系,利用根与系数的关系求出代数式的值.15. 如图,桌面上的长方体长为8,宽为6,高为4,为的中点.一只蚂蚁从点出发沿长方体的表面到达点,则它运动的最短路程为______.【答案】10【解析】【分析】本题考查了勾股定理求最短路径问题,将立体图形问题转化成平面问题,作出长方体展开图是求解的关键;将长方体展开,分情况讨论,第一种是蚂蚁从A 出发经过左侧面和上底面到达B 点,连接展开图的点求出长度;第二种情况是,蚂蚁从A 出发,经过正面和上底面到达B 点,连接展开图点,求出长度,再对比最小距离即可求解.15cm 2BD CD BC ===12cm AD ==211=1012=60cm 22AC AD ⋅=⨯⨯221x x -=αβαβαβ++⋅=αβαβαβαβαβ221x x -=2210x x --=αβαβαβαβ++⋅=B CD A B AB AB【详解】解:①如图所示,蚂蚁从A 出发经过左侧面和上底面到达B 点时:;②如图所示,蚂蚁从A 出发,经过正面和上底面到达B 点时:∵∴最短路径为10,故答案是:10.三、解答题(本题共8小题,共75分)16. 计算与解方程(1)计算:;(2)解方程:.【答案】(1(2),【解析】【分析】本题考查二次根式的运算及解一元二次方程,解题的关键是熟练掌握二次根式的运算法则及选择适当的方法解一元二次方程.(1)根据根式乘法法则及合并同类二次根式的法则直接计算即可得到答案;(2)移项,配方,直接开平方即可得到答案.10====10<-2230x x --=13x =21x =-【小问1详解】解:=【小问2详解】解:∴,.17. 如图,在中,对角线,交于点,过点直线分别交,的延长线于点,,与相等吗?为什么?【答案】,理由见解析【解析】【分析】本题主要考查了平行四边形的性质,全等三角形的性质与判定,先由平行四边形的性质得到,进而证明,即可证明.【详解】解:,理由如下:∵四边形是平行四边形,,对角线,交于点,∴,∴,的--2230x x --=223x x -=22131x x -+=+()214x -=12x -=±13x =21x =-ABCD Y AC BD O O CB AD E F BE DF BE DF =AD BC OD OB =∥,()AAS ODF OBE ≌△△BE DF =BE DF =ABCD AC BD O AD BC OD OB =∥,F E ODF OBE ==∠∠,∠∠∴,∴.18. 求代数式a的值,其中a =1007,如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确的运用二次根式的性质: ;(3)求代数式aa =﹣2022.【答案】(1)小亮;(2;(3)【解析】【分析】(1)由知,从而做出判断;(2可得答案;(3)利用二次根式的性质化简、代入求值即可得.【详解】解:(1)∵,∴,,所以小亮的解法是错误的.故答案为小亮;(2..(3)∵∴()AAS ODF OBE ≌△△BE DF =()()00a a a a a ⎧≥⎪==⎨-⎪⎩<20281007a =10a -<|1|1a a =-=-()()00a a a a a ⎧≥⎪==⎨-⎪⎩<1007a =10a -<|1|1a a =-=-()()00a a a aa ⎧≥⎪==⎨-⎪⎩<()()00a a a a a ⎧≥⎪==⎨-⎪⎩<23a a a a =+=+-+2022a =-30a -<∴∴原式【点睛】本题考查了二次根式的化简求值,解题的关键是掌握二次根式的性质.19. 如图,只空油桶(每只油桶底面的直径均为)堆在一起,要给它们盖一个遮雨棚,遮雨棚起码要多高?【答案】【解析】【分析】本题考查了二次根式的应用:把二次根式的运算与现实生活相联系,体现了所学知识之间的联系,感受所学知识的整体性,不断丰富解决问题的策略,提高解决问题的能力.此题关键是三个角处的三个油桶的圆心连线长为5个油桶的直径,考查学生分析题意的能力及勾股定理.设每只油桶底面的直径为,,则,,再利用勾股定理求出,即可求解.【详解】解:如图,由题意可得每只油桶底面的直径为,,则,,这堆油桶的高度为.因此,遮雨棚的高度起码要有.20. 小明家装修,电视背景墙长,宽为,中间要镶一个长为的大理石图案(图中阴影部分).33a a-=-2(3)66(2022)2028a a a =+-=-=--=1550cm ()50cm50d =cm AB h =cm 4200cm AC d ==2100BC d ==cm h d +50d =cm AB h =cm 4200cm AC d ==2100BC d ==cm h d d +=+d =+d =()50cm =+()50cm +BC AB(1)长方形的周长是多少?(结果化为最简二次根式)(2)除去大理石图案部分,其他部分贴壁布,若壁布造价为6元,大理石的造价为200元,则整个电视墙需要花费多少元?(结果化为最简二次根式)【答案】(1)(2)元【解析】【分析】(1)直接利用二次根式的加减运算法则计算得出答案;(2)直接利用二次根式的乘法运算法则以及二次根式的加减运算法则计算得出答案.【小问1详解】解:长方形的周长为;【小问2详解】解:长方形,大理石的面积:,壁布的面积:,整个电视墙的总费用:(元).【点睛】此题主要考查了二次根式的应用,正确掌握二次根式的混合运算法则是解题关键.21. 如图,已知在中,,,,是上的一点,,点从点出发沿射线方向以每秒2个单位的速度向右运动.设点的运动时间为.连接.(1)当秒时,求的长度(结果保留根号);(2)当点在线段的垂直平分线上时,求的值;ABCD 2/m 2/m (m+ABCD ()(22m BCAB +==+ABCD )2m==)2m=)2m -=6200⨯+⨯=+=Rt ABC △90ACB ∠=︒8AC =16BC =D AC 3CD =P B BC P t AP 3t =AP P AB t(3)过点作于点.在点的运动过程中,当为何值时,能使?【答案】(1)(2)(3)当t 为5或11时,能使【解析】【分析】本题主要考查了勾股定理,线段垂直平分线的性质:(1)根据动点的运动速度和时间先求出,再根据勾股定理即可求解;(2)当点P 在线段的垂直平分线上时,则,再根据勾股定理列方程即可求解;(3)分当点P 在C 点的左侧时, 当点P 在C 点的右侧,两种情况利用等面积法求出,再利用勾股定理建立方程求解即可。
八年级数学下学期阶段性质量检测试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,能使不等式x﹣1>0成立的是()A.1B.2C.0D.﹣22.(3分)使分式有意义的x的取值范围为()A.x≠2B.x≠﹣2C.x≠﹣1D.x≠03.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.(3分)下列变形是因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣3x﹣4=(x﹣4)(x+1)D.x2+2x﹣3=(x+1)2﹣45.(3分)已知=3,则的值为()A.B.C.D.﹣6.(3分)如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD 的周长为()A.8B.9C.10D.117.(3分)在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.48.(3分)下列命题正确的是()A.三角形三条角平分线的交点到三角形三个顶点的距离都相等B.两个锐角分别相等的两个直角三角形全等C.如果a>b,ac2>bc2D.分式的值不能为零9.(3分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且AP=2,∠BAC=60°,有一点F在边AB上运动,当运动到某一位置时△F AP面积恰好是△EAP 面积的2倍,则此时AF的长是()A.6B.6C.4D.410.(3分)如图,在平行四边形ABCD中,AB>BC,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长半径画弧,两弧交于点G;作射线AG交CD于点H.则下列结论:①AG平分∠DAB,②CH=DH,③△ADH是等腰三角形,④S△ADH=S四边形ABCH.其中正确的有()A.①②③B.①③④C.②④D.①③二、填空题(每小题3分,共18分)11.(3分)因式分解:4m2﹣16=.12.(3分)若关于x的不等式组的整数解共有4个,则m的取值范围是.13.(3分)若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为.14.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.15.(3分)使分式方程产生增根的n的值为.16.(3分)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n∁n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.三、解答题17.(6分)因式分解:(1)﹣9x2y+12xy2﹣4y3;(2)(x2+y2)2﹣4x2y2.18(5分)解不等式组并写出它的非正整数解.19.(5分)先化简,再求值:,其中a=﹣2.20.(10分)假期,某校4位教师和x(x≥1)名学生组成的旅游团,准备到某地旅游,甲,乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示若4位游客全额收费,则给予其余游客七折优惠;乙旅行社表示若游客5人以上(含5人)可给予每位游客八折优惠.(1)若有10名学生参加旅游团,这个旅游团选择甲旅行社的总费用是·元,选择乙旅行社的总费用是·元,选择旅行社更省钱.(2)根据学生人数,该旅游团选择哪一家旅行社支付的旅游总费用较少?21.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3)、B(﹣3,2)、C(﹣1,1).(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;(2)画出△A1B1C1绕原点旋转180°后得到的△A2B2C2;(3)△A′B′C′与△ABC是中心对称图形,请写出对称中心的坐标:;(4)顺次连结C、C1、C′、C2,所得到的图形的面积是:.22.(8分)如图,在等边三角形ABC中,点E是AC边上的一点,过点E作DE∥AB交BC于点D,作EF⊥DE,交BC的延长线于点F.(1)求证:CE=CF;(2)当AB=4,DF=2BD时,请直接写出△CEF的面积.23.(10分)某商店五月份销售A型电脑的总利润为4320元,销售B型电脑的总利润为3060元,且销售A型电脑数量是销售B型电脑的2倍,已知销售一台B型电脑比销售一台A型电脑多获利50元.(1)求每台A型电脑和B型电脑的利润;(2)该商店计划一次购进两种型号的电脑共100台且全部售出,其中B型电脑的进货量不超过A型电脑的2倍,该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?24.(8分)如图1,在平面直角坐标系中.直线y=﹣x+3与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点D的坐标及△BCD平移的距离;25.(12分)在等腰Rt△ABC中,∠BAC=90°,AB=AC=6√2,D是射线CB上的动点,过点A作AF⊥AD(AF始终在AD上方),且AF=AD,连接BF(1)如图1,当点D在线段BC上时,判断BF与DC的关系,并说明理由.(2)如图2,若点D、E为线段BC上的两个动点,且∠DAE=45°,连接EF,DC=3,求ED的长(3)若在点D的运动过程中,BD=3,则AF=___.(4)如图3,若M为AB中点,连接MF,在点D的运动过程中,当BD=__时,MF 的长最小?最小值是___.。
