粘弹性沥青路面车辆动力响应仿真分析研究
- 格式:pdf
- 大小:560.81 KB
- 文档页数:5
粘弹性阻尼结构的试验与研究粘弹性阻尼结构是一种结构控制技术,在吊塔、桥梁、建筑物等领域得到广泛应用。
粘弹性阻尼结构能够通过增加粘弹性材料的阻尼特性来改变结构的动力响应,提高结构的抗震能力。
本文将系统介绍粘弹性阻尼结构的试验与研究。
粘弹性材料是一种同时具有固体和液体特性的材料,具有较高的粘滞性和弹性。
粘弹性材料在结构振动中能够将振动能量转化为热能耗散,从而减小结构的振动幅值,降低结构的振动响应。
首先,研究粘弹性材料特性的试验包括黏弹性材料的动态力学特性试验和材料本身的粘弹性特性试验。
动态力学特性试验是通过施加不同频率和振幅的力来探测材料的应变-应力关系。
这些试验可以帮助研究者了解材料的动力学响应特性,从而确定性能参数。
粘弹性特性试验则是通过施加不同应变速率和应变幅值的荷载来研究材料的粘弹性性能。
这些试验可以测量材料的粘弹性模量、损耗因子等重要参数。
其次,结构控制试验是为了研究粘弹性阻尼结构在实际结构中的应用效果。
结构控制试验通常通过加装粘弹性材料阻尼器来改变结构的动力响应。
试验者首先会对结构进行灵敏度分析,确定结构的最佳阻尼器位置和类型。
然后,在实验室或实际工程中,将粘弹性阻尼器装配到结构中,并根据设计要求进行试验。
试验过程中会记录结构的位移、加速度、振动幅值等响应参数,并与未加装阻尼器的结构进行对比。
通过试验数据的分析,可以评估粘弹性阻尼器的控制效果,并确定最佳的设计参数。
粘弹性阻尼结构研究领域的一项重要内容是模型验证。
模型试验是一种常见的方法,通过缩小结构的尺寸,将大型结构的动力响应特性放大到小尺寸实验模型上进行试验。
模型试验可以在实验室中对结构的控制效果进行研究和验证,从而为实际工程的应用提供参考。
在模型试验中,试验数据的准确性非常重要,因此试验仪器的校准和试验方法的设计都需要仔细考虑。
此外,最近几十年来,随着计算机技术和数值模拟能力的发展,数值模拟成为粘弹性阻尼结构研究的另一个重要手段。
数值模拟可以通过建立结构的数学模型,并采用合适的数值方法来模拟结构的动力响应。
Vol.21 No.5公 路 交 通 科 技2004年5月JOURNAL OF HIGHWAY AND TRANSPORTATION RESE ARCH AND DE VELOPMENT文章编号:1002-0268(2004)05-0012-03沥青路面车辙预测的粘弹性分析方法封基良1,许爱华2,席晓波3(1.东南大学交通学院,江苏 南京 210096;2.武汉绕城公路指挥部,湖北 武汉 430415;3.武汉市市政工程设计研究院,湖北 武汉 430015)摘要:作为沥青路面的主要损坏形式,车辙会造成大量的经济损失,影响到路面行车的安全性、舒适性,而且还会引起路面其它形式损坏的产生和加剧。
本文应用粘弹性理论,建立沥青混合料有限元模型,并利用大型商业化有限元软件ABAQUS分析路面车辙,经验证,此方法是一种合理预测沥青路面车辙的有效方法。
关键词:粘弹性;有限元;车辙中图分类号:U416.217 文献标识码:AVisco-elastic Method for Prediction of Asphalt Pa vement Ruttin gFE NG Ji-liang1,X U Ai-huan2,XI Xiao-bo3(1.School of Transportation,Southeast University,Jiangs hu Nanjin g 210096,China;2.Wuhan Bypass Road Construction Command Office,Hubei Wuhan 430415,China;3.Wuhan Municipal Engineering Des ign&Research Institute,Hubei Wuhan 430015,China)Abstract:Rut,a major failure of asphalt pavement,may cost very much to repair with negative impact on safety and comfort.It also induces and accelerates other distress of pavement.Visco-elastic theory has been applied to establish an asphalt mixture finite element model in this article,then ABAQUS,a commercial finite element soft ware,was selected to analyze pavement rut.Key words:Rut;Visco-elastic;Finite element 车辙是重复行车荷载作用下路面不可恢复应变的累积变形及行车荷载作用下的压密变形。
沥青混合料的动荷载响应特征及沥青路面黏弹性力学研究于涛
【期刊名称】《浙江水利水电学院学报》
【年(卷),期】2024(36)1
