冀教版2018-2019学年度(上)第一次月考七年级数学试卷
- 格式:docx
- 大小:93.22 KB
- 文档页数:8
最新冀教版七年级数学上册第一次月考考试及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<3.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD4.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B. C. D.5.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x人,则()A .237230x xB .327230x xC .233072x xD .323072x x6.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤77.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-28.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩9.一次函数满足,且随的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 10.若320,a b -++=则a b +的值是( )A .2B .1C .0D .1-二、填空题(本大题共6小题,每小题3分,共18分)1.若1m +与2-互为相反数,则m 的值为_______.2.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠=________.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.已知4x =,12y =,且0xy <,则x y 的值等于_________. 5.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为________.6.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为________.三、解答题(本大题共6小题,共72分)1.解方程(组):(1)2321x y x y +=⎧⎨-=⎩(2)30.20.20.030.70.20.01x x ++-=2.若关于x 、y 的二元一次方程组325233x y a x y a -=-⎧⎨+=+⎩的解都为正数. (1)求a 的取值范围;(2)化简|a+1|﹣|a ﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a 的值.3.如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.4.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l 异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.5.小颖同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小颖同学共调查了多少名居民的年龄,扇形统计图中a,b各等于多少?(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有1500人,请估计年龄在15~59岁的居民的人数.6.上周六上午8点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离y(千米)与他们路途所用的时间x(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟时,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、B5、D6、A7、A8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1.2、1253、0.4、8-5、2或﹣8.6、2三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2) 2.85x=-.2、(1)a>1;(2)2;(3)a的值是2.3、(1)略;(2)112.5°.4、(1)详略;(2)∠ABC=∠DEF,∠ACB=∠DFE,略.5、(1)300,a=20%,b=12%;(2)答案见解析;(3)5100.6、略。
七年级上学期第一次月考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个选项符合题意)1.(3分)向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km2.(3分)下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①②B.①③C.①②③D.①②③④3.(3分)﹣5的相反数是()A.B.C.﹣5 D. 54.(3分)﹣3+(﹣5)的结果是()A.﹣2 B.﹣8 C.8 D. 25.(3分)2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时这四个城市中,气温最低的是()A.北京B.上海C.重庆 D.宁夏6.(3分)下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数7.(3分)下列选项中,表示数轴的是()A.B.C.D.8.(3分)在﹣3,,0,3四个数中,最小的数是()A.﹣3 B.C.0 D. 39.(3分)﹣3的绝对值等于()A.3B.C. D.﹣310.(3分)在数轴上到原点距离等于2的点所表示的数是()A.﹣2 B.2C.±2 D.不能确定11.(3分)以下关于﹣这个数在数轴上的位置的描述,其中正确的是()A.在﹣3的左边B.在3的右边C.在原点和﹣1之间D.在﹣1的左边12.(3分)若数轴上的点A向左移动2个单位长度,再向右移动3个单位长度,正好对应﹣5这个点,那么原来A点对应的数是()A.﹣4 B.2C.﹣6 D.0二.填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.(3分)|﹣10|=;﹣6的相反数是.14.(3分)﹣1,0,0.2,,3中正数一共有个.15.(3分)最大的负整数是,绝对值最小的有理数是.16.(3分)数轴上到表示数4的点的距离为1个单位长度的点表示的数是.17.(3分)绝对值小于3的整数是.18.(3分)(﹣)+(+)=.三、解答题(共4小题,满分46分)19.(10分)把下列各数填在相应的大括号中:6,﹣12,,﹣3.14,0,﹣,|﹣9|,2014,﹣2.5.整数:{ …}正整数:{ …}分数:{ …}负数:{ …}非负数:{ …}.20.(12分)画一条数轴,在数轴上标出表示下列各数的点,并用“<”把它们连接起来.﹣(﹣2),﹣0.5,0,﹣|﹣4|,+.21.(10分)比较下列各组中两个数的大小(注意书写过程)(1)﹣和﹣;(2)﹣和﹣.22.(14分)计算(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7(2)(﹣)+13+(﹣)+17.参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个选项符合题意)1.(3分)向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km考点:正数和负数.分析:根据正数和负数表示相反意义的量,向东记为正,可得答案.解答:解:向东行驶3km,记作+3km,向西行驶2km记作﹣2km,故选:B.点评:本题考查了正数和负数,相反意义的量用正数和负数表示.2.(3分)下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①②B.①③C.①②③D.①②③④考点:绝对值;相反数;有理数大小比较.分析:根据绝对值的意义对①④进行判断;根据相反数的定义对②③进行判断.解答:解:0是绝对值最小的有理数,所以①正确;相反数大于本身的数是负数,所以②正确;数轴上在原点两侧且到原点的距离相等的数互为相反数,所以③错误;两个负数比较,绝对值大的反而小,所以④错误.故选A.点评:本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了相反数.3.(3分)﹣5的相反数是()A.B.C.﹣5 D. 5考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:﹣5的相反数是5,故选:D.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.4.(3分)﹣3+(﹣5)的结果是()A.﹣2 B.﹣8 C.8 D. 2考点:有理数的加法.分析:根据同号两数相加,取相同的符号,并把绝对值相加,可得答案.解答:解:原式=﹣(3+5)=﹣8.故选:B.点评:本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.5.(3分)2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时这四个城市中,气温最低的是()A.北京B.上海C.重庆 D.宁夏考点:有理数大小比较.专题:应用题.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣8<﹣4<5<6,故选:D.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.6.(3分)下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数考点:有理数.分析:按照有理数的分类判断:有理数.解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选C.