2024-2025学年人教版(2024)八年级数学下册阶段测试试卷813考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共8题,共16分)1、若分式的值为零,则x的值为()A. ±2B. -2C. 2D. 不存在2、如图,在下列条件中,不能判断△ABD≌△BAC的条件是( )(A)∠BAD=∠ABC,∠ABD=∠BAC (B)AD=BC,BD=AC(C)BD=AC,∠BAD=∠ABC (D)∠D=∠C,∠BAD=∠ABC3、20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是().A.B.C.D.4、如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.5、三角形的一个外角为36°,则这个三角形是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形6、下列运算正确的是()A. (a2b2)2=a2b2B. a5b2÷b2=a5C. (3xy2)2=6x2y4D. a3•a2=a67、若a为方程x2+x-5=0的解,则a2+a+1的值为()A. 16B. 12C. 9D. 68、如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB为其中一腰.这样的C点有()个.A. 7个B. 8个C. 9个D. 10个评卷人得分二、填空题(共5题,共10分)9、如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若△CDE的周长为8cm,则平行四边形ABCD的周长为.10、函数[y=kx−b <]的图象如图所示,则关于[x <]的不等式[k(x−3)−b <][>0> 0<]的解集是.11、▱[ABCD <]中,[∠A=50∘ <],则[∠D= <] ______ .12、分解因式:3x2-12= .13、据统计,近几年全世界森林面积以每年约1700万公顷的速度消失,为了预测未来20年世界森林面积的变化趋势,可选用统计图表示收集到的数据.评卷人得分三、判断题(共6题,共12分)14、数轴上任何一点,不表示有理数就表示无理数.(判断对错)15、3m2-6m=m(3m-6).(判断对错)16、-0.01是0.1的平方根.( )17、判断对错:关于中心对称的两个图形全等。
八年级数学第二学期阶段考试试卷说明:1、全卷共8页。
考试时间90分钟,满分150分.2、答卷前,考生必须将自己的座号、姓名、班级、学校按要求填写在密封线左边的空格内。
3、答题可用黑色钢笔、圆珠笔按各题要求答在试卷上,但不能用铅笔或红笔第Ⅰ部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.每小题给出的4 个选项中只有一个是符合题目要求的。
) 1、下列函数中,反比例函数是( )(A ) 1)1(=-y x (B ) 11+=x y (C ) 21xy = (D ) x y 31= 2、某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x ,则y 与x 之间的函数关系式的大致图像应为( )3、若y与-3x 成反比例,x 与z4成反比例,则y 是z 的( ) (A )正比例函数(B )反比例函数 (C )一次函数 (D )不能确定 4、若反比例函数22)12(--=mx m y 的图像在第二、四象限,则m 的值是( )(A )-1或1 (B )小于21的任意实数 (C )-1 (D) 不能确定5、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) (A)(-a ,-b ) (B )(a ,-b ) (C )(-a ,b ) (D )(0,0)6、若M(12-,1y )、N(14-,2y )、P(12,3y )三点都在函数ky x=(k>0)的图象上,则1y 、2y 、3y 的大小关系是( )(A )132y y y >> (B )312y y y >> (C ) 213y y y >> (D )123y y y >>7、如图,A 为反比例函数ky x=图象上一点,AB 垂直x 轴于B 点,若AOB S ∆=5,则k 的值为( )(A ) 10 (B ) 10- (C ) 5- (D )25-8、在同一直角坐标系中,函数y=kx-k 与(0)ky k x=≠的图像大致是( )9、如图是三个反比例函数312,,k k ky y yx x x===,在x 轴上方的图像,由此观察得到k l 、k 2、k 3的大小关系为( )(A ) k 1>k 2>k 3 (B ) k 3>k 1>k 2 (C ) k 2>k 3>k 1 (D ) k 3>k 2>k 110、在同一直角坐标平面内,如果直线1y x k =与双曲线2k y x=没有交点,那么1k 和2k 的关系一定是( ) (A) 1k 、2k 异号(B) 1k 、2k 同号 (C) 1k >0,2k <0 (D) 1k <0, 2k >0第Ⅱ部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,共18分.请把下列各题的正确答实填写在横线上)11、已知22)1(--=a xa y 是反比例函数,则a=____ .12、在函数13x -中自变量x 的取值范围是_________. 13、在反比例函数xk y 1+=的图象上有两点11()x y ,和22()x y ,,若x x 120<<时,y y 12>,则k 的取值范围是 .14、.已知圆柱的侧面积是π102cm ,若圆柱底面半径为r cm ,高为h cm ,则h 与r 的函数关系式是 。
一、选择题(每题3分,共30分)1. 下列各数中,是负数的是()A. -2B. 0C. 1.5D. -0.5答案:A2. 若a=3,b=-2,则a-b的值是()A. 1B. -1C. 5D. -5答案:A3. 下列各数中,是平方数的是()A. 16B. 17C. 18D. 19答案:A4. 下列各式中,正确的是()A. a²=b²,则a=bB. a²=b²,则a=±bC. a²=b²,则a²=b²D. a²=b²,则a²=b²答案:B5. 若m=5,n=-3,则2m-3n的值是()A. 11B. -11C. 7D. -7答案:A6. 下列各数中,是有理数的是()A. √2B. πC. √-1D. 0.5答案:D7. 若a=3,b=2,则a²+b²的值是()A. 13B. 10C. 9D. 7答案:A8. 下列各数中,是无理数的是()A. √4B. √9C. √16D. √-1答案:D9. 若x²=4,则x的值是()A. 2B. -2C. ±2D. 0答案:C10. 下列各式中,正确的是()A. a²+b²=c²,则a=c,b=0B. a²+b²=c²,则a=±c,b=0C. a²+b²=c²,则a²=c²,b²=0D. a²+b²=c²,则a²=c²,b²=0答案:B二、填空题(每题3分,共30分)11. 若a=5,b=-3,则a+b的值是______。
答案:212. 下列各数中,是负数的是______。
答案:-213. 若a²=16,则a的值是______。
八年级数学第二学期阶段考试试卷题号一 二 三合计 17 18 19 20 21 22 23 24 25 得分(考查内容:第十七章 反比例函数)说明:1、全卷共8页。
考试时间90分钟;满分150分.2、答卷前;考生必须将自己的座号、姓名、班级、学校按要求填写在密封线左边的空格内。
3、答题可用黑色钢笔、圆珠笔按各题要求答在试卷上;但不能用铅笔或红笔第Ⅰ部分 选择题(共30分)一、选择题(本题共10小题;每小题3分;共30分.每小题给出的4 个选项中只有一个是符合题目要求的。
) 1、下列函数中;反比例函数是( )(A ) 1)1(=-y x (B ) 11+=x y (C ) 21xy = (D ) x y 31= 2、某村的粮食总产量为a (a 为常数)吨;设该村的人均粮食产量为y 吨;人口数为x;则y 与x 之间的函数关系式的大致图像应为( )3、若y 与-3x 成反比例;x 与z4成反比例;则y 是z 的( ) (A )正比例函数 (B )反比例函数 (C )一次函数 (D )不能确定 4、若反比例函数22)12(--=mx m y 的图像在第二、四象限;则m 的值是( )(A )-1或1 (B )小于21的任意实数 (C ) -1 (D) 不能确定5、已知反比例函数的图像经过点(a ;b );则它的图像一定也经过( ) (A )(-a ;-b ) (B )(a ;-b ) (C )(-a ;b ) (D )(0;0)座 号姓 名得分评卷人班 级学 校密封线内不要答题6、若M(12-;1y )、N(14-;2y )、P(12;3y )三点都在函数ky x =(k>0)的图象上;则1y 、2y 、3y 的大小关系是( )(A )132y y y >> (B )312y y y >> (C ) 213y y y >> (D )123y y y >>7、如图;A 为反比例函数ky x=图象上一点;AB 垂直x 轴于B 点;若AOB S ∆=5;则k 的值为( )(A ) 10 (B ) 10- (C ) 5- (D )25-8、在同一直角坐标系中;函数y=kx-k 与(0)ky k x=≠的图像大致是( )9、如图是三个反比例函数312,,k k ky y y x x x===;在x 轴上方的图像;由此观察得到k l 、k 2、k 3的大小关系为( )(A ) k 1>k 2>k 3 (B ) k 3>k 1>k 2 (C ) k 2>k 3>k 1 (D ) k 3>k 2>k 1 10、在同一直角坐标平面内;如果直线1y x k =与双曲线2k y x=没有交点;那么1k 和2k 的关系一定是( ) (A) 1k 、2k 异号(B) 1k 、2k 同号 (C) 1k >0; 2k <0 (D) 1k <0; 2k >0请将选择题答案写入表格: 题号 12345678910答案第Ⅱ部分 非选择题(共120分)二、填空题(本大题共6小题;每小题3分;共18分.请把下列各题的正确答实填写在横线上)11、已知22)1(--=a xa y 是反比例函数;则a=____ .12、在函数13x -中自变量x 的取值范围是_________. 13、在反比例函数xk y 1+=的图象上有两点11()x y ,和22()x y ,;若x x 120<<时;y y 12>;则k 的取值范围是 .14、.已知圆柱的侧面积是π102cm ;若圆柱底面半径为r cm ;高为h cm ;则h与r 的函数关系式是 。