【摘要】依托北京东六环改造项目的沥青路面工程,运用室内试验的方法,研究沥青混合料持续受到车辆活荷载作用的动力响应特征,以及受到车辆荷载与各种自然因素耦合作用的黏弹性力学变化规律。
研究结果表明,沥青混合料的累积应变动力响应经历了2个阶段:在第Ⅰ阶段,沥青混合料的累积应变动力响应表现为逐步增加;在第Ⅱ阶段,沥青混合料累积应变量整体无明显变化,沥青混合料的应力受车辆循环动荷载的影响无明显变化。
当荷载加载频率逐渐增加时,沥青混合料动态模量也呈对数上升的趋势,随着温度的升高,沥青混合料的动态模量也会逐渐降低,且降低幅度逐渐减小;混合料相位角在荷载加载频率小于等于10 Hz时呈对数增加的趋势,在加载频率大于10 Hz时呈线性降低的趋势,随着温度的增加,沥青混合料相位角不断减小,减小的幅度不断降低。
【总页数】5页(P70-74)
【作者】于涛
【作者单位】中铁十八局集团第五工程有限公司
【正文语种】中文
【中图分类】U414.75
【相关文献】
1.沥青路面车辆动载响应黏弹/弹性分析与试验研究
2.动荷载作用下纤维沥青路面的黏弹性响应
3.钢桥面沥青混合料铺装体系黏弹性力学响应分析
4.沥青混合料黏弹性数值转换与路面结构力学响应计算
5.胶粉改性沥青混合料动荷载力学响应分析
因版权原因,仅展示原文概要,查看原文内容请购买。
车辆静荷载作用下沥青路面力学响应分析发表时间:2019-05-22T16:56:02.993Z 来源:《防护工程》2019年第3期作者:林井权[导读] 半刚性基层沥青路面是现在沥青路面的主要形式之一。
我国现行路面设计方法采用竖向静荷载下弹性多层体系理论,本文采用Ansys10.0建立静载模型的形式,来探讨在竖向静载作用下路面的受力变形特性。
核工业西南勘察设计研究院有限公司摘要:半刚性基层沥青路面是现在沥青路面的主要形式之一。
我国现行路面设计方法采用竖向静荷载下弹性多层体系理论,本文采用Ansys10.0建立静载模型的形式,来探讨在竖向静载作用下路面的受力变形特性。
结论表明:路面结构的变形主要由上面层承担,其余各层竖向位移较小。
底基层层底为该类结构最不利受力层位。
摘要:刚性基层,静载,有限元Analysis of Asphalt Pavement Response under Static LoadingNUCLEAR INDUSTRY SOUTHWEST SURVEY&DESIGN INSTITUTE CO., LTD LIN Jing-quan Abstract:Semi-rigid asphalt pavement is one of the main structure forms of asphalt pavement at present. Nowadays layered elastic theory with vertical dead load applied to elastic multi-layer system is used. The large-scale finite element analysis software Ansys10.0 is used to build the static load pavement model, in order to discuss the stress of the pavement under vertical static load characteristics. The results showed that: Deformation of the pavement structure is mainly composed of upper slab that the rest of the each layer of the vertical displacement is smaller. The bottom of subgrade is the largest stress location.Key words: semi-rigid base; vertical static load; finite element引言:随着我国国民经济的迅速发展,公路修建里程也在不断增加,加之车辆的不断增多,路面因行车荷载的作用而引起的破坏已是路面破坏的主要形式之一。
横观各向同性黏弹性沥青路面的动力响应鲁巍巍;郑健龙【摘要】In order to better characterize the mechanical behavior of the pavement under fal1ing weight deflectometer (FWD for short) load, the dynamic responses of viscoelastic asphalt pavement were analyzed considering the cross-anisotropy of unbound aggregates bases (UAB for short) and subgrades. Based on the governing equations for isotropic viscoelastic and cross-anisotropic elastic axisymmetric spatial dynamic problems, the