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.7.(3分)下列选项中,表示数轴的是()A.B.C.D.考点:数轴.分析:根据数轴的三要素:原点、正方向、单位长度,可得答案.解答:解:A、没有原点,故A错误;B、单位长度不统一,故B错误;C、数轴上的点表示的数右边的总比左边的大,故C错误;D、单位、原点、正方向,故D正确;故选;D.点评:本题考查了数轴,利用了数轴的三要素:原点、单位长度、正方向.8.(3分)在﹣3,,0,3四个数中,最小的数是()A.﹣3 B.C.0 D. 3考点:有理数大小比较.分析:根据有理数的大小比较法则进行比较即可.解答:解:﹣3,,0,3四个数中,最小的数是﹣3.故选A.点评:本题考查了有理数的大小比较,掌握有理数的大小比较法则是解题关键.9.(3分)﹣3的绝对值等于()A.3B.C. D.﹣3考点:绝对值.专题:常规题型.分析:根据绝对值的性质解答即可.解答:解:|﹣3|=3.故选A.点评:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.(3分)在数轴上到原点距离等于2的点所表示的数是()A.﹣2 B.2C.±2 D.不能确定考点:数轴.分析:先在数轴上标出到原点距离等于2的点,然后根据图示作出选择即可.解答:解:在数轴上到原点距离等于2的点如图所示:点A、B即为所求的点,即在数轴上到原点距离等于2的点所表示的数是﹣2和2;故选C.点评:本题考查了数轴.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.11.(3分)以下关于﹣这个数在数轴上的位置的描述,其中正确的是()A.在﹣3的左边B.在3的右边C.在原点和﹣1之间D.在﹣1的左边考点:数轴.分析:画出数轴,在数轴上表示出﹣3,﹣1,3及﹣即可.解答:解:如图所示,,故选D.点评:本题考查的是数轴,根据题意画出数轴,利用数形结合求解是解答此题的关键.12.(3分)若数轴上的点A向左移动2个单位长度,再向右移动3个单位长度,正好对应﹣5这个点,那么原来A点对应的数是()A.﹣4 B.2C.﹣6 D.0考点:数轴.分析:设原来与A对应的数是x,则x﹣2+3=﹣5,求出x的值即可.解答:解:设原来与A对应的数是x,则x﹣2+3=﹣5,解得x=﹣6.故选C.点评:本题考查的是数轴,熟知“左减右加”的法则是解答此题的关键.二.填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.(3分)|﹣10|=10;﹣6的相反数是6.考点:绝对值;相反数.分析:直接利用绝对值和相反数的意义求解即可.解答:解:|﹣10|=10;﹣6的相反数是6,故答案为:10,6.点评:考查了绝对值和相反数的知识,属于基础定义,比较简单.14.(3分)﹣1,0,0.2,,3中正数一共有3个.考点:正数和负数.专题:常规题型.分析:根据正、负数的定义对各数分析判断即可.解答:解:﹣1,0,0.2,,3中正数是0.2,,3共有3个.故答案为:3.点评:本题主要考查了正负数的定义,是基础题,比较简单.15.(3分)最大的负整数是﹣1,绝对值最小的有理数是0.考点:有理数;绝对值.分析:根据特殊有理数和绝对值的性质求解.最大的负整数是﹣1;正数和负数的绝对值都是正数,0的绝对值是0,所以绝对值最小的有理数是0.解答:解:最大的负整数是﹣1;∵负数与正数的绝对值都是正数,0的绝对值是0,∴绝对值最小的有理数是0.故应填﹣1;0.点评:本题主要考查了负整数和绝对值的概念,熟记概念是学好数学的关键.16.(3分)数轴上到表示数4的点的距离为1个单位长度的点表示的数是5或3.考点:数轴.分析:设该数是x,再根据数轴上两点间的距离公式求出x的值即可.解答:解:设该数是x,则|x﹣4|=1,解得x=5或x=3.故答案为:5或3.点评:本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.17.(3分)绝对值小于3的整数是﹣2,﹣1,0,1,2.考点:绝对值.分析:绝对值小于3的整数即为绝对值分别等于2、1、0的整数.解答:解:小于3的整数绝对值有0,1,2.因为互为相反数的两个数的绝对值相等,所以绝对值小于3的整数是0,±1,±2.点评:注意掌握互为相反数的两个数的绝对值相等.18.(3分)(﹣)+(+)=.考点:有理数的加法.专题:计算题.分析:原式利用异号两数相加的法则计算即可得到结果.解答:解:原式=.故答案为:.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.三、解答题(共4小题,满分46分)19.(10分)把下列各数填在相应的大括号中:6,﹣12,,﹣3.14,0,﹣,|﹣9|,2014,﹣2.5.整数:{ …}正整数:{ …}分数:{ …}负数:{ …}非负数:{ …}.考点:有理数.分析:根据整数、负分数、无理数的定义进行解答.解答:解:整数:{6,﹣12,0,|﹣9|,2014…}正整数:{ 6,|﹣9|,2014…}分数:{ ,﹣3.14,﹣,﹣2.5…}负数:{﹣12,﹣3.14,﹣,﹣2.5…}非负数:{ 6,,0,|﹣9|,2014…},点评:本题考查了实数,熟悉无理数、整数及负分数的定义是解题的关键.20.(12分)画一条数轴,在数轴上标出表示下列各数的点,并用“<”把它们连接起来.﹣(﹣2),﹣0.5,0,﹣|﹣4|,+.考点:有理数大小比较;数轴.分析:先将各数表示在数轴上,结合数轴即可用“<”连接.解答:解:如图所示:用“<”连接为:﹣0.5<0<+<﹣(﹣2)<﹣|﹣4|.点评:本题考查了有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.21.(10分)比较下列各组中两个数的大小(注意书写过程)(1)﹣和﹣;(2)﹣和﹣.考点:有理数大小比较.分析:(1)比较﹣与﹣的大小即可;(2)比较与的大小即可.解答:解:(1)﹣=﹣1﹣,﹣=﹣1﹣,∵﹣<﹣,∴﹣<﹣;(2)﹣=﹣1,﹣=﹣1,∵>,∴﹣>﹣.点评:本题考查了有理数的大小比较,掌握有理数的大小比较法则是解题关键.22.(14分)计算(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7(2)(﹣)+13+(﹣)+17.考点:有理数的加法.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式结合后,相加即可得到结果.解答:解:(1)原式=﹣10.7+5.7=﹣5;(2)原式=﹣1+30=29.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.。
冀教版七年级数学上册第一次月考考试及答案【一套】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知两个有理数a ,b ,如果ab <0且a+b >0,那么( )A .a >0,b >0B .a <0,b >0C .a 、b 同号D .a 、b 异号,且正数的绝对值较大2.下列图形中,不是轴对称图形的是( )A .B .C .D .3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我 7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a - 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)181________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________. 4.如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是________.5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.6.已知13aa+=,则221+=aa__________;三、解答题(本大题共6小题,共72分)1.解方程组:23 328 x yx y-=⎧⎨+=⎩2.已知m,n互为相反数,且m n≠,p,q互为倒数,数轴上表示数a的点距原点的距离恰为6个单位长度。
冀教版七年级数学上册第一次月考考试及答案【新版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m ,n 为常数,代数式2x 4y +mx |5-n|y +xy 化简之后为单项式,则m n 的值共有( )A .1个B .2个C .3个D .4个2.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.8.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)116________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.因式分解:2218x -=______.4.若+x x -有意义,则+1x =___________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是________(只填序号).三、解答题(本大题共6小题,共72分)1.解方程:(1)x ﹣7=10﹣4(x+0.5) (2)512136x x +--=12.已知关于x 的方程2x m -=x+ 3m 与方程41210.653y y -+=-的解互为倒数,求m 的值.3.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示);(3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.4.如图,已知AB ∥CD ,AD ∥BC ,∠DCE =90°,点E 在线段AB 上,∠FCG =90°,点F 在直线AD 上,∠AHG =90°.