于村中学2019--2020学年第二学期阶段性考试八年级数学试卷班级:姓名:考号:分数:一.选择题(每小题4分共40分)1.为了了解2014年苏州市八年级学生学业水平考试的数学绩,从中随机抽取1000名学生的数学成绩,下列说法正确的是( )A.2014年苏州市八年级学生是总体 B.每一名八年级学生是个体C.1000名八年级学生是总体的一个样本 D.样本容量是10002.某校公布了该校反映各年级学生体育达标情况的两张统图,该校七、八、九三个年级共有学生800人。
甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高。
”乙说:“八年级共有学生264人。
”丙说:“九年级的体育达标率最高。
”甲、乙、丙三个同学中,说法正确的是…………………………………………( )A.甲和乙 B.乙和丙 C.甲和丙 D.甲和乙及丙3. 将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是()A.(2,3) B.(2,-1) C.(4,1) D.(0,1)4. 在平面直角坐标系中,将点A(1,2)的横坐标乘-1,纵坐标不变,得到点A′,则点A与点A′的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向x轴负方向平移一个单位得到点A′5. 甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.3小时甲摩托车行驶到A,B两地的中点C.经过0.25小时两摩托车相遇kmD.当乙摩托车到达A地时,甲摩托车距离A地5036.函数y=√x−2中,自变量X的取值范围是()A. x≠2B. x>2C. x≥2D. x>2且x≠37. 如果一个等腰三角形的周长为18cm,那么它的腰长y cm与底边长x cm之间的函数表达式是()A. y=-2x+18B. y=-x+9C. y=−12x+9 D.y=−12x+188. 已知一次函数y=(m+3)x+1+m,若y随x的增大而减小,该函数的图像与x轴的交点在原点的左侧,则m的取值范围是()A. m>-3B. m<1C.-3<m<1D. m<-39.已知一次函数y=32x+m和y=−12x+n的图像都经过点A(-2,0),与y轴分别交于点B,C,那么△ABC的面积是()A. 2B. 3C. 4D. 610.学校需要添置某种教具若干件,有两种方案可供选择。
一、选择题1.在边长为2的正方形ABCD 中,P 为AB 上的一动点,E 为AD 中点,PE 交CD 延长线于Q ,过E 作EF PQ ⊥交BC 的延长线于F ,则下列结论:①APE DQE ∆≅∆;②PQ EF =;③当P 为AB 中点时,2CF =;④若H 为QC 的中点,当P 从A 移动到B 时,线段EH 扫过的面积为12,其中正确的是( )A .①②B .①②④C .②③④D .①②③2.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,E 是AC 上的一点,且AB=AE ,过点A 作AF ⊥BE ,垂足为F ,交BD 于点G ,点H 在AD 上,且EH ∥AF.若正方形ABCD 的边长为2,下列结论:①OE=OG ;②EH=BE ;③AH=222-,其中正确的有( )A .0个B .1个C .2个D .3个3.如图,在▭ABCD 中,AB =4,BC =6,∠ABC =60°,点P 为▭ABCD 内一点,点Q 在BC 边上,则PA +PD +PQ 的最小值为( )A 3719B .3C .3D .104.如图,边长为8的正方形ABCD 的对角线交于点O ,点,E F 分别在边,CD DA 上(CE DE <),且90,,EOF OE BC ︒∠=的延长线交于点 ,,G OF CD 的延长线交于点,H E 恰为OG 的中点.下列结论:①OCE ODF ∆∆≌;②OG OH =;③10GH =其中,正确结论的个数是( )A .0个B .1个C .2个D .3个5.如图,分别以Rt ACB ∆的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连结CE 、BG 、GE .给出下列结论:①CE BG =;②EC BG ⊥③22222FG BF BD BC +=+④222222BC GE AC AB +=+其中正确的是( )A .②③④B .①②③C .①②④D .①②③④6.如图,四边形ABCD 是正方形,直线L 1、L 2、L 3,若L 1与L 2的距离为5,L 2与L 3的距离7,则正方形ABCD 的面积等于( )A .70B .74C .144D .1487.如图,正方形ABCD 中,点E 是AD 边的中点,BD 、CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②5:2;③S △BHE =S △CHD ;④∠AHB=∠EHD .其中正确的个数是A .1B .2C .3D .48.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A .62B .122C .6D .129.如图,在正方形ABCD 中,AB =4,E 是CD 的中点,将BCE 沿BE 翻折至BFE ,连接DF ,则DF 的长度是( )A .5B .25C .35D .45 10.如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC=EC ,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结HC .则以下四个结论中:①OH ∥BF ,②GH=14BC ,③BF=2OD ,④∠CHF=45°.正确结论的个数为( )A .4个B .3个C .2个D .1个二、填空题11.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .12.如图,正方形ABCD 的对角线相交于点O ,对角线长为1cm ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_____.13.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62,那么BC=______.14.如图,在正方形ABCD 中,点,E F 将对角线AC 三等分,且6AC =.点P 在正方形的边上,则满足5PE PF +=的点P 的个数是________个.15.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .16.如图,在矩形ABCD 中,∠ACB =30°,BC =23,点E 是边BC 上一动点(点E 不与B ,C 重合),连接AE ,AE 的中垂线FG 分别交AE 于点F ,交AC 于点G ,连接DG ,GE .设AG =a ,则点G 到BC 边的距离为_____(用含a 的代数式表示),ADG 的面积的最小值为_____.17.如图,在正方形ABCD 中,AC=62,点E 在AC 上,以AD 为对角线的所有平行四边形AEDF 中,EF 最小的值是_________.18.如图,在ABC 中,D 是AB 上任意一点,E 是BC 的中点,过C 作//CF AB ,交DE 的延长线于F ,连BF ,CD ,若30FDB ∠=︒,45ABC ∠=︒,22BC =,则DF =_________.19.如图,矩形ABCD 中,CE CB BE ==,延长BE 交AD 于点M ,延长CE 交AD 于点F ,过点E 作EN BE ⊥,交BA 的延长线于点N ,23FE AN ==,,则BC =_________.20.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.三、解答题21.如图,平行四边形ABCD 的对角线AC BD 、交于点O ,分别过点C D 、作//,//CF BD DF AC ,连接BF 交AC 于点E .(1)求证: FCE BOE ≌;(2)当ADC ∠等于多少度时,四边形OCFD 为菱形?请说明理由.22.如图, 平行四边形ABCD 中,3AB cm =,5BC cm =,60B ∠=, G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF . (1) 求证:四边形CEDF 是平行四边形;(2) ①当AE 的长为多少时, 四边形CEDF 是矩形;②当AE = cm 时, 四边形CEDF 是菱形, (直接写出答案, 不需要说明理由).23.如图,在菱形ABCD 中,AB =2cm ,∠ADC =120°.动点E 、F 分别从点B 、D 同时出发,都以0.5cm/s 的速度向点A 、C 运动,连接AF 、CE ,分别取AF 、CE 的中点G 、H .设运动的时间为ts (0<t <4).(1)求证:AF∥CE;(2)当t为何值时,△ADF的面积为32cm2;(3)连接GE、FH.当t为何值时,四边形EHFG为菱形.24.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED 的延长线交线段OA于点H,连结CH、CG.