stiffness matrixesin the integral transform domain of 2-nodedlayer elementfor the isotropic viscoelastic body and 2-noded and 1-noded layer elements for the cross-anisotropic elastic body were developed respectively, and then the analytical stiffness matrix solution of viscoelastic multi-layered asphalt pavement structure considering cross-anisotropy was proposed. The validity of the developed method was verified by comparing the results of cross-anisotropic problem reducing to isotropic problem with the existing solutions. Subsequently, the influences of cross-anisotropy of UAB and subgrade on the surface defections were investigated. The results show that surface defections increase with the decrease of modulus ratios of UAB and subgrades, and the ratios of modulus of UAB have more significant impacts.%为了更好地表征路面在荷载作用下的力学行为,研究考虑基层和土基材料的横观各向同性特性的黏弹性沥青路面在落锤式弯沉仪(fal1ing weight deflectometer,FWD)荷载作用下的动力响应.从各向同性黏弹性和横观各向同性弹性轴对称空间动力问题的基本控制方程出发,借助相应的积分变换,分别建立积分变换域内的各向同性黏弹性体的双节点层单元刚度矩阵和横观各向同性弹性体的双节点与单节点层单元刚度矩阵,进而得到考虑横观各向同性的黏弹性多层沥青路面结构的解析刚度矩阵解.通过求解横观各向同性问题退化的各向同性问题,并与已有解答进行对比,验证本文计算方法的准确性.然后,分析基层和土基的横观各向同性特性对路表弯沉的影响.研究结果表明:随着基层和土基模量比减小,路表弯沉增大,且基层模量比变化的影响更显著.【期刊名称】《中南大学学报(自然科学版)》【年(卷),期】2018(049)004【总页数】7页(P964-970)【关键词】沥青路面;黏弹性;横观各向同性;动力响应;解析刚度矩阵法【作者】鲁巍巍;郑健龙【作者单位】长沙理工大学交通运输工程学院,湖南长沙,410114;长沙理工大公路工程试验检测中心,湖南长沙,410114;长沙理工大学交通运输工程学院,湖南长沙,410114【正文语种】中文【中图分类】U416.217横观各向同性体是物体内任意一点存在1个平面,在平行于该平面的所有各个方向都具有相同的弹性性质,且垂直于该平面的方向具有不同弹性的各向异性体。
2010年 5月郑州大学学报(工学版)May 2010第31卷 第3期Journal of Zhengzhou University (Engineering Science )Vol 131 No 13 收稿日期:2009-12-13;修订日期:2010-01-04 基金项目:西部交通建设科技资助项目(200623182812221) 作者简介:栗培龙(1980-),男,江苏邳州人,长安大学讲师,博士,主要从事路面结构与材料方面的研究,E 2mail:peil ong_li@. 文章编号:1671-6833(2010)03-0096-05沥青混合料黏弹性响应影响因素分析栗培龙,张争奇,王秉纲(长安大学特殊地区公路工程教育部重点实验室,陕西西安710064)摘 要:选择3种级配的沥青混合料进行不同温度和应力水平的蠕变试验,根据应力应变关系得到的蠕变柔量曲线获取Burgers 黏弹性模型参数,分析温度、应力水平、矿料级配以及老化作用对沥青混合料黏弹性的影响.结果表明,随着温度的升高,3种沥青混合料的E 1、η1、E 2、η24个参数总体不断降低,即沥青混合料软化、模量减小,但不同温度下3种混合料的黏弹性参数排序并不相同;应力水平对沥青混合料的黏弹性能有显著影响,处于中间荷载水平0.5MPa 时4个黏弹性参数的区分度最大,但不同级配的沥青混合料对应力水平的响应存在差异,公称最大粒径相近的混合料的某些黏弹性参数变化趋势较一致;老化是沥青混合料黏弹性变化的重要原因,但短期老化和长期老化的影响并不相同.