(1)找出图中与∠D 相等的角,并说明理由;(2)若∠ECF =25°,求∠BCD 的度数;(3)在(2)的条件下,点C(点C 不与B ,H 两点重合)从点B 出发,沿射线BG 的方向运动,其他条件不变,求∠BAF 的度数.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表 借阅图书的次数0次 1次 2次 3次 4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500销售获利(元/台)260190120()1购买丙型设备台(用含,x y的代数式表示) ;()2若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?()3在第()2题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、A5、C6、D7、B8、B9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、40°3、2(x +3)(x ﹣3).4、15、2或2.56、②.三、解答题(本大题共6小题,共72分)1、(1)3x =;(2)x=38.2、653、(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由略. 4、(1)与∠D 相等的角为∠DCG ,∠ECF ,∠B (2)155°(3)25°或155°5、()117、20;()22次、2次;()372;()4120人.6、(1) 60x y --; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。
冀教版七年级数学上册第一次月考考试及答案【各版本】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④ 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.若264a =3a =________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2(x +3)=5(x -3) 2123x -()=435x --x2.先化简,再求值:(1)3x 2-[7x -(4x -3)-2x 2],其中x =5 (2)222253[22(2)5]2xy xy xy x y xy x y ----+-,其中21|4|()02x y +++=3.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s 甲,s 乙与时间t 的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距 千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为 小时;(3)乙从出发起,经过 小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、C5、C6、D7、B8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、203、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、50°5、±26、7三、解答题(本大题共6小题,共72分)1、(1)x=7;(2)x=1 2.2、(1)5x2-3x-3,原式=107;(2)-xy+2xy 2;原式=-4.3、(1)10;(2)1;(3)3;(4)不一样,理由略;4、(1)略;(2)略.5、(1)40;(2)72;(3)280.6、每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.。
冀教版七年级数学上册第一次月考考试卷【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .02.下列图形中,不是轴对称图形的是( )A .B .C .D .3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.若a x =6,a y =4,则a 2x ﹣y 的值为( )A .8B .9C .32D .405.若关于x 的不等式组()2213x x a x x <⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a 的取值范围是( )A .102a ≤<B .01a ≤<C .102a -<≤D .10a -≤<6.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )10.计算()233a a ⋅的结果是( ) A .8a B .9a C .11a D .18a二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.绝对值不大于4.5的所有整数的和为________.3.因式分解:2218x -=______.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.按要求解下列方程组.(1)124x yx y+=⎧⎨-=-⎩(用代入法解)(2)34225x yx y+=⎧⎨-=⎩(用加减法解)2.已知关于x,y的二元一次方程组3426x y mx y+=+⎧⎨-=⎩的解满足3x y+<,求满足条件的m的所有非负整数值.3.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.4.如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、C4、B5、A6、C7、B8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、03、2(x+3)(x﹣3).4、50°5、2或2.56、±3三、解答题(本大题共6小题,共72分)1、(1)12xy=-⎧⎨=⎩;(2)21xy=⎧⎨=-⎩.2、满足条件的m的所有非负整数值为:0,1,23、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤403;(3)两人相遇时间为第8分钟.4、(1)略;(2)4.5、(1)50;72;(2)详见解析;(3)330.6、(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.。
冀教版七年级数学上册第一次月考考试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .645.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=________.3.若|a|=5,b=﹣2,且ab>0,则a+b=________.4.若+x x-有意义,则+1x=___________.5.若264a=,则3a=________.6.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)251237x yx y-=-⎧⎨+=⎩(2)4(1)3(2)833634x yx y--+=⎧⎪++⎨=⎪⎩2.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.3.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E . (1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.4.如图,已知∠ACD =70°,∠ACB =60°,∠ABC =50°.试说明:AB ∥CD .5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了 名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为 ;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、D5、B6、C7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、60°3、-74、15、±26、54°三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=⎩;(2)62xy=⎧⎨=⎩2、x=3或-3是原方程的增根;m=6或12.3、(1) 65°;(2) 25°.4、证明略5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)甲超市实付款352元,乙超市实付款 360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.。
冀教版七年级数学上册第一次月考测试卷及答案【1套】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.若|abc |=-abc ,且abc ≠0,则||||b a c a b c++=( ) A .1或-3 B .-1或-3 C .±1或±3 D .无法判断10.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________.(只需写一个,不添加辅助线)5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程组:12433313412 x yx y++⎧=⎪⎪⎨--⎪-=⎪⎩2.已知关于x的不等式组5x13(x-1),13x8-x2a22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a的取值范围.3.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.4.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.5.育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?6.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2) 由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、B5、B6、D7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、12、83、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、205、AC=DF(答案不唯一)6、2或-8三、解答题(本大题共6小题,共72分)1、178 y7 x⎧=⎪⎪⎨⎪=-⎪⎩2、-4≤a<-3.3、(1)35°;(2)36°.4、证明略5、(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.6、(1) 5元(2) 0.5元/千克; y=12x+5(0≤x≤30);(3)他一共带了45千克土豆.。