(1)求证:CG平分∠DCB;(2)在正方形ABCO绕点C逆时针旋转的过程中,求线段HG、OH、BG之间的数量关系;(3)连结BD、DA、AE、EB,在旋转的过程中,四边形AEBD是否能在点G满足一定的条件下成为矩形?若能,试求出直线DE的解析式;若不能,请说明理由.25.如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.(1)如图,当点E在线段BC上时,∠BDF=α.①按要求补全图形;②∠EBF=______________(用含α的式子表示);③判断线段 BF,CF,DF之间的数量关系,并证明.(2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.26.如图,四边形ABCD 是边长为3的正方形,点E 在边AD 所在的直线上,连接CE ,以CE 为边,作正方形CEFG (点C 、E 、F 、G 按逆时针排列),连接BF.(1)如图1,当点E 与点D 重合时,BF 的长为 ;(2)如图2,当点E 在线段AD 上时,若AE=1,求BF 的长;(提示:过点F 作BC 的垂线,交BC 的延长线于点M ,交AD 的延长线于点N.)(3)当点E 在直线AD 上时,若AE=4,请直接写出BF 的长.27.问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,EB EC =,45EBC ∠=︒,DBC △为等边三角形.①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由.实践操作(2)在长方形ABCD 中,8AB =,10AD =.①如图3,点E 在AB 边上,点F 在AD 边上,请用圆规和无刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点E 是直线AB 上的动点,点P 是平面内一点,点E 与点C 关于BP 互为勾股顶针点,直线CP 与直线AD 交于点F .在点E 运动过程中,线段BE 与线段AF 的长度是否会相等?若相等,请直接写出AE 的长;若不相等,请说明理由.28.阅读下列材料,并解决问题:如图1,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点D 为AC 边上的动点(不与A 、C 重合),以AD ,BD 为边构造ADBE ,求对角线DE 的最小值及此时AD AC的值是多少.在解决这个问题时,小红画出了一个以AD ,BD 为边的ADBE (如图2),设平行四边形对角线的交点为O ,则有AO BO =.于是得出当OD AC ⊥时,OD 最短,此时DE 取最小值,得出DE 的最小值为6.参考小红的做法,解决以下问题:(1)继续完成阅读材料中的问题:当DE 的长度最小时,AD AC=_______; (2)如图3,延长DA 到点F ,使AF DA =.以DF ,DB 为边作FDBE ,求对角线DE 的最小值及此时AD AC的值.29.已知,矩形ABCD 中,4,8AB cm BC cm ==,AC 的垂直平分EF 线分别交AD BC 、于点E F 、,垂足为O .(1)如图1,连接AF CE 、,求证:四边形AFCE 为菱形;(2)如图2,动点P Q 、分别从A C 、两点同时出发,沿AFB △和CDE △各边匀速运动一周,即点P 自A F B A →→→停止,点O 自C D E C →→→停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A C P Q 、、、四点为顶点的四边形是平行四边形时,则t =____________.②若点P Q 、的运动路程分别为a b 、 (单位:,0cm ab ≠),已知AC P Q 、、、四点为顶点的四边形是平行四边形,则a 与b 满足的数量关系式为____________.30.如图,在矩形ABCD 中,AB a ,BC b =,点F 在DC 的延长线上,点E 在AD 上,且有12CBE ABF ∠=∠.(1)如图1,当a b =时,若60CBE ∠=︒,求证:BE BF =;(2)如图2,当32b a =时, ①请直接写出ABE ∠与BFC ∠的数量关系:_________; ②当点E 是AD 中点时,求证:2CF BF a +=;③在②的条件下,请直接写出:BCF ABCD S S 矩形的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用正方形的性质、全等三角形的性质、勾股定理等知识依次判断即可;【详解】解:①∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠A=∠B=90°,∵∠A=∠EDQ ,∠AEP=∠QED ,AE=ED ,∴△AEP ≌△DEQ ,故①正确,②作PG ⊥CD 于G ,EM ⊥BC 于M ,∴∠PGQ=∠EMF=90°,∵EF ⊥PQ ,∴∠PEF=90°,∴∠PEN+∠NEF=90°,∵∠NPE+∠NEP=90°,∴∠NPE=∠NEF ,∵PG=EM ,∴△EFM ≌△PQG ,∴EF=PQ ,故②正确,③连接QF .则QF=PF ,PB 2+BF 2=QC 2+CF 2,设CF=x ,则(2+x )2+12=32+x 2,∴x=1,故③错误,④当P 在A 点时,Q 与D 重合,QC 的中点H 在DC 的中点S 处,当P 运动到B 时,QC 的中点H 与D 重合,故EH 扫过的面积为△ESD 的面积=12,故④正确, 则正确的是①②④,故选B .【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,难度较大.2.D解析:D【分析】根据正方形的性质及全等三角形的判定与性质即可分别求证判断.【详解】在正方形ABCD中,AO=BO,∠AOG=∠BOE,AC⊥BD∵AF⊥BE,∴∠EAF+∠BEO=∠BEO+∠OBE=90°,∴∠OAG=∠OBE,∴△OAG≌△OBE,故OE=OG,①正确;∵AB=AE,∴∠ABE=∠AEB,∵EH∥AF∴HE⊥BE,∴∠AEF+∠AEH=∠ABE+∠CBE,∴∠AEH=∠CBE又∵AE=AB=CB,∠HAE=∠ECB=45°,∴△AEH≌△CBE,∴EH=BE,②正确;∵△AEH≌△22+=222∴AH=CE=AC-AE=22,③正确.故选D【点睛】此题主要考查正方形的性质与线段的证明,解题的关键是熟知正方形的性质定理及全等三角形的判定与性质.3.C解析:C【分析】如下图,将△APD绕点A逆时针旋转60°至△AFE处,通过边长转换,可将PA+PD+PQ转化为PF+EF+PQ的形式,再利根据两点之间线段最短,得出最小值.【详解】如下图,将△APD绕点A逆时针旋转60°至△AFE处,连接FP,过点E作BC的垂线,交BC于点G,AD于点H,过点A作BC的垂线,交BC于点K∵△AFE 是△APD 绕点A 逆时针旋转60°得到∴∠FAP=60°,∠EAD=60°,AF=AP ,EF=PD∴△APF 是等边三角形,∴AP=PF∴PA +PD +PQ =PF+FE+PQ ≥EG∵四边形ABCD 是平行四边形,BC=6∴AE=AD=BC=6,AD ∥BC∴在Rt △AHE 中,AH=3,3∵HG ⊥BC ,AK ⊥BC ,AD ∥BC∴AK ⊥AD ,GH ⊥AD ,∴AK=HG∵∠ABC=60°,AB=4∴在Rt △ABK 中,BK=2,3∴3∴32353=故选:C【点睛】本题考查最值问题,解题关键是旋转△APD ,将PA +PD +PQ 转化为PF+EF+PQ 的形式.4.C解析:C【分析】①直接利用角边角判定定理判断即可;②证明ODH OCG ∆≅∆即可;③在Rt CGH ∆中求解即可判断此答案错误.【详解】解:①∵四边形ABCD 是正方形,,AC BD 是对角线,∴OD OC =,45ODF OCE ∠=∠=︒,90DOC ∠=︒,∵90EOF ∠=︒,∴DOC DOE EOF DOE ∠-∠=∠-∠,即:EOC DOF ∠=∠,在ODF ∆和OCE ∆中,∵ODF OCE OD OC DOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ODF OCE ∆≅∆,故①正确;②∵45ODF OCE ∠=∠=︒,∴90=90=135ODF OCE ∠+︒∠+︒︒,即:ODH OCG ∠=∠,在ODH ∆和OCG ∆中,∵GOC DOH OD OC ODH OCG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ODH OCG ∆≅∆,∴OH OG =,故②正确;③过点O 作OM CD ⊥于点M ,∵OM CD ⊥,∴在等腰Rt OCD ∆中,118422OM CD ==⨯=, 在Rt ECG ∆和Rt EMO ∆中 ∵OME GCE OEM GEC OE GE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴4CG OM ==,由②中知:ODH OCG ∆≅∆,∴DH CG =,∴=4DH CG =,∴8412CH CD DH =+=+=,∴在Rt CGH ∆中,由勾股定理得:GH =,故③错误;综上所述:只有两个正确,故选:C .【点睛】本题主要考查正方形的性质,全等三角形的判定与性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分每组对角.5.C解析:C【分析】利用SAS 证明△AGB ≌△ACE ,即可判断①;证明∠BNM=∠MAE=90︒,即可判断②;假设③成立,利用勾股定理对等式变形证得AC =BC ,而AC 与BC 不一定相等,即可判断③;利用勾股定理证得2222BC EG BE CG +=+,从而证得结论④成立.【详解】∵四边形ACFG 和四边形ABDE 都是正方形,∴AC=AG ,AB=AE ,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC ,即∠GAB=∠CAE ,在△AGB 和△ACE 中,∵AG AC GAB CAE AB AE ⎧⎪∠∠⎨⎪⎩===,∴△AGB ≌△ACE(SAS),∴GB=CE ,故①正确;设BA 、CE 相交于点M ,∵△AGB ≌△ACE ,∴∠GBA=∠CEA ,又∵∠BMN=∠EMA ,∴∠BNM=∠MAE=90︒,∴EC BG ⊥,故②正确;设正方形ACFG 和正方形ABDE 的边长分别为a 和b ,∵ACB 为直角三角形,且AB 为斜边,∴22222AB AC b a BC -=-=,假设22222FG BF BD BC +=+成立,则有()22222a a BC b BC ++=+,整理得:()2222a BC b a =-,即2a BC BC =,∴a BC =,即AC BC =,∵AC 与BC 不一定相等,∴假设不成立,故③不正确;连接CG ,BE ,设BG 、CE 相交于N ,∵EC BG ⊥,∴222222222222BC EG BN NC EN NG BN EN NC NG BE CG +=+++=+++=+, ∵四边形ACFG 和四边形ABDE 都是正方形,∴222BE AB =,222CG AC =,∴222222BC EG AB AC +=+,故④正确;综上,①②④正确,故选:C .