关键词:沥青混合料;黏弹性响应;影响因素;老化中图分类号:U414.75 文献标识码:A0 引言沥青混合料的黏弹性与沥青路面的车辙、开裂、疲劳等病害有着密切关联,因此沥青混合料的黏弹性响应受到国内外道路研究者的关注[1].L ittle [2]采用黏弹性模型模拟沥青混合料蠕变试验;Chang [3]指出Burgers 模型可以较好地模拟沥青混合料的微细观力学性能;Sch wartz [4]进行了相同荷载、25℃到45℃温度下的蠕变试验,并获取黏弹性参数;关宏信[5]推导了沥青混合料疲劳损伤演化的黏弹性疲劳损伤模型;周志刚[6]根据动蠕变试验推导出了黏弹性参数,并讨论了模型参数与车辙动稳定度之间的关系.但以往的研究偏重于对沥青混合料黏弹性某一方面的讨论,对不同影响因素缺乏深入而系统的分析.作者通过蠕变试验得到Burgers 模型参数,分析温度、应力水平、级配以及老化对沥青混合料黏弹性响应的影响,可以为沥青路面设计和破坏分析提供参考.1 蠕变试验及黏弹性模型参数1.1 蠕变试验及蠕变柔量利用S BS 改性沥青分别拌制AC 213、AC 216、AC 2203种级配沥青混合料,采用MTS 810材料试验机在不同温度及应力水平下进行单轴静态蠕变试验,为了减少离散性,进行3组平行试验.试验条件为0.7MPa,40℃、50℃和60℃,0.3MPa 、0.5MPa 、0.7MPa .为了减小试模边界效应的影响并加速试验进程,首先采用Tr oxler 4140型旋转压实仪成型<150mm ×H110mm 的大型试件,再钻芯得到尺寸为<100mm ×H110mm 的试件.试验过程:①在0.005MPa 下预加载10m in;②瞬时施加到所要求荷载并保持载60m in;③瞬时卸载到0.005MPa 并保持30m in;④采用LVDT 精确测量试件变形随时间变化的数据.根据试验的应力应变关系可以得到沥青混合料单位应力作用下t 时刻的应变值(蠕变柔量).不同试验条件下的蠕变柔量曲线如图1所示.1.2 Burgers 黏弹性模型参数Burgers 模型可以较好地描述黏弹性材料的蠕变与松弛特性,在道路工程领域将其表征为沥青混合料的黏弹性本构模型[7-9].研究[1,4,6]表明沥青路面的高温永久变形与混合料蠕变特性的关系为:J (t )=1E 1+t η1+1E 2(1-e -E 2η2t )(1) 第3期栗培龙,等:沥青混合料黏弹性响应影响因素分析97图1 混合料不同试验条件下的蠕变柔量变化曲线F i g .1 Creep co m pli a nce curves under d i fferen t test cond iti on s 根据式(1)可知,在蠕变试验条件下,蠕变柔量由3部分组成:沥青混合料在荷载作用下的瞬时弹性柔量J e 、与时间相关的黏性柔量t/η1、与时间相关的黏弹性柔量J ve ·(1-e -E 2η2t).其中J e 反映高速荷载下沥青混合料的抗变形能力,与模型中弹性元件E 1的值成反比;η1是产生不可恢复残留变形的黏性系数,与沥青混合料的永久变形直接相关,同时也反映沥青混合料高温重复荷载作用产生的累积变形;E 2、η2反映在长时间荷载作用下及在通常温度条件的荷载作用下,变形既不是很快发展,又不能立即恢复的黏弹性指标,应力松弛性能及变形的回弹性能也有密切关系.采用O rigin 和1st op t 数值处理软件,将蠕变柔量曲线用Burgers 模型回归拟合,可以得到以上3种混合料不同试验条件下的蠕变柔量拟合得到的Bur 2gers 黏弹性参数列于表1中.2 试验条件及矿料级配的影响2.1 试验温度对沥青混合料黏弹性参数的影响沥青混合料是感温性材料,温度越低,沥青混合料越接近弹性材料;温度越高,越接近黏性材料.对3种沥青混合料的E 1、η1、E 2、η24个参数取常用对数,试验结果如图2所示.由图2可知:(1)随着温度的升高,3种级配沥青混合料的E 1、η1、E 2、η24个参数总体均呈降低趋势,说明温度升高沥青混合料软化,高温性能减弱.(2)随着试验温度的升高,3种沥青混合料的瞬时弹性模量E 1逐渐降低,即沥青混合料在较高的温度下更容易产生瞬时弹性变形.由40℃升至60℃,3种混合料的E 1值分别降低了26.1%,52.1%和32.3%.比较可知AC 213的降低较为缓慢,而AC 216和AC 220的E 1降低幅度较大,这说明公称粒径较大的沥青混合料的瞬时弹性模量对温度的敏感性较高.对于参数η1,由40℃升至60℃,AC 213、AC 216和AC 2203种混合料的η1值分别降低了56.0%,74.2%和60.5%,可见AC 216混合料随温度变化的敏感性最大.对于参数E 2和η2而言,不同级配混合料的变化趋势不尽相同.随着温度的升高,AC 216和AC 220混合料的E 2接近平行的单调减小,而AC 213的E 2先增大后减小;对于参数η2而言,随着温度的升高,AC 220混合料的η2不断减小,而AC 213和AC 216的η2值存在先升后降和先降后升现象,可见试验温度对不同沥青混合料的黏弹性响应的影响非常复杂,不仅与集料粒径有关,而且与混合料沥青含量等因素存在交互影响.沥青混合料的E 1、η1、E 2、η24个参数大小不仅反映了黏弹性变化,而且表征了混合料在高温荷载下的抗永久变形性能.由图2可知,不同温度下3种级配混合料的参数排序不尽相同,其中40℃和60℃条件下的4个参数以及50℃条件下的E 1、E 2排序一致,均为:AC 216>AC 213>AC 220;50℃条件下的η1排序为AC 216>AC 220>AC 213,η2排序为AC 213≈AC 216>AC 220.