冀教版七年级数学上册第一次月考试卷【参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确..的是( )A .签约金额逐年增加B .与上年相比,2019年的签约金额的增长量最多C . 签约金额的年增长速度最快的是2016年D .2018年的签约金额比2017年降低了22.98%3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.若关于x 的不等式组()2213x x a x x <⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a 的取值范围是( )A .102a ≤<B .01a ≤<C .102a -<≤D .10a -≤<6.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C.y=(x+1)2+2 D.y=(x﹣1)2+27.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5 8.6的相反数为()A.-6 B.6 C.16-D.169.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是________千米/时.3.分解因式:32x2x x-+=_________.4.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为______cm.5.2的相反数是________.6.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32316x yx y-=⎧⎨+=⎩(2)25528x yx y-=⎧⎨+=⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.4.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l 异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.已知2辆A型车和1辆B型车载满货物一次可运货10吨.用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且每辆车都满载货物.根据以上信息解答下列问题:(1)1辆A型车和1辆B型车载满货物一次分别可运货物多少吨?(2)请帮助物流公司设计租车方案(3)若A型车每辆车租金每次100元,B型车每辆车租金每次120元.请选出最省钱的租车方案,并求出最少的租车费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、D5、A6、D7、C8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、273、()2 x x1-.4、225、﹣2.6、5三、解答题(本大题共6小题,共72分)1、(1)5{2xy==;(2)21xy=⎧⎨=-⎩.2、0.3、(1)见解析(2)成立(3)△DEF为等边三角形4、(1)详略;(2)∠ABC=∠DEF,∠ACB=∠DFE,略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)1辆A型车载满货物每次可运货物3吨,1辆B型车载满货物一次可运货物4吨;(2) 有三种租车方案:方案一,租用A型车9辆,B型车1辆,方案二,租用A型车5辆,B型车4辆,方案三,租用A型车1辆,B型车7辆.(3)选择方案三最省钱,最少的租车费为940元.。
冀教版七年级数学上册第一次月考考试卷【含答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠58.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.正五边形的内角和等于______度.4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.将一副三角板如图放置,若20AOD ∠=,则BOC ∠的大小为________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩2.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.3.如图①,在三角形ABC 中,点E ,F 分别为线段AB ,AC 上任意两点,EG 交BC 于点G ,交AC 的延长线于点H ,∠1+∠AFE =180°.(1)证明:BC ∥EF ;(2)如图②,若∠2=∠3,∠BEG =∠EDF ,证明:DF 平分∠AFE.4.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款元,当到乙商店购买时,须付款元;(2)买多少本练习本时,两家商店付款相同?(3)小明准备买50本练习本,为了节约开支,应怎样选择哪家更划算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、C6、C7、A8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、40°3、5404、2m ≤-5、两6、160°三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩. 2、x =3或-3是原方程的增根;m =6或12.3、(1)略;(2) 略.4、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)10×2+(x-10)×2×0.7 ;2x×0.8(2)买30本时两家商店付款相同(3)甲商店更划算。
冀教版七年级数学上册第一次月考试卷及答案【各版本】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.32.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.803.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.已知x是整数,当30x 取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短7.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .68.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5°10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解不等式组:3(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来.2.甲乙两人同时解方程85mx ny mx ny +=-⎧⎨-=⎩①②由于甲看错了方程①,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②,得到的解是25x y =⎧⎨=⎩,试求正确m ,n 的值.3.如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4,求证:AD ∥BE.4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、D5、A6、D7、B8、C9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、55°3、3 44、50°5、两6、2或-8三、解答题(本大题共6小题,共72分)1、-7<x≤1.数轴见解析.2、74n=-,38m=.3、略4、(1)65°(2)证明略5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)两人经过两个小时后相遇;(2)小张的车速为18千米每小时.。