【点睛】本题是四边形综合题,主要考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,灵活运用勾股定理是解题的关键.6.B解析:B【分析】先作出1l 与2l ,2l 与的3l 距离AE 、CF ,证明△ABE ≌△BCF ,得到BF=AE ,再利用勾股定理即可得到答案.【详解】过点A 作AE ⊥2l ,过点C 作CF⊥2l ,∴∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∵四边形ABCD 是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠BAE=∠CBF,在△ABE 和△BCF 中,BAE CBF AEB BFC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△BCF ,∴BF=AE=5,在Rt △BCF 中,CF=7,BF=5,∴222225774BC BF CF =+=+=,∴正方形ABCD 的面积=274BC =,故选:B.【点睛】此题考查正方形的性质,三角形全等的判定及性质定理,平行线之间的距离处处相等,题中证明两个三角形全等是解题的关键,由此将两个距离5和7变化到一个直角三角形中,由此利用勾股定理解决问题.7.D解析:D【分析】首先根据正方形的性质证得△BAE ≌△CDE ,推出∠ABE =∠DCE ,再证△ADH ≌△CDH ,求得∠HAD =∠HCD ,推出∠ABE =∠HAD:求出∠ABE+∠BAG =90°;最后在△AGE 中根据三角形的内角和是180°求得∠AGE =90°即可得到①正确; 因为点E 是AD 边的中点,求出AB= 2AE ,5即可求得5,故②正确;根据 AD ∥BC ,求出S △BDE =S △CDE ,推出 S △BDE ﹣S △DEH =S △CDE ﹣S △DEH ,即;S △BHE =S △CHD ,故③正确;由∠AHD =∠CHD ,得到邻补角和对顶角相等得到∠AHB =∠EHD ,故④正确【详解】∵四边形ABCD 是正方形,E 是AD 边上的中点,∴AE=DE ,AB=CD ,∠BAD=∠CDA=90°,在△BAE 和△CDE 中∵AE DE BAE CDE AB CDA =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△CDE (SAS ),∴∠ABE=∠DCE ,∵四边形ABCD 是正方形,∴AD=DC ,∠ADB=∠CDB=45°,∵在△ADH 和△CDH 中,AD CD ADH CDH DH DH =⎧⎪∠=∠⎨⎪=⎩∴△ADH ≌△CDH (SAS ),∴∠HAD=∠HCD ,∵∠ABE=∠DCE∴∠ABE=∠HAD ,∵∠BAD=∠BAH+∠DAH=90°,∴∠ABE+∠BAH=90°,∴∠AGB=180°-90°=90°,∴AG ⊥BE ,故①正确;∵点E 是AD 边的中点,∴AB= 2AE ,∴∴,故②正确;∵AD ∥BC ,∴S △BDE =S △CDE ,∴S △BDE ﹣S △DEH =S △CDE ﹣S △DEH ,即;S △BHE =S △CHD ,故③正确;∵△ADH ≌△CDH ,∴∠AHD=∠CHD ,∴∠AHB=∠CHB ,∵∠BHC=∠DHE ,∴∠AHB=∠EHD ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定与性质和正方形的性质,解题的关键是熟练掌握其性质.8.A解析:A【分析】设B x ∠=,先根据平行四边形的性质可得,180,D B x BAD x AB CD ∠=∠=∠=︒-=,再根据直角三角形的两锐角互余、角的和差可得45x =︒,然后根据等腰直角三角形的判定与性质、勾股定理可得AB =CD =,最后利用平行四边形的面积公式即可得.【详解】设B x ∠=,四边形ABCD 是平行四边形,,180180,D B x BAD B x AB CD ∴∠=∠=∠=︒-∠=︒-=,,AG BC AH CD ⊥⊥,9090,9090BAG B x DAH D x ∴∠=︒-∠=︒-∠=︒-∠=︒-,又180,45BAG DAH BAD GAH x GAH ∠+︒-∠+∠=∠∠=︒=,909100458x x x ︒-+︒-=∴︒+︒-,解得45x =︒,即45B ∠=︒,Rt ABG ∴是等腰直角三角形,2,BG AG AB ∴====CD ∴=,∴平行四边形ABCD 的面积是3AH CD ⋅=⨯=,故选:A .【点睛】本题考查了平行四边形的性质、直角三角形的两锐角互余、等腰直角三角形的判定与性质、勾股定理等知识点,熟练掌握平行四边形的性质是解题关键.9.D解析:D【分析】由勾股定理可求BE 的长,由折叠的性质可得CE =EF =2,BE ⊥CF ,FH =CH ,由面积法可求CH ,由勾股定理可求EH 的长,由三角形中位线定理可求DF =2EH 【详解】解:如图,连接CF ,交BE 于H ,∵在正方形ABCD中,AB=4,E是CD的中点,∴BC=CD=4,CE=DE=2,∠BCD=90°,∴BE2216425BC CE+=+=∵将△BCE沿BE翻折至△BFE,∴CE=EF=2,BE⊥CF,FH=CH,∵S△BCE=12×BE×CH=12×BC×CE,∴CH=55,∴22165 455CE CH-=-=,∵CE=DE,FH=CH,∴DF=2EH=55,故选:D.【点睛】本题考查了翻折变换,正方形的性质,全等三角形的判定与性质,掌握折叠的性质是本题的关键.10.B解析:B【分析】①只要证明OH是△DBF的中位线即可得出结论;②根据OH是△BFD的中位线,得出GH=12CF,由GH<14BC,可得出结论;③易证得△ODH是等腰三角形,继而证得OD=12 BF;④根据四边形ABCD是正方形,BE是∠DBC的平分线可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出结论.【详解】解:∵EC=CF,∠BCE=∠DCF,BC=DC,∴△BCE≌△DCF,∴∠CBE=∠CDF,∵∠CBE+∠BEC=90°,∠BEC=∠DEH,∴∠DEH+∠CDF=90°,∴∠BHD=∠BHF=90°,∵BH=BH,∠HBD=∠HBF,∴△BHD≌△BHF,∴DH=HF,∵OD=OB∴OH是△DBF的中位线∴OH∥BF;故①正确;∴OH=12BF,∠DOH=∠CBD=45°,∵OH是△BFD的中位线,∴DG=CG=12BC,GH=12CF,∵CE=CF,∴GH=12CF=12CE∵CE<CG=12 BC,∴GH<14BC,故②错误.∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF(SAS),∴∠EBC=∠CDF=22.5°,∴∠BFH=90°-∠CDF=90°-22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°-∠DCH=90°-22.5°=67.5°,∴∠CHF=180°-∠HCF-∠BFH=180°-67.5°-67.5°=45°,故④正确;∴∠ODH=∠BDC+∠CDF=67.5°,∴∠OHD=180°-∠ODH-∠DOH=67.5°,∴∠ODH=∠OHD,∴OD=OH=12BF;故③正确.故选:B.【点睛】此题考查了全等三角形的判定和性质、等腰三角形的判定与性质以及正方形的性质.解答此题的关键是作出辅助线,构造等腰直角三角形,利用等腰直角三角形的性质结合角平分线的性质逐步解答.二、填空题11.25【详解】由于点B 与点D 关于AC 对称,所以如果连接DE ,交AC 于点P ,那PE+PB 的值最小.在Rt △CDE 中,由勾股定理先计算出DE 的长度,即为PE+PB 的最小值.连接DE ,交AC 于点P ,连接BD .∵点B 与点D 关于AC 对称,∴DE 的长即为PE+PB 的最小值,∵AB=4,E 是BC 的中点,∴CE=2,在Rt △CDE 中, DE=25.考点:(1)、轴对称-最短路线问题;(3)、正方形的性质.12.218cm 【分析】根据正方形的性质可以证明△AEO ≌CFO ,就可以得出S △AEO =S △CFO ,就可以求出△AOD 面积等于正方形面积的14,根据正方形的面积就可以求出结论. 【详解】解:如图:∵正方形ABCD的对角线相交于点O,∴△AEO与△CFO关于O点成中心对称,∴△AEO≌CFO,∴S△AEO=S△CFO,∴S△AOD=S△DEO+S△CFO,∵对角线长为1cm,∴S正方形ABCD=1112⨯⨯=12cm2,∴S△AOD=18cm2,∴阴影部分的面积为18cm2.故答案为:18cm2.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用正方形的面积及三角形的面积公式的运用,在解答时证明△AEO≌CFO是关键.13.8【分析】通过作辅助线使得△CAO≌△GBO,证明△COG为等腰直角三角形,利用勾股定理求出CG 后,即可求出BC的长.【详解】如图,延长CB 到点G ,使BG=AC .∵根据题意,四边形ABED 为正方形,∴∠4=∠5=45°,∠EBA=90°,∴∠1+∠2=90°又∵三角形BCA 为直角三角形,AB 为斜边,∴∠2+∠3=90°∴∠1=∠3∴∠1+∠5=∠3+∠4,故∠CAO =∠GBO ,在△CAO 和△GBO 中,CA GB CAO GBO AO BO =⎧⎪∠=∠⎨⎪=⎩故△CAO ≌△GBO ,∴CO =GO=7=∠6,∵∠7+∠8=90°,∴∠6+∠8=90°,∴三角形COG 为等腰直角三角形,∴, ∵CG=CB+BG ,∴CB=CG -BG=12-4=8,故答案为8.【点睛】本题主要考查正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,根据题意建立正确的辅助线以及掌握正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质是解答本题的关键.14.8个【分析】作点F 关于BC 的对称点M ,连接FM 交BC 于点N ,连接EM ,交BC 于点H ,可得点H 到点E 和点F 的距离之和最小,可求最小值,即可求解.