总体而98 郑州大学学报(工学版)2010年言,AC 216混合料具有更好的抗变形性能,即具有更好的高温稳定性.表1 沥青混合料的Burgers 模型拟合参数Tab 11 Burgers m odel param eters of a spha lt m i xture温度/℃应力/MPa 级配Burgers 模型参数/PaE 1η1E 2η2相关系数R240AC 2133.30E +084.14E +127.61E +081.37E +110.97410.7AC 2165.68E +088.38E +121.23E +092.61E +110.9571AC 2202.76E +083.95E +126.61E +089.05E +100.966750AC 2132.76E +082.01E +128.34E +082.03E +110.98590.7AC 2163.12E +083.14E +128.79E +081.94E +110.9799AC 2202.41E +082.70E +125.56E +087.23E +100.9753AC 2131.97E +085.06E +126.27E +088.93E +100.9594600.3AC 2162.21E +085.71E +127.90E +089.82E +100.9716AC 2202.28E +084.00E +125.29E +081.05E +110.9654AC 2132.23E +087.47E +121.26E +093.90E +110.9491600.5AC 2163.36E +083.48E +121.01E +092.74E +110.9761AC 2204.24E +082.15E +125.36E +087.75E +100.9831AC 2132.44E +081.82E +124.48E +081.05E +110.9823600.7AC 2162.72E +082.16E +127.01E +082.37E +110.9825AC 2201.87E +081.56E +124.05E +084.91E +100.9834图2 温度对沥青混合料黏弹性参数的影响F i g .2 Effect of te m pera ture on V iscoel a sti c param eters2.2 应力水平对沥青混合料黏弹性的影响由图3可知:(1)随着应力水平的升高,3种级配沥青混合料的E 1、η1、E 2、η24个参数变化规律不尽相同.分析可知,沥青混合料的黏弹性与沥青胶结作用以及矿料之间的相对错位滑动有关.公称最大粒径较小的混合料(如AC 213)往往有较高的沥青用量,沥青的黏弹性胶结作用占主导作用;公称最大粒径较大的混合料(如AC 220),矿料的嵌挤作用对混合料抗永久变形的贡献更大,所以不同级配的沥青混合料对应力水平的响应存在差异.(2)对参数E 1和η1而言,AC 216和AC 220混合料的变化一致,E 1均先增大后减小,η1均逐渐减小;对参数E 2而言,3种级配混合料变化趋势一致,均先增大后减小;对参数η2而言,AC 213和AC 216混合料变化趋势一致,也是先增大后减小,AC 220混合料则不断减小,可见公称最大粒径相近的混合料的某些黏弹性参数变化趋势存在一致性.图3 应力水平对沥青混合料黏弹性参数的影响F i g .3 Efect of stress on V iscoel a sti c param eters2.3 级配对沥青混合料黏弹性的影响3种级配的混合料在不同应力水平下的Bur 2gers 模型参数如图4所示.由图4可知,在0.3MPa 应力水平下,3种级 第3期栗培龙,等:沥青混合料黏弹性响应影响因素分析99 配沥青混合料的4个参数均较为接近,应力水平增大到0.5MPa 时,E 1、η1、E 2、η24个参数均有很大的区分度,当继续增至0.7MPa 后,参数之间的差异又有所减小.这是因为,在0.3MPa 应力水平下,由于应力水平较低,3种混合料的蠕变硬化现象不显著;在0.7MPa 应力水平下,对于无侧限蠕变试验而言,较高的应力水平使得3种混合料均出现显著的矿料颗粒间错位滑动,进而出现膨胀软化现象,模量又有所降低.图4 级配对沥青混合料黏弹性参数的影响F i g .4 Efect of grada ti on on V iscoel a sti c param eters当前评价沥青混合料高温性能的车辙试验,均在0.7MPa 荷载、60℃条件下进行,在此试验条件下的3种沥青混合料的E 1、η1、E 2、η24个参数排序一致,即AC 216>AC 213>AC 220,可见AC 216有更高的高温性能,AC 213次之,AC 220最差.3 老化对沥青混合料黏弹性响应的影响 在老化作用下沥青的流变性能变化将会导致混合料的黏弹性变化,直接影响沥青混合料的路用性能[10].根据规范[11]对试验中采用AC 213、AC 2202种混合料分别进行短期和长期老化试验,然后在60℃、0.7MPa 条件下进行蠕变试验.根据静态蠕变曲线求得蠕变柔量,然后拟合得到4种混合料不同老化状态的E 1、η1、E 2、η24个Burgers 模型参数,如图5所示.