冀教版七年级数学上册第一次月考考试卷(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c 2.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB=6.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短7.把1aa-根号外的因式移入根号内的结果是()A.a-B.a--C.a D.a-8.在数轴上,a所表示的点总在b所表示的点的右边,且|a|=6,|b|=3,则a -b的值为()A.-3 B.-9 C.-3或-9 D.3或99.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)181________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程:3531132x x -+-=2.已知22(4)(2)80m x m x --++=是关于未知数x 的一元一次方程,求代数式199()(2)m x m x m -+-+的值.3.在△ABC 中,AB=AC ,点D 是射线CB 上的一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE .(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、D4、C5、C6、D7、B8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、40°3、0.4、(4,2)或(﹣2,2).5、16、5三、解答题(本大题共6小题,共72分)x .1、32、15943、(1)90°;(2)①α+β=180°;②α=β.4、(1)详略;(2)70°.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1) 自变量是时间,因变量是距离;(2) 10时他距家10千米,13时他距家30千米;(3) 12:00时他到达离家最远的地方,离家30千米;(4)13千米;(5) 12:00~13:00休息并吃午餐;(6) 15千米/时。
冀教版七年级数学上册第一次月考考试及答案【学生专用】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.下列图形具有稳定性的是( ) A . B . C . D .5.已知x 是整数,当30x 取最小值时,x 的值是( )A .5B .6C .7D .86.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab = 7.把1a- )A.a-B.a--C.a D.a-8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23 10.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC三条边长为a,b,c,化简:|a-b-c|-|a+c-b|=__________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.2.若关于x、y的二元一次方程组325233x y ax y a-=-⎧⎨+=+⎩的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.3.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为小时;(3)乙从出发起,经过小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?4.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、A6、C7、B8、D9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、40°3、70.4、-405、AC=DF(答案不唯一)6、5三、解答题(本大题共6小题,共72分)x1、12、(1)a>1;(2)2;(3)a的值是2.3、(1)10;(2)1;(3)3;(4)不一样,理由略;4、(1)证明略;(2)证明略.5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1) 钢笔的单价为21元,毛笔的单价为25元;(2)①见解析;②签字笔的单价可能为2元或6元.。
最新冀教版七年级数学上册第一次月考考试卷(新版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( ) A .0B .1C .2D .32.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( ) A .160元B .180元C .200元D .220元3.如图,P 是直线l 外一点,A ,B ,C 三点在直线l 上,且PB ⊥l 于点B ,∠APC =90°,则下列结论:①线段AP 是点A 到直线PC 的距离;②线段BP 的长是点P 到直线l 的距离;③PA ,PB ,PC 三条线段中,PB 最短;④线段PC 的长是点P 到直线l 的距离,其中,正确的是( )A .②③B .①②③C .③④D .①②③④4.若点P(x ,y)的坐标满足|x|=5,y 2=9,且xy >0,则点P 的坐标为( ) A .(5,3)或(-5,3) B .(5,3)或(-5,-3) C .(-5,3)或(5,-3)D .(-5,3)或(-5,-3)5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.对于任意的x 值都有227221x M Nx x x x +=++-+-,则M ,N 值为( )A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =47.下列说法正确的是()A.如果一个数的立方根等于这个数本身,那么这个数一定是零B.一个数的立方根和这个数同号,零的立方根是零C.一个数的立方根不是正数就是负数D.负数没有立方根8.如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠59.将一副三角板按图中方式叠放,则角α等于()A.30°B.45°C.60°D.75°10.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm二、填空题(本大题共6小题,每小题3分,共18分)1.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为_____.2.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是_____.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________.5.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C岛看A ,B 两岛的视角∠ACB =________.6.一个角是70°39′,则它的余角的度数是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)5(8)6(27)22m m m +--=-+ (2)2(3)7636x x x --+=-2.先化简再求值:22(3)(3)(3)6(2)a b b a a b b b ⎡⎤+-+--÷-⎣⎦ 其中13a =-,2b =-.3.如图,直线AB ,CD 相交于点O .OF 平分∠AOE ,OF ⊥CD 于点O . (1)请直接写出图中所有与∠AOC 相等的角:______. (2)若∠AOD =150°,求∠AOE 的度数.4.如图1,点A 、B 在直线1l 上,点C 、D 在直线2l 上,AE 平分∠BAC ,CE 平分∠ACD ,∠EAC+∠ACE=90°.(1)请判断1l 与2l 的位置关系并说明理由;(2)如图2,在(1)的结论下,P 为线段AC 上一定点,点Q 为直线CD 上一动点,当点Q 在射线CD 上运动时(不与点C 重合)∠CPQ+∠CQP 与∠BAC 有何数量关系?请说明理由.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A :篮球 B :乒乓球C :羽毛球 D :足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、B5、B6、B7、B8、C9、D 10、B二、填空题(本大题共6小题,每小题3分,共18分)1、140°2、40°3、135°4、(4,2)或(﹣2,2).5、70°6、19°21′.三、解答题(本大题共6小题,共72分)1、(1)10m =;(2)5x =2、-3 .3、(1)∠BOD ,∠DOE ;(2)∠AOE =120°.4、(1)1l ∥2l ;(2)∠BAC=∠CQP +∠CPQ .5、解:(1)200. (2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。
最新冀教版七年级数学上册第一次月考考试及答案【真题】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.32.下列图形中,不是轴对称图形的是()A.B.C.D.3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中()A.亏了10元钱 B.赚了10钱C.赚了20元钱 D.亏了20元钱5.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3) 6.如图,若AB∥CD,CD∥EF,那么∠BCE=()A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.点()1,3M m m ++在y 轴上,则点M 的坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,28.如图所示,直线a ∥b ,∠1=35°,∠2=90°,则∠3的度数为( )A .125°B .135°C .145°D .155°9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:2ab a -=________.2.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.若+x x -有意义,则+1x =___________.5.如图,直线a ,b 与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a ∥b 的是________(填序号)6.