【详解】如图,作点F 关于BC 的对称点M ,连接FM 交BC 于点N ,连接EM ,交BC 于点H , ∵点E ,F 将对角线AC 三等分,且AC =6,∴EC =4,FC =2=AE ,∵点M 与点F 关于BC 对称,∴CF =CM =2,∠ACB =∠BCM =45°,∴∠ACM =90°,∴EM则在线段BC存在点H到点E和点F的距离之和最小为25<5,在点H右侧,当点P与点C重合时,则PE+PF=4+2=6,∴点P在CH上时,25<PE+PF≤6,在点H左侧,当点P与点B重合时,∵FN⊥BC,∠ABC=90°,∴FN∥AB,∴△CFN∽△CAB,∴FN CN CF1===AB CB CA3,∵AB=BC=22AC=32,∴FN=13AB=2,CN=13BC=2,∴BN=BC-CN=22,BF=22FN+BN=2+8=10,∵AB=BC,CF=AE,∠BAE=∠BCF,∴△ABE≌△CBF(SAS),∴BE=BF=10,∴PE+PF=210,∴点P在BH上时,25<PE+PF<210,∴在线段BC上点H的左右两边各有一个点P使PE+PF=5,同理在线段AB,AD,CD上都存在两个点使PE+PF=5.即共有8个点P满足PE+PF=5,故答案为8.【点睛】本题考查了正方形的性质,最短路径问题,在BC上找到点H,使点H到点E和点F的距离之和最小是本题的关键.15.25【分析】作BE ⊥AD 于E ,BF ⊥CD 于F ,则四边形BEDF 是矩形,证明△ABE ≌△CBF (AAS ),得出BE=BF ,△ABE 的面积=△CBF 的面积,则四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,求出BE=10,即可求得BD 的长.【详解】解:作BE ⊥AD 交DA 延长线于E ,BF ⊥CD 于F ,如图所示:则∠BEA=∠BFC=90°,∵∠ADC=90°,∴四边形BEDF 是矩形,∴∠EBF=90°,∵∠ABC=90°,∴∠EBF=∠ABC=90°,∴∠ABE=∠CBF ,在△ABE 和△CBF 中,BEA BFC ABE CBF AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CBF (AAS ),∴BE=BF ,△ABE 的面积=△CBF 的面积,∴四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,∴BE=DE ,BE 2=10 cm 2,∴10(cm),∴25.故答案为:5【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、矩形的判定与性质等知识;熟练掌握正方形的判定与性质,证明三角形全等是解题的关键.16.42a - 33【分析】先根据直角三角形含30度角的性质和勾股定理得AB=2,AC=4,从而得CG的长,作辅助线,构建矩形ABHM和高线GM,如图2,通过画图发现:当GE⊥BC时,AG最小,即a 最小,可计算a的值,从而得结论.【详解】∵四边形ABCD是矩形,∴∠B=90°,∵∠ACB=30°,BC=23,∴AB=2,AC=4,∵AG=a,∴CG=4a-,如图1,过G作MH⊥BC于H,交AD于M,Rt△CGH中,∠ACB=30°,∴GH=12CG=42a-,则点G到BC边的距离为42a-,∵HM⊥BC,AD∥BC,∴HM⊥AD,∴∠AMG=90°,∵∠B=∠BHM=90°,∴四边形ABHM是矩形,∴HM=AB=2,∴GM=2﹣GH=422a--=2a,∴S△ADG11323222a aAD MG=⋅=⨯=,当a最小时,△ADG的面积最小,如图2,当GE⊥BC时,AG最小,即a最小,∵FG是AE的垂直平分线,∴AG=EG,∴42aa -=,∴43a=,∴△ADG 34233=,故答案为:42a-23.【点睛】本题主要考查了垂直平分线的性质、矩形的判定和性质、含30度角的直角三角形的性质以及勾股定理,确定△ADG的面积最小时点G的位置是解答此题的关键.17.32【详解】解析:∵在正方形ABCD中,AC=62∴AB=AD=BC=DC=6,∠EAD=45°设EF与AD交点为O,O是AD的中点,∴AO=3以AD为对角线的所有▱AEDF中,当EF⊥AC时,EF最小,即△AOE是直角三角形,∵∠AEO=90°,∠EAD=45°,232,∴EF=2OE=3218.4【分析】证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.【详解】解:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∵∠CEF=∠BED,∴△CEF≌△BED(ASA).∴CF=BD.∴四边形CDBF是平行四边形.作EM⊥DB于点M,∵四边形CDBF是平行四边形,22BC=∴BE=122BC=,DF=2DE,在Rt△EMB中,EM2+BM2=BE2且EM=BM∴EM=1,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=2,∴DF=2DE=4.故答案为:4.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,19.663【分析】通过四边形ABCD是矩形以及CE CB BE==,得到△FEM是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM,NK,KE的值,进而得到NE的值,再利用30°直角三角形的性质及勾股定理得到BN,BE即可.【详解】解:如图,设NE交AD于点K,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠MFE=∠FCB,∠FME=∠EBC∵CE CB BE==,∴△BCE为等边三角形,∴∠BEC=∠ECB=∠EBC=60°,∵∠FEM=∠BEC,∴∠FEM=∠MFE=∠FME=60°,∴△FEM是等边三角形,FM=FE=EM=2,∴∠NEM=∠NEB=90°,∴∠NKA=∠MKE=30°,∴KM=2EM=4,NK=2AN=6,∴在Rt△KME中,KE=2223KM EM-=,∴NE=NK+KE=6+23,∵∠ABC=90°,∴∠ABE=30°,∴BN=2NE=12+43,∴BE=22663BN NE-=+,∴BC=BE=663,故答案为:663【点睛】本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.20.2或3.5【分析】分别从当Q运动到E和B之间、当Q运动到E和C之间去分析求解即可求得答案.【详解】如图,∵E是BC的中点,∴BE=CE= 12BC=9,①当Q运动到E和B之间,则得:3t﹣9=5﹣t,解得:t=3.5;②当Q 运动到E 和C 之间,则得:9﹣3t=5﹣t ,解得:t=2,∴当运动时间t 为2秒或3.5秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.【点睛】“点睛”此题考查了梯形的性质以及平行四边形的判定与性质.解题时注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.三、解答题21.(1)见解析;(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形,证明详见解析【分析】(1)证明四边形OCFD 是平行四边形,得出OD=CF ,证出OB=CF ,再证明全等即可(2)证出四边形ABCD 是矩形,由矩形的性质得出OC=OD ,即可得出四边形OCFD 为菱形.【详解】(1)证明:∵//,//CF BD DF AC ,∴四边形OCFD 是平行四边形, OBE CFE ∠=∠,∴OD CF =,∵四边形ABCD 是平行四边形,∴OB OD =,∴OB CF =,在FCE △和BOE △中, OBE CFE BEO FEC OB CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()FCE BOE AAS ≌.(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形.理由如下:∵90ADC ∠=︒,四边形ABCD 是平行四边形,∴四边形ABCD 是矩形∴,,,OA OC OB OD AC BD ===∴OC OD =,∴四边形OCFD 为菱形【点睛】本题考查全等三角形判定与性质,平行四边形和菱形的判定与性质等知识,熟练掌握平行四边形的判定和性质和菱形的判定是解题的关键.22.(1)证明见解析;(2)①当AE=3.5时,平行四边形CEDF 是矩形;②2【分析】(1)证明△FCG ≌△EDG (ASA ),得到FG=EG 即可得到结论;(2)①当AE=3.5时,平行四边形CEDF 是矩形.过A 作AM ⊥BC 于M ,求出BM=1.5,根据平行四边形的性质得到∠CDA=∠B=60°,DC=AB=3,BC=AD=5,求出DE=1.5=BM ,证明△MBA ≌△EDC(SAS),得到∠CED=∠AMB=90°,推出四边形CEDF 是矩形;②根据四边形CEDFCEDF 是菱形,得到CD ⊥EF ,DG=CG=1212CD=1.5,求出∠DEG=30°,得到DE=2DG=3,即可求出AE=AD-DE=5-3=2.【详解】(1)证明:∵ 四边形ABCD 是平行四边形,∴ CF ∥ED ,∴ ∠FCG =∠EDG ,∵ G 是CD 的中点,∴ CG =DG ,在△FCG 和△EDG 中,FCG EDG CG DG CGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ △FCG ≌△EDG (ASA ),∴ FG =EG ,∵ CG =DG ,∴ 四边形CEDF 是平行四边形;(2)解:①当AE=3.5时,平行四边形CEDF 是矩形,理由是:过A 作AM ⊥BC 于M ,∵∠B=60°,∴∠BAM=30°,∵AB=3,∴BM=1.5,∵四边形ABCD 是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM ,在△MBA 和△EDC 中,BM DE B CDE AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△MBA ≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF 是平行四边形,∴四边形CEDF 是矩形;②∵四边形CEDFCEDF 是菱形,∴CD ⊥EF ,DG=CG=1212CD=1.5,∵∠CDE=∠B=60∘∠B=60∘,∴∠DEG=30°,∴DE=2DG=3,∴AE=AD-DE=5-3=2,故答案为:2.