由图5可知:(1)对于2种混合料而言,短期老化后E 1、η1、E 2、η24个参数均有大幅增加,可见沥青老化后劲度增大,弹性增强,流变性降低,瞬时弹性柔量和黏性柔量均有显著减弱,在荷载作用下抗变形能力大幅增强.在短期老化的基础上进行长期老化后,反映瞬时弹性响应的E 1又有所增大;2种混合料的E 2变化并不一致,AC 213稍有增加,AC 220大幅降低;2种混合料的η1和η2均有不同程度的减小.分析认为,沥青混合料的短期老化试验是先对拌制的散料进行老化然后再压实成型,老化后沥青的柔韧性和流动性减弱,压实成型后性能变化的沥青在混合料中是相对均匀分布的,所以整体表现为荷载作用下抗变形能力显著增强;而对于长期老化,试件是成型后再实施老化,沥青老化是不均匀的,在混合料空隙联通处老化严重,尽管沥青的绝对劲度增强,但在荷载作用下更容易产生微裂纹损伤.因此,对于长期老化的试件,黏弹性模型参数变化是沥青性质变化和损伤累积综合作用的结果,参数变化更为复杂.(2)与AC 213相比,AC 220混合料的变化幅度更大,这是因为沥青老化的主要机理是高温下的沥青分子发生氧化反应,沥青与氧气的接触程度在很大程度上影响老化进程.一般而言,AC 220比AC 213混合料有更大的空隙率,沥青与氧气的接触更充分,因此老化效应更为显著.图5 老化对沥青混合料黏弹性参数的影响F i g .5 Efect of ag i n g on V iscoel a sti c param eters4 结论(1)试验温度对沥青混合料的黏弹性能有显著影响.随着温度的升高,3种级配沥青混合料的E 1、η1、E 2、η24个参数总体上均呈降低趋势,说明温度升高沥青混合料软化,模量呈降低趋势;但不同温度下3种级配混合料的参数排序不尽相同,试100 郑州大学学报(工学版)2010年验采用的3种级配沥青混合料中AC216混合料具有更好的抗变形性能.(2)应力水平对沥青混合料的黏弹性能有显著影响,其中0.5MPa下,3种级配沥青混合料的4个参数区分度大于0.3MPa和0.7MPa下的参数变化;而且不同级配的沥青混合料对应力水平的响应存在差异,公称最大粒径相近的混合料的某些黏弹性参数变化趋势存在一致性.(3)沥青混合料老化后Burgers模型参数均有显著变化,即老化是沥青混合料黏弹性能衰变的主要影响因素,但短期老化和长期老化对沥青混合料黏弹性的影响并不相同.参考文献:[1] 栗培龙.沥青混合料黏弹性力学参数及其应用研究[D].西安:长安大学公路学院,2009.[2] L I TT LE D N,BUTT ON J W,Y OUSSEF H.Devel op2ment of criteria t o evaluate uniaxial creep data and as2phalt concrete per manent def or mati on potential[J].Trans portati on Research Record,1993(1471):49-57.[3] CHANG K G,MEEG ODA J N.M icr omechanical si m2ulati on of hot m ix as phalt[J].Journal of M aterials inCivil Engineering,1997,12(5):495-503.[4] SCHWARTZ C W,GI B S ON N H,S CHAPERY R A,et al.V iscop lasticity modeling of as phalt concrete be2havi or[C]//The15th ASCE Engineering MechanicsConference.Ne w York:ASCE,2002:144-159.[5] 关宏信.沥青混合料黏弹性疲劳损伤模型研究[D].长沙:中南大学土建学院,2005.[6] 周志刚,傅搏峰.用黏弹性理论评价沥青混合料的高温稳定性[J].公路交通科技,2005,22(11):54-56.[7] 郑健龙,吕松涛,田小革.沥青混合料黏弹性参数及其应用[J].郑州大学学报:工学版,2004,25(4):8-11.[8] 冯师蓉,胡霞光,刘玉.基于Burgers模型的沥青玛蹄脂DE M数值分析[J].路基工程,2008(1):21-23.[9] 郑健龙,吕松涛,田小革.基于蠕变试验的沥青黏弹性损伤特性[J].工程力学,2008,25(2):193-196.[10] 栗培龙,张争奇,王秉纲,等.道路沥青热氧老化模拟试验研究[J].郑州大学学报:工学版,2008,29(1):119-123.[11] 交通部.JTJ052-2000公路工程沥青及沥青混合料试验规程[S].