如图,直线12l l //,120︒∠=,则23∠+∠=________.三、解答题(本大题共6小题,共72分)1.解方程:5321164x x ---=2.已知关于x 的不等式组523(1)138222x x x x a +>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a 的取值范围.3.如图,已知点A(-2,3),B(4,3),C(-1,-3).(1)求点C 到x 轴的距离;(2)求三角形ABC 的面积;(3)点P 在y 轴上,当三角形ABP 的面积为6时,请直接写出点P 的坐标.4.如图,已知∠A=∠ADE.(1)若∠EDC=3∠C,求∠C的度数;(2)若∠C=∠E.求证:BE∥CD.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、D4、A5、B6、D7、D8、A9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、a(b+1)(b﹣1).2、10.3、0.4、15、①③④⑤.6、200°三、解答题(本大题共6小题,共72分)1、154x.2、-3≤a<-23、(1)3;(2)18;(3)(0,5)或(0,1).4、(1)45°;(2)详略.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1) A型车、B型车都装满货物一次可以分别运货3吨、4吨;(2) 最省钱的租车方案是方案一:A型车8辆,B型车2辆,最少租车费为2080元.。
最新冀教版七年级数学上册第一次月考考试卷及答案【各版本】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .32.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( )A .4.4×108B .4.40×108C .4.4×109D .4.4×10103.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°4.下列各式中,正确的是( )A .2(3)3-=-B .233-=-C .2(3)3±=±D .23=3±5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( )A .14B .7C .﹣2D .2 7.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠38.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .39.如图,测量运动员跳远成绩选取的是AB 的长度,其依据是( )A .两点确定一条直线B .垂线段最短C .两点之间线段最短D .两点之间直线最短10.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.4.已知一个多边形的内角和为540°,则这个多边形是________边形.5.若一个多边形的内角和是900º,则这个多边形是________边形.6.计算:38-=________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)53x yy x+=⎧⎨=-⎩(2)223346a ba b⎧+=-⎪⎨⎪-=⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图,已知∠ABC=180°-∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.4.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.5.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、B5、A6、D7、C8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、72、40°3、180°4、5.5、七6、﹣2.三、解答题(本大题共6小题,共72分)1、(1)41xy=⎧⎨=⎩;(2)23ab=-⎧⎨=-⎩2、0.3、(1)略;(2)36°.4、(1)略(2) ∠AEB=15°(3) 略5、(1)50; 32;(2)16;10;15;(3)608人.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
河北初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)(2015•贺州)下列各数是负数的是()A. 0B.C. 2.5D. -12.(2分)(2015•深圳)用科学记数法表示316000000为()A. 3.16×107B. 3.16×108C. 31.6×107D. 31.6×1063.(2分)(2015•甘南州)2的相反数是()A. 2B. -2C.D.4.(2分)(2015•潍坊)2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为()A. 1.11×104B. 11.1×104C. 1.11×105D. 1.11×1065.(2分)(2015•鄂州)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为()A. B. C. D.6.(2分)某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A. 赚16元B. 赔16元C. 不赚不赔D. 无法确定7.(2分)(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.8.(2分)(2015•丹东)据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为()A. 2.78×106B. 27.8×106C. 2.78×105D. 27.8×1059.(2分)(2015•六盘水)下列说法正确的是()A. |﹣2|=﹣2B. 0的倒数是0C. 4的平方根是2D. ﹣3的相反数是3 10.(2分)(2015•苏州)2的相反数是()A. 2B.C. -2D. -11.(2分)(2015•泰州)一个几何体的表面展开图如图所示,则这个几何体是()A. 四棱锥B. 四棱柱C. 三棱锥D. 三棱柱12.(2分)(2015•苏州)月球的半径约为1738000m,1738000这个数用科学记数法可表示为()A. 1.738×106B. 1.738×107C. 0.1738×107D. 17.38×105二、填空题13.(1分)(2015•湘西州)﹣2015的绝对值是________ .14.(1分)(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015= ________.15.(1分)(2015•湘潭)在今年的湘潭市“党和人民满意的好老师”的评选活动中,截止到5月底,王老师获得网络点赞共计183000个,用科学记数法表示这个数为________ .16.(1分)(2015•昆明)据统计,截止2014年12月28日,中国高铁运营总里程超过16000千米,稳居世界高铁里程榜首,将16000千米用科学记数法表示为________ 千米.17.(1分)(2015•巴中)从巴中市交通局获悉,我市2015年前4月在巴陕高速公路完成投资8400万元,请你将8400万元用科学记数记表示为 ________元.18.(1分)(2015•娄底)下列数据是按一定规律排列的,则第7行的第一个数为________ .三、解答题19.(7分)观察下列等式的规律,解答下列问题:(1)按此规律,第④个等式为________;第个等式为________;(用含的代数式表示,为正整数)(2)按此规律,计算:20.(10分)燕尾槽的截面如图所示(1)用代数式表示图中阴影部分的面积;(2)若x=5,y=2,求阴影部分的面积21.(8分)已知有理数a、b、c在数轴上的位置,(1)a+b________0;a+c________0;b-c________0(用“>,<,=”填空)(2)试化简|a+b|-2|a+c|+|b-c|.22.(11分)如图设a1=22-02,a2=32-12,…,a n=(n+1)2-(n-1)2(n为大于1的整数)(1)计算a15的值;(2)通过拼图你发现前三个图形的面积之和与第四个正方形的面积之间有什么关系:________(用含a、b的式子表示);(3)根据(2)中结论,探究a n=(n+1)2-(n-1)2是否为4的倍数.23.(8分)(教材回顾)课本88页,有这样一段文字:人们通过长期观察发现如果早晨天空中棉絮的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学的学习过程中,我们经常用这样的方法探究规律.(数学问题)三角形有3个顶点,如果在它的内部再画n个点,并以这(n+3)个点为顶点画三角形,那么最多可以剪得多少个这样的三角形?(问题探究)为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪357①当三角形内有4个点时,最多剪得的三角形个数为________;②你发现的变化规律是:三角形内的点每增加1个,最多剪得的三角形增加________个;③猜想:当三角形内点的个数为n时,最多可以剪得________个三角形;像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.(2)【问题拓展】请你尝试用归纳的方法探索1+3+5+7+…+(2n-1)+(2n+1)的和是多少?24.(15分)有30箱苹果,以每箱20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如1(2)与标准质量比较,这30箱苹果总计超过或不足多少千克?(3)若苹果每千克售价6元,则出售这30箱苹果可卖多少元?单位:千克(1)与标准质量比较,20筐鸡蛋总计超过或不足多少千克?