【点睛】此题考查了平行四边形的性质,矩形的判定定理,菱形的性质定理,直角三角形30度角所对的直角边等于斜边的一半,三角形全等的判定及性质定理,熟练掌握各定理并运用解答问题是解题的关键.23.(1)见解析;(2)t=2;(3)t=1.【分析】(1)由菱形的性质可得AB=CD,AB∥CD,可求CF=AE,可得结论;(2)由菱形的性质可求AD=2cm,∠ADN=60°,由直角三角形的性质可求AN=3DN=3cm,由三角形的面积公式可求解;(3)由菱形的性质可得EF⊥GH,可证四边形DFEM是矩形,可得DF=ME,由直角三角形的性质可求AM=1,即可求解.【详解】证明:(1)∵动点E、F分别从点B、D同时出发,都以0.5cm/s的速度向点A、C运动,∴DF=BE,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴CF=AE,∴四边形AECF是平行四边形,∴AF∥CE;(2)如图1,过点A作AN⊥CD于N,∵在菱形ABCD中,AB=2cm,∠ADC=120°,∴AD=2cm,∠ADN=60°,∴∠NAD=30°,∴DN=12AD=1cm,AN=3DN=3cm,∴S△ADF=12×DF×AN=12×12t×3=32,∴t=2;(3)如图2,连接GH,EF,过点D作DM⊥AB于M,∵四边形AECF是平行四边形,∴FA=CE,∵点G是AF的中点,点H是CE的中点,∴FG=CH,∴四边形FGHC是平行四边形,∴CF∥GH,∵四边形EHFG为菱形,∴EF⊥GH,∴EF⊥CD,∵AB∥CD,∴EF⊥AB,又∵DM⊥AB,∴四边形DFEM是矩形,∴DF=ME,∵∠DAB=60°,∴∠ADM=30°,∴AM=12AD=1cm,∵AM+ME+BE=AB,∴1+12t+12t=2,∴t=1.【点睛】本题是四边形综合题,考查了菱形的性质,直角三角形的性质,矩形的判定和性质,灵活运用这些性质解决问题是本题的关键.24.(1)见解析;(2)HG=OH+BG;(3)能成矩形,y33 42x=-.【分析】(1)根据旋转和正方形的性质可得出CD=CB,∠CDG=∠CBG=90,根据全等直角三角形的判定定理(HL)即可证出Rt△CDG≌Rt△CBG,即∠DCG=∠BCG,由此即可得出CG平分∠DCB;(2)由(1)的Rt△CDG≌Rt△CBG可得出BG=DG,根据全等直角三角形的判定定理(HL)即可证出Rt△CHO≌Rt△CHD,即OH=HD,再根据线段间的关系即可得出HG=HD+DG=OH+BG;(3)根据(2)的结论即可找出当G点为AB中点时,四边形AEBD为矩形,再根据正方形的性质以及点B的坐标可得出点G的坐标,设H点的坐标为(x,0),由此可得出HO=x,根据勾股定理即可求出x的值,即可得出点H的坐标,结合点H、G的坐标利用待定系数法即可求出直线DE的解析式.【详解】(1)∵正方形ABCO绕点C旋转得到正方形CDEF,∴CD=CB,∠CDG=∠CBG=90°.在Rt△CDG和Rt△CBG中,∵CG CGCD CB=⎧⎨=⎩,∴Rt△CDG≌Rt△CBG(HL),∴∠DCG=∠BCG,即CG平分∠DCB.(2)由(1)证得:Rt△CDG≌Rt△CBG,∴BG=DG.在Rt△CHO和Rt△CHD中,∵CH CHCO CD=⎧⎨=⎩,∴Rt△CHO≌Rt△CHD(HL),∴OH=HD,∴HG=HD+DG=OH+BG.(3)假设四边形AEBD可为矩形.当G点为AB中点时,四边形AEBD为矩形,如图所示.∵G点为AB中点,∴BG=GA12=AB,由(2)证得:BG=DG,则BG=GA=DG12=AB12=DE=GE,又AB=DE,∴四边形AEBD为矩形,∴AG=EG=BG=DG.∵AG12=AB=3,∴G点的坐标为(6,3).设H点的坐标为(x,0),则HO=x,∴HD=x,DG=3.在Rt△HGA中,HG=x+3,GA=3,HA=6﹣x,由勾股定理得:(x+3)2=32+(6﹣x)2,解得:x=2,∴H点的坐标为(2,0).设直线DE的解析式为:y=kx+b(k≠0),将点H(2,0)、G(6,3)代入y=kx+b中,得:2063k bk b+=⎧⎨+=⎩,解得:3432kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线DE的解析式为:y3342x=-.。
南通市如东县八年级数学第二学期阶段性测试卷(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题3分,共30分)1 .以下列长度的三条线段为边,能组成直角三角形的是()A2,3,4 B.6,8,10 C.5,11,12 D.7,9,112. 已知在平行四边形ABCD中,∠B+∠D=200°,则∠B的度数为()A.100°B.160°C.80°D.60°3.一次函数y=2x+1的图象经过的象限是()A.一、二、三B.一、二、四C.一、三、四D.二、三、四4.学校甲、乙两支国旗护卫队队员的平均身高均为1.7米,要想知道哪支国旗护卫队队员的身高更为整齐,通常需要比较他们身高的()A.平均数B.中位数C.众数D.方差5.一次函数的图象经过点(a,2),则a的值为()A. -1B. 0C. 1D.26.关于x的一元二次方程x²-6x+m=0有两个相等的实数根,则m的值是A.9B.10C.11D.127.如图,已知一次函数y=mx+n 的图象经过点P(-2,3)则关于x 的不等式mx+n<3的解集为()A.x>-3 B.x<-3C.x>-2 D.x<-28.若关于x 的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,且满足4a-2b+c=0,则()A.b=a B.c=2a C.a(x+2)2=0 D.-a(x-2)2=09.如图,在矩形ABCD中,AB=4,E,F是对角线AC上两点,AE=CF,过点E,F分别作AC的垂线,与边BC分别交于点G,H.若BG=1,CH=4,则EG+FH=()A.6B.5C.4D.310.已知y关于x的一次函数y=k(x-a)+a²-a+1,当a≤x≤a+2时,-2≤y≤3,则k的值等于()A. B.C.D.二、填空题(本大题共8小题,11,12每题3分,13—18每题4分,共30分)11.在平面直角坐标系中,点(2,3)关于原点对称的点的坐标为.▲·12.已知正比例函数y=kx的图象如图所示,则k的值可以是▲(写出一个即可)13.一组数据2,0,1,x,3的平均数是2,则x= ▲14.小明的期中数学成绩为80分,期末数学成绩为90分,将期中和期末按照4:6的比例计算,得到总评成绩,则小明的数学总评成绩为▲分.15.如图,平行四边形ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,AB=3,AD=4,则EF的长等于▲.16.南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步?”其大意是:矩形面积为八百六十四平方步,宽和长共六十步,问宽和长各几步?若设宽为x步,则根据题意可列方程为▲.17.若m,n是方程x²-2x-1=0的两个实数根,则2m²+4n²-4n+2022的值为▲18.如图,过菱形ABCD的顶点D作DE⊥AB,垂足为E,F为BC延长线上一点,连接EF,分别与菱形的边AD,CD相交于点G,H,DG=CF,O为BD的中点,连接OE,OH.若DH=1,DE=3,则△OEH的周长等于▲三、解答题(本大题共8小题,共90分.)19.(本小题满分10分)解方程:(1)x²-4x-1=0; (2)x(3x+1)=2(3x+1).为增强学生的防疫意识,学校拟选拔一支代表队参加市级防疫知识竞赛,甲、乙两支预选队(每队各10人)参加了学校举行的选拔赛,选拔赛满分为100分.现对甲、乙两支预选队的竞赛成绩进行整理、描述和分析,下面给出了部分信息:a.甲队10名学生的竞赛成绩是:92,84,92,92,96,84,92,100,82,96b.甲、乙两队学生竞赛成绩统计表:(1)在甲、乙两队学生竞赛成绩统计表中,m=.▲ ,n=. ▲ ;(2)学校准备从甲,乙两支预选队中选取成绩前10名(包括第10名)的学生组成代表队参加市级比赛,小聪的成绩正好是甲乙两队中某一队成绩的中位数,但他却落选了,请判断小聪所属的队伍,并说明理由.21.(本小题满分10分)如图,在平面直角坐标系x0y中,直线L1经过原点,且与直线L₂:y=-x+3交于点A(m,2),直线L2与y 轴交于点B.(1)求直线L1的函数解析式;(2)点P(0,n)在y轴上,过点P作平行于x轴的直线,分别与直线L1,L₂交于点M,N.若MN=2OB,求n的值.为了满足师生的阅读需求,某校图书馆的藏书从2019年底到2021年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年平均增长率;(2)该校期望2022年底藏书量达到8.6万册,按照(1)中藏书的年平均增长率,上述目标能实现吗?请通过计算说明.23.(本小题满分12分)如图,在四边形ABCD中,AC与BD交于点O,AO=CO,BO=DO,BD平分∠ABC(1)求证:四边形ABCD是菱形;⑵E为OB上一点,连接CE,若OE=1,CE=5,BC=25,求菱形ABCD的面积.学校体育器材室拟购进甲、乙两种实心球.某公司给出这两种实心球的销售方法为:甲种实心球的销售总额y(单位:元)与销售量x(单位:个)的函数关系如图所示;乙种实心球20元/个.(1)求y与x之间的函数关系;(2)若学校体育器材室拟购买这两种实心球共100个,且每种均不少于45个,请设计最省钱的方案,并说明理由.25.(本小题满分13分)如图,在正方形ABCD中,AB=4,E为BD上的动点,连接AE并延长交正方形ABCD的边于点F ,将AF绕点A逆时针旋转90°得到AG,点E的对应点为点H.(1)连接DH,求证:△ABE≌△ADH;(2)当AG=5时,求BF的长;(3)连接BH,请直接写出BH+AH的最小值.(第25题) (第25题备用图)定义:形如的函数称为正比例函数y=kx(k≠0)的“分移函数”,其中b叫“分移值”.例如,函数y=2x的“分移函数”其中“分移值”为1.(1)已知点(1,2k)在y=kx(k≠0)的“分移函数”的图象上,则k=.▲;(2)已知点P(2,1-m),P2(-3,2m+1)在函数y=2x的“分移函数”的图象上,求m的值;(3)已知矩形ABCD顶点坐标为A(1,0),B(1,2),C(-2,2),D(-2,0).函数y=kx的“分移函数”的“分移值”为3,且其图象与矩形ABCD有两个交点,直接写出k的取值范围.。