北京:人民交通出版社,2000.Ana lysis of V isco2el a sti c Respon se I nfluenc i n g Factors of A spha ltM i xtureL I Pei-l ong,ZHANG Zheng-qi,WANG B ing-gang(Key Laborat ory for S pecial A rea H igh way Engineering of M inistry Of Educati on,Chang’an University,Xi’an710064,China)Abstract:Three kinds of as phalt m ixture were put t o static creep test under different te mperatures and stress levels.According t o creep comp liance curves fr om the stress2strain relati ons,Burgers visco2elastic model pa2 ra meters were got t o analyze influences on visco2elastic res ponse of te mperature,stress level,aggregate grada2 ti on,as well as aging effect for as phalt m ixture.The results and analysis indicated that four para meters(E1,η1,E2,η2)continuously reduce with the increasing of the te mperature,which shows that as phalt is s oftening and modulus decrease.But visco2elastic para meters sequence of the three as phalt m ixtures were not the sa me under different te mperatures.Stress levels have a significant effect on visco2elastic res ponse and f our visco2e2 lastic para meters have the greatest degree of distincti on at the level of0.5MPa l oad.Howsever,res ponses on stress level f or different gradati on m ixture were different.Aging is an i m portant reas on intr oducing viscoelastic2 ity changes of as phalt m ixture.But short2ter m aging and l ong2ter m aging have different effects.Key words:as phalt m ixture;visco2elastic res ponse;influencing fact ors;aging。
FWD荷载作用下沥青路面动力响应有限元分析论文
本文旨在探讨FWD(falling weight deflectometer)荷载作用下
沥青路面的动力响应情况,通过有限元分析的方式,分析其结构响应特性以及受力行为。
利用实验数据优化有限元模型,并将其应用于汽车对沥青路面进行路面质量评定。
针对FWD荷载作用下沥青路面,开展有限元分析。
根据有限
元理论,建立一个均匀的有限元模型,并运用经典的梁单元进行模拟,如Young-Von Karman模型。
同时,根据实验数据,
优化模型,使其最大程度反映真实情况。
此外,考虑地面材料的拉伸模量、剪切模量和泊松比,以及基础土的应力应变。
最后,基于不同的FWD荷载作用,计算路面的响应力,以及每
一段路面的形变,其中包括剪切变形、水平和纵向变形等。
结果表明,FWD荷载作用下沥青路面的动力响应随荷载的增
大而增大,荷载强度与响应之间呈线性关系,最终得出路面承载能力的最佳估计值。
此外,FWD荷载作用下沥青路面的形
变情况也随着荷载的增大而增大,且与不同部位的位移及形变有关。
经过有限元分析的研究,我们不仅可以更好地了解沥青路面的动力响应行为,而且还可以将最优预测值应用于汽车对路面进行质量评估中。
然而,路面在实际情况下还存在一些复杂情况,也需要进一步的研究和实验支持,更好地预测路面的响应性能。
总而言之,本文通过有限元分析的方式,研究FWD荷载作用
下沥青路面的动力响应现象,并优化有限元模型,更好地预测沥青路面的响应性能。
基于DMA方法对沥青粘弹性能的研究沥青是一种常见的道路材料,其粘弹性能对于道路的安全性和耐久性至关重要。
沥青粘弹性能的研究对于改善道路质量、延长使用寿命具有重要意义。
本文基于DMA(动态力学分析)方法开展了对沥青粘弹性能的研究。
首先,我们需要了解DMA方法和其原理。
DMA是一种通过施加不同频率、应变幅度和温度条件下的振动负载来测量材料力学性能的方法。
在DMA实验中,沥青样品通常以平行板形式放置在DMA仪器上,施加力和振动负载来测量其力学性能。
DMA可以通过测量沥青在不同应变振幅和温度条件下的储能和耗散能力来评估其粘弹性能。
在进行DMA实验前,我们需要准备沥青样品。
通常采用在实际道路中使用的沥青材料,并通过标准化的试验方法制备沥青样品。