(2)若鸡蛋每千克售价5元,则出售这20筐鸡蛋可卖多少元?26.(15分)某电动车厂平均每天计划生产200辆电动车,由于各种原因实际每天的生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负)(2)根据记录可知前五天共生产多少辆?(3)该厂实行计件工资制,每辆车100元,超额完成则超额部分每辆车再奖励40元(以一周为单位结算),那么该厂工人这一周的工资总额是多少元?河北初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题1.【答案】D【考点】正数和负数【解析】【解答】解:﹣1是一个负数.故选:D.【分析】在正数的前面加上一个负号就表示一个负数.2.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】将316000000用科学记数法表示为:3.16×108.故选B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.3.【答案】B【考点】相反数及有理数的相反数【解析】【解答】2的相反数为:﹣2.故选:B.【分析】根据相反数的定义求解即可.4.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将11.1万用科学记数法表示为1.11×105.故选C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.5.【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【解答】39 400≈3.9×104.故选A.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于39400有5位,所以可以确定n=5﹣1=4,由于结果保留2个有效数字,所以a=3.9.6.【答案】B【考点】一元一次方程的实际应用-销售问题【解析】【解答】设赚了25%的衣服是x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服是y元,则(1-25%)y=120,解得y=160元,则赔了160-120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人赔了40-24=16元.故选B.7.【答案】C【考点】正数和负数的认识及应用,绝对值及有理数的绝对值【解析】【解答】解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C.【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.8.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将27.8万用科学记数法表示为2.78×105.故选:C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.9.【答案】D【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,平方根【解析】【解答】A、|﹣2|=2,错误;B、0没有倒数,错误;C、4的平方根为±2,错误;D、﹣3的相反数为3,正确,故选D.【分析】利用绝对值的代数意义,倒数的定义,平方根及相反数的定义判断即可.10.【答案】C【考点】相反数【解析】【解答】根据相反数的含义,可得2的相反数是:﹣2.故选:C.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可11.【答案】A【考点】几何体的展开图【解析】【解答】如图所示:这个几何体是四棱锥.故选:A.【分析】根据四棱锥的侧面展开图得出答案.12.【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【解答】将1738000用科学记数法表示为:1.738×106.故选:A.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.二、填空题13.【答案】2015【考点】相反数及有理数的相反数【解析】【解答】解:∵﹣2015的绝对值等于其相反数,∴﹣2015的绝对值是2015;故答案为:2015.【分析】根据相反数的意义,求解即可.注意正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.14.【答案】2【考点】探索数与式的规律【解析】【解答】解:根据题意得,a2==2,a3==﹣1,a4==,…,依此类推,每三个数为一个循环组依次循环,∵2015÷3=671…2,∴a2015是第671个循环组的第2个数,与a2相同,即a2015=2.故答案为:2.【分析】根据表达式求出前几个数不难发现,每三个数为一个循环组依次循环,用2015除以3,根据商和余数的情况确定a2015的值即可.15.【答案】1.83×105【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将183000用科学记数法表示为1.83×105.故答案为1.83×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.16.【答案】1.6×104【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将16000用科学记数法表示为:1.6×104.故答案为:1.6×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.17.【答案】8.4×107【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将8400万用科学记数法表示为8.4×107.故答案为8.4×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.18.【答案】22【考点】探索数与式的规律【解析】【解答】解:由排列的规律可得,第n﹣1行结束的时候排了1+2+3+…+n﹣1=n(n﹣1)个数.所以第n行的第1个数n(n﹣1)+1.所以n=7时,第7行的第1个数为22.故答案为:22.【分析】先找到数的排列规律,求出第n﹣1行结束的时候一共出现的数的个数,再求第n行的第1个数,即可求出第7行的第1个数.三、解答题19.【答案】(1)2×34;2×3n(2)解:①2×31+2×32+2×33+2×34+2×35=32-3+33-32+34-33+35-34+36-35=36-3=726.②31+32+33+···+3n=(32-3)+(33-32)+(34-33)+···+(3n+1-3n)=(32-3+33-32+34-33+···+3n+1-3n)=(3n+1-3)【考点】探索数与式的规律【解析】【解答】解:(1)由题意得:第④个等式为:35-34=2×34,第n个等式为:3n+1-3n=2×3n,故答案为:35-34=2×34, 3n+1-3n=2×3n.【分析】(1)由已知的等式可知,第④个等式为35-34=234;第n个等式为3n+1-3n=23n;(2)①由(1)中的规律可将乘法运算转化为加减运算,中间的项抵消后剩下两边的项相加即可求解;②由①的计算可将②中的各项乘以2,括号外再乘以,于是可转化为①的计算求解即可。
第一学期七年级第一次月考数学试卷(冀教版)本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题。
本试卷共2页,考试时间60分钟,满分100分。
题号 一 二 19 20 21 22 23 24 25 26 得分注意事项:1.答卷前将密封线左侧的项目填写清楚。
2.答案须用蓝色、黑色钢笔或圆珠笔书写。
卷Ⅰ(选择题,共30分)一、选择题(本大题共10个小题;每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项符合题意,请将正确答案写在题后的答题卡内) 1. 下列不是具有相反意义的量的是( )A .前进5米和后退5米B .节约3吨和浪费10吨C .身高增加2厘米和体重减少2千克D .超过5克和不足2克 2. –5的绝对值是………………………………………………………( )A 、5B 、–5C 、51 D 、51- 3. 如图所示,a 、b 、c 表示有理数,则a 、b 、c 的大小顺序是( ) A.a b c << B.a c b <<C.b a c << D.c b a <<4. -31的倒数是( )A .-3B . 3C . 31D . -315.如图所示的图形为四位同学画的数轴,其中正确的是( )6.下列说法正确的是( )A .有理数是指整数、分数、零、正有理数、负有理数这五类B .一个有理数不是正数就是负数C .一个有理数不是整数就是分数D .以上说法都正确 7. 比-7.1大,而比1小的整数的个数是( )A .6 B.7 C. 8 D.9 8. 下列说法正确的是( )A 、两数之和大于每个加数B 、两数之和为正,两加数必为异号C 、两数之和为正,则两数均为正D 、两数之和为零,则两数必互为相反数 9. 室内温度是15 0C,室外温度是-3 0C,则室外温度比室内温度低( )A 12 0CB 18 0C C -12 0CD -18 0C10. 某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.•2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( ) 题号 1 2 3 4 5 6 7 8 9 10 答案卷Ⅱ(非选择题,共70分)二、填空题(本大题共9个小题,每小题3分,共30分.把答案写在题中横线上) 11. 如果+30米表示前进30米,那么-50米表示 ,原地不动用 表示。