八年级数学第二学期阶段考试试卷(考查内容:第十七章 反比例函数)说明:1、全卷共8页。
考试时间90分钟,满分150分.2、答卷前,考生必须将自己的座号、姓名、班级、学校按要求填写在密封线左边的空格内。
3、答题可用黑色钢笔、圆珠笔按各题要求答在试卷上,但不能用铅笔或红笔第Ⅰ部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.每小题给出的4 个选项中只有一个是符合题目要求的。
) 1、下列函数中,反比例函数是( )(A ) 1)1(=-y x (B ) 11+=x y (C ) 21xy = (D ) x y 31= 2、某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x ,则y 与x 之间的函数关系式的大致图像应为( )3、若y 与-3x 成反比例,x 与z4成反比例,则y 是z 的( ) (A )正比例函数 (B )反比例函数 (C )一次函数 (D )不能确定 4、若反比例函数22)12(--=m x m y 的图像在第二、四象限,则m 的值是( )(A )-1或1 (B )小于21的任意实数 (C ) -1 (D) 不能确定5、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) (A )(-a ,-b ) (B )(a ,-b ) (C )(-a ,b ) (D )(0,0)6、若M(12-,1y )、N(14-,2y )、P(12,3y )三点都在函数ky x=(k>0)的图象上,则1y 、2y 、3y 的大小关系是( )(A )132y y y >> (B )312y y y >> (C ) 213y y y >> (D )123y y y >>7、如图,A 为反比例函数ky x=图象上一点,AB 垂直x 轴于B 点,若AOB S ∆=5,则k 的值为( )(A ) 10 (B ) 10- (C ) 5- (D )25-8、在同一直角坐标系中,函数y=kx-k 与(0)ky k x=≠的图像大致是( )9、如图是三个反比例函数312,,k k ky y yx x x===,在x 轴上方的图像,由此观察得到k l 、k 2、k 3的大小关系为( )(A ) k 1>k 2>k 3 (B ) k 3>k 1>k 2 (C ) k 2>k 3>k 1 (D ) k 3>k 2>k 110、在同一直角坐标平面内,如果直线1y x k =与双曲线2k y x=没有交点,那么1k 和2k 的关系一定是( ) (A) 1k 、2k 异号(B) 1k 、2k 同号 (C) 1k >0,2k <0 (D) 1k <0, 2k >0第Ⅱ部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,共18分.请把下列各题的正确答实填写在横线上)11、已知22)1(--=a xa y 是反比例函数,则a=____ .12、在函数13x -中自变量x 的取值范围是_________. 13、在反比例函数xk y 1+=的图象上有两点11()x y ,和22()x y ,,若x x 120<<时,y y 12>,则k 的取值范围是 .14、.已知圆柱的侧面积是π102cm ,若圆柱底面半径为r cm ,高为h cm ,则h 与r 的函数关系式是 。
15、我们学习过反比例函数.例如,当矩形面积S 一定时,长a 是宽b 的反比例函数,其函数关系式可以写为a=sb(S 为常数,S ≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式. 实例:______________________________________________________________; 函数关系式:_______________________16、若A 、B 两点关于y 轴对称,且点A 在双曲线xy 21=上,点B 在直线3+=x y 上,设点A 的坐标为(a,b ),则abb a += 。
三、解答题(本大题共9小题,共102 分.解答应写出文字说明、证明过程或演算步骤)17(9分)设函数y=(m-2)255m m x-+,当m 取何值时,它是反比例函数?•它的图象位于哪些象限?求当12≤x ≤2时函数值y 的变化范围.18(9分)已知甲、乙两站的路程是312 km,一列列车从甲站开往乙站,设列车的平均速度为x km/h ,所需时间为y h 。
(1)试写出y 关于x 的函数关系式;(2)2006年全国铁路第六次大提速前,这列列车从甲站到乙站需要4 h ,列车提速后,速度提高了26 km/h ,问提速后从甲站到乙站需要几个小时?19(10分)已知一次函数y=x+m 与反比例函数y=1m x + (m ≠-1)的图象在第一象限内的交点为P(x 0,3).(1)求x 0的值;(2)求一次函数和反比例函数的解析式.20(10分)、已知函数11-=x y 和x y 62=。
(1)在所给的19题图的坐标系中画出这两个函数的图象。
(2)求这两个函数图象的交点坐标。
(3)观察图象,当x 在什么范围时,21y y ?21(12分)、已知正比例函数y =4x ,反比例函数y =x k . 求:(1)k为何值时,这两个函数的图象有两个交点?k为何值时,这两个函数的图象没有交点?(2)这两个函数的图象能否只有一个交点?若有,求出这个交点坐标;若没有,请说明理由.22(12分)、已知y=y 1+y 2 ,y 1与x+1成正比例,y2与x+1成反比例,当x=0时,y=-5;当x=2时,y=-7。
(1)求y与x的函数关系式;(2)当y=5时,求x的值。
23(12分)、如图,Rt △ABO 的顶点A 是双曲线y=kx 与直线y=-x-(k+1)在第二象限的交点.AB ⊥x 轴于B,且S △ABO =32.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A 、C 的坐标和△AOC 的面积.24(14分)某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20m 和11m 的矩形大厅内修建一个60m2的矩形健身房ABCD. 该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/m 2,新y OxCB A建(含装修)墙壁的费用为80元/m 2.设健身房的高为3m,一面旧墙壁AB 的长为xm,修建健身房墙壁的总投入为y 元. (1)求y 与x 的函数关系式;(2)为了合理利用大厅,要求自变量x 必须满足条件:8≤x ≤12, 当投入的资金为4800元时,问利用旧墙壁的总长度为多少?25(14分)、如图所示,点A 、B 在反比例函数y=kx 的图象上,且点A 、B•的横坐标分别为a 、2a (a>0),AC ⊥x轴于点C ,且△AOC 的面积为2. (1)求该反比例函数的解析式.11m20mDCB A(2)若点(-a,y1)、(-2a,y2)在该函数的图象上,试比较y1与y2的大小.(3)求△AOB的面积.附答案:二、填空题。
11、1-=a 12、325≠≥x x 且 13、1-<k 14、)0(5>=r rh 15、(仅供参考)如:当路程s 一定时,速度v 是时间t 的反比例函数;函数关系式为v=st(s 是常数)16、16三、解答题。
17、解:依题意可得:⎩⎨⎧≠--=+-021552m m m ;解得:3=m∴当3=m 时,函数y=(m-2)255m m x -+是反比例函数;当3=m 时,代入可得:xy 1=;∵01>=k ,∴它的图象位于第一、第三象限。
由x y 1=可得yx 1=,∵12≤x ≤2;∴2121≤≤y ;解得:221≤≤y 。
18、解:(1)依题意可得:312=xy ;∴y 关于x 的函数关系式是xy 312=; (2)把4=y 代入xy 312=可得:78=x ; ∴提速后列车的速度为104267826=+=+x ;当104=x 时,3104312312===x y ; 答:提速后从甲站到乙站需要3个小时。
19、解:(1)∵点P(x 0,3)在一次函数y=x+m 的图象上.∴3=x 0+m,即m=3-x 0.又点P(x 0,3)在反比例函数y=1m x+ 的图象上.∴3=1m x +,即m=3x 0-1. ∴3-x 0=3x 0-1,解得x 0=1. (2)由(1),得m=3-x 0=3-1=2, ∴一次函数的解析式为y=x+2,反比例函数的解析式为y=3x20、解:(1)函数1y 的自变量取值范围是:全体实数,函数2y 的自变量取值范围是:0≠x ,列表可得:(2)联立解析式:⎪⎩⎪⎨⎧=-=x y x y 61解得:⎩⎨⎧-=-=3211y x ,⎩⎨⎧==2322y x ∴两函数的交点坐标分别为A (-2,-3);B (3,2);(3)由图象观察可得:当302><<-x x 或时,21y y >。
21、解:(1)联立解析式:⎪⎩⎪⎨⎧==x k y x y 4,可得:x k x =4,∵0≠x ∴42Kx =;若两个函数的图象有两个交点,则04>K,解得:0>K ;若两个函数的图象没有交点,则04<K,解得:0<K(2)∵0≠K ∴两个函数的图象不可能只有一个交点。
22、解:(1)设)1(11+=x k y ,)1(22+=x k y ;则有:1)1(2121+++=+=x k x k y y y∵当x=0时,y=-5;当x=2时,y=-7;∴有⎪⎩⎪⎨⎧-=+-=+73352121k k k k 解得:3,221-=-=k k ; y 与x 的函数关系式为:13)1(2+-+-=x x y ; (2)把y=5代入13)1(2+-+-=x x y 可得:513)1(2=+-+-x x 解得:25;221-=-=x x 。
(检验:略)23、解:(1)设A 点坐标为(x,y),且x<0,y>0则S △ABO =12·│BO │·│BA │=12·(-x)·y=32。
∴xy=-3.又∵y=kx,即xy=k,∴k=-3.∴所求的两个函数的解析式分别为y=-3x,y=-x+2. (2)由y=-x+2,令y=0,得x=2.∴直线y=-x+2与x 轴的交点D 的坐标为(2,0). 再由1212213,331y x x x y y y x =-+⎧=-=⎧⎧⎪⇒⎨⎨⎨==-=-⎩⎩⎪⎩∴交点A 为(-1,3),C 为(3,-1).∴S △AOC =S △ODA +S △ODC =1211()2(31)422OD y y ⋅⋅+=⨯⨯+=。