制备过程包括将沥青样品加热至固化点以上温度,均匀混合,并将其倾倒在铝制容器中,然后在室温下固化至沥青样品形成。
实验过程中,首先我们可以通过DMA仪器进行频率扫描实验,即在不同频率下测量沥青的动态模量和损耗模量。
通过这些模量的测量结果,我们可以了解沥青在不同频率下的弹性和粘性特性。
其次,我们也可以进行应变扫描实验,即在不同应变振幅下测量沥青的动态模量和损耗模量。
通过这些实验结果,我们可以了解沥青的线性和非线性粘弹性能。
此外,温度对沥青粘弹性能的影响也是一个重要的研究方向。
通过在不同温度条件下进行DMA实验,我们可以评估沥青在不同温度下的粘弹性能变化。
通过以上实验和分析,我们可以得出一系列关于沥青粘弹性能的结论。
例如,我们可以得到沥青的复合模量-频率、复合模量-应变和复合模量-温度关系曲线。
这些关系曲线可以帮助我们理解沥青的力学性能特征,为道路设计及维护提供科学依据。
总之,基于DMA方法对沥青粘弹性能的研究是一个重要的研究方向。
通过DMA实验和分析,我们可以了解沥青在不同频率、应变和温度条件下的粘弹性能特性。
这些研究结果对于改进道路材料的性能和道路的安全性具有重要的意义。
FWD荷载作用下沥青路面动力响应及反演研究的开题报告开题报告题目:FWD荷载作用下沥青路面动力响应及反演研究研究背景:随着交通工具的不断发展和道路交通网络的不断完善,沥青路面已成为我国最主要的道路工程材料之一。
然而,沥青路面在使用过程中,受到来自车辆荷载、气象变化和路域因素等的多种影响,易出现裂缝、龟裂、松散、翻边、坑洼、碎屑等缺陷,从而影响道路的使用寿命和行车安全。
因此,对沥青路面的动力响应及反演进行研究,具有重要意义。
研究目的:本研究旨在通过分析FWD荷载作用下沥青路面的动力响应规律,探究反演方法,提高沥青路面的设计、施工和养护水平,从而延长沥青路面的使用寿命,提高行车安全。
研究方法:1. 现场实测法:采用FWD(落锤振荡式动态蓄能反演仪)进行实测,测出沥青路面在FWD荷载下的加速度、速度、位移等参数,分析不同荷载下路面的反弹模数、动力响应谱等指标,并将实测数据进行处理和分析。
2. 数值计算法:使用有限元软件(如ANSYS)建立沥青路面有限元模型,分析不同荷载下沥青路面的动力响应特性和反弹模数变化规律,并对模型进行参数敏感性分析。
研究内容:1. 分析FWD荷载作用下沥青路面的动力响应规律;2. 探索沥青路面的反演方法;3. 建立沥青路面有限元模型,分析不同荷载下沥青路面的动力响应特性和反弹模数变化规律;4. 对沥青路面的设计、施工和养护提出相关建议。
研究意义:1. 提高沥青路面的使用寿命,降低沥青路面的破损和损坏;2. 提高行车安全,减少事故发生概率;3. 推动沥青路面的设计、施工和养护水平的提高;4. 为路面工程的设计和质量控制提供依据。
研究计划:第一年:1. 收集相关文献资料,学习沥青路面动力响应方面的基本理论;2. 进行实地调研,选择样本路段并进行FWD实测;3. 将实测数据进行处理和分析,制定本研究的具体研究内容和计划。
第二年:1. 建立沥青路面有限元模型,进行计算分析;2. 探索沥青路面的反演方法;3. 对计算结果和实测数据进行比对,分析沥青路面的动力响应规律。
道 路沥青路面粘弹性有限元模拟方法徐 磊1,赵岩荆2(1.辽宁省交通科学研究院,沈阳110015;2.东南大学,南京210096) 摘 要:基于蠕变试验,测定沥青混合料的蠕变曲线,通过数学方法求得松弛模量曲线,并通过非线性拟合方法求得有限元软件A B A Q U S 中用于描述沥青混合料粘弹性性质的p r o n y 级数,通过对路面模型进行摄动分析,结合粘弹性材料时温等效性质,建立路面有限元动态分析模型,从而为研究移动荷载与温度荷载作用下,沥青混凝土路面的粘弹性力学响应分析提供了方法和基础。
关键词:沥青路面;粘弹性;有限元;动态荷载;温度荷载中图分类号:U 416.217 文献标识码:B 文章编号:1673-6052(2010)06-0001-04 大量试验表明,沥青混合料是一种热粘弹性材料,沥青路面的开裂、车辙、疲劳等问题都与沥青混合料的粘弹性特性有关。
传统的研究方法均假定沥青混合料为线弹性材料,分析路面在静力作用下的力学响应,与实际路面的性质及荷载作用方式差异较大,计算结果与实际情况不符。
本文通过对沥青混合料材料性质进行分析,结合动态力学方法与时温等效效应,建立了车辆动荷载与温度荷载作用下,沥青混凝土路面的粘弹性有限元模型,从而为更加精确的描述和计算路面受力状况,提供了新的研究方法。
1 沥青混合料粘弹性参数计算采用有限元对沥青混凝土路面的粘弹性力学响应进行计算,区别于传统研究方法的一点就在于对材料的粘弹性特征进行描述,钱国平等[2]基于粘弹性理论,采用广义M a x w e l l 模型模拟沥青混合料的粘弹性,通过试验和基于时温等效原理得到温度和时间域内沥青混合料的劲度模量,最后推导了增量型粘弹性本构关系。
本文针对有限元软件A B A Q U S 中关于粘弹性的定义[3],确定了沥青混合料P r o n y级数的测试方法。
1.1 粘弹性行为的数值表征模型理论比较直观地描述了粘弹性材料的力学行为,研究表明,采用N 个M a x w e l l 单元组成广义M a x w e l l 模型能够较好地描述沥青混合料的松弛性能。