2018-2019学年度第一学期第一月考试题(卷)七年级数学一、选择题(共10小题,每小题2,共20分)1.如果零上5℃记作+5℃,那么零下5℃记作( ) A .-5 B .-10 C .-10℃ D .-5℃ 2.-(–5)的绝对值是( )A.5B.–5C.51 D . –513. 在–2,+3.5,0,32- ,–0.7,11中,负分数有( )A.l 个B.2个C.3个D.4个 4. 下列说法中正确的是( )A.正数和负数互为相反数B.任何一个数的相反数都与它本身不相同C.任何一个数都有它的相反数D.数轴上原点两旁的两个点表示的数互为相反数 5. -a 一定是( )A.正数B.负数C.正数或负数D.正数或零或负数 6.一个数和它的倒数相等,则这个数是( )A.1B. 1-C.±1D.±1和0 7. 如果a a -=||,下列成立的是( )A .0>aB .0<aC .0≥aD .0≤a 8.若x 的相反数是3,│y │=5,则x +y 的值为( )A .-8B .2C .-8或2D .8或-2 9.下列各式中,不成立的是( )A .3-=3 B. -3+=-3 C. -3-=3 D. 3-=3 10.有理数a 、b 在数轴上的位置如图所示,则b a +的值( )A .大于0B .小于0C .小于aD .大于b二、填空题(本题共8题,每题3分,共24分)11. 如果80m 表示向东走80 m ,那么-60m 表示__________ .12. -3的相反数是__ ; 绝对值是12的数是_____ ;43-的倒数是 .13. 把12500000用科学计数法表示为_________ . 14. 5.276(精确到十分位)_____ .15.化简:()68--=_____ ;3--= ;-(+0.75)=_____ .16.在数轴上,点A 到原点的距离等于3,点A 所表示的数是_________. 17. 若|m -2|+|n +3|=0,则2n-3m= .18. 观察下面的一列数:21,-61,121,-201……请你找出其中排列的规律,并按此规律填空.第9个数是________,第14个数是________.三、解答题(一):本大题共6小道,共36分. 19.(6分)把下列各数填在相应的大括号里.8,,0.275,0,﹣,﹣6,π,﹣0.25,﹣|﹣2|,分数:{ …} 非负整数:{ …} 有理数:{ …}. 20.(6分)在数轴上把下列各数表示出来,并用“<”连接各数.5+ ,5.3-,21,211-,4,021.(每题1分,共4分)计算:(1)7+(-3.04) (2) (-2.9)+(-0.31)(3)(-3)-(-7) (4)(-10)-322.(每题2分,共4分)计算:(1)()()24192840-+---- (2)()()13181420----+-23. (每题2分,共8分)比较下列各对数的大小:(1)54-与43-; (2)54+-与54+-;(3)25与52; (4)232⨯与2)32(⨯.24.(8分)10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:,与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?四、解答题(本大题共5小道,共40分.)25.计算:(每题2分,共8分)(1) );49(32-⨯ (2)-0.25÷83(3)()()169441281-÷⨯÷- (4) 13(1)(48)64-+⨯-26.计算:(每题4分,共8分)(1) 232)31(3)4(-⨯--(2) 42221(10.5)()2(3)3⎡⎤---⨯÷---⎣⎦27.(8分)若|a|=2, b=-3,c 是最大的负整数,求a +b-c 的值.28. (8分)已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cd m ++-+的值.29.(8分)如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B 是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A 表示数-3,将点A 向右移动7个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A,B 两点间的距离为 . (3)如果点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .(4)一般地,如果A 点表示的数为m ,将A 点向右移动n 个单位长度,再向左移动p 个单位长度,那么请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?数学参考答案一、选择题(本题共10小题,每小题2,共20分.)二、填空题(共8题,每题3分,共24分) 11. 向西走60米 12. 3;; 13.1.25×107 14. 5.315.68;-3;-0.75 16.±3 17.13 18. , 三、解答题(一):本大题共6小道,共36分.19.分数:{ ,0.275 , ﹣ , ﹣0.25 …}非负整数:{8 , 0 …}有理数:{ 8,,0.275,0,﹣,﹣6,﹣0.25,﹣|﹣2|,…} 20. ﹣3.5<﹣1<0<<4<+5,21.(1)3.96 (2)-3.21 (3)4 ( 4)-13 22.(1)-73 (2)-2923. (1)∵-的绝对值是,的绝对值是,而>,所以> (2)∵|-4+5|=1,|-4|+|5|=9,∴|-4+5|<|-4|+|5|; (3)∵52,=25,25=32,∴52,<25;(4)2×32=18,(2×3)2=36,∴2×32<(2×3)2.2 kg. 28. 解 由题意得:a+b=0,cd=1,m=±2,24m =原式=0042314231241241+⨯-⨯+⨯--⨯⨯+⨯+或()=5或-11 29. 解:(1)∵点A 表示数-3,∴点A 向右移动7个单位长度,终点B 表示的数是-3+7=4,A ,B 两点间的距离是|-3-4|=7; (2)∵点A 表示数3,∴将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是3-7+5=1,A ,B 两点间的距离为3-1=2;(3)∵点A 表示数-4,∴将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是-4+168-256=-92,A 、B 两点间的距离是|-4+92|=88;(4)∵A 点表示的数为m ,∴将A 点向右移动n 个单位长度,再向左移动p 个单位长度,那么点B 表示的数为(m+n-p ),A ,B 两点间的距离为|n-p|.。
2018-2019学年度(上)第一次月考卷七年级数学(考试时间:100分钟试卷满分:120分)第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如果向北走6步记作+6步,那么向南走8步记作( )A.+8步B.-8步C.+14步D.-2步 2.在数轴上表示-1的点与表示2 018的点之间相隔( )A.2017个单位长度B.2018个单位长度C.2019个单位长度D.2010个单位长度 3.计算-(-2 018)的结果是( )A.-2 018B.2 018C.-12 018D.12 0184.如果|x|=|-5|,那么x 等于( )A.5B.-5C.5或-5D.以上都不对5. a ,b 为a >0,b <0,且|a|<|b|,则a ,b ,-a ,-b 的大小关系是( )A.b <-a <-b <aB.b <-b <-a <aC.b <-a <a <-bD.-a <-b <b <a6.若x 是-3的相反数,|y|=5,则x +y 的值为( )A.2B.8C.-8或2D.8或-27.数轴上表示-1和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( )A.-4B.-2C.2D.4 8.每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是( )A.19.7千克B.19.9千克C.20.1千克D.20.3千克9. 如图,数轴上的点A 、B 分别对应数a 、b ,下列结论正确的是( )A.a +b <0B.a -b>0C.ab>0D.-ab>010. 现规定a*b =ab +a -b ,如1*3=1×3+1-3,则(-2*5)*6等于( )A.120B.125C.-120D.-125第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11. 某市冬季里的一天,早上6时气温是零下12 ℃,中午11时上升了5 ℃,晚上8时又上升了-8 ℃,则晚上8时的气温是 ℃. 12. 已知某公路一侧原有路灯106盏,相邻两盏路灯之间的距离为36米,为节约用电,现计划全部更换为新型节能灯,且相邻两盏路灯之间的距离变为54米,则需要更换节能灯 盏. 13. 若|a|=4,|b|=3,且a <0<b ,则a b 的值为 . 14. -270 000用科学记数法表示为 .15. 观察下列等式,找出规律然后在空格处填上具体的数字. 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52; 1+3+5+7+9+11=36=62.根据规律填空:1+3+5+7+9+…+99= .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分24分)计算(1)-10+8÷(-2)2-(-4)×(-3); 解:(2)4×(-3)2-5×(-2)3+6; 解:(3)-14-16×[2-(-3)2];解:(4)(-3)2-112×29-6÷|-23|2;解:(5)2×[5+(-2)3]-(-|-4|÷12);解:(6)-23-[-3+(-3)2÷(-15)].解:17.(本小题满分4分) . 阅读下题解答:计算:(-124)÷(23-34+78).分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:(23-34+78)÷(-124)=(23-34+78)×(-24)=-16+18-21=-19.所以原式=-119.根据阅读材料提供的方法,完成下面的计算:(-142)÷[12-13+57+(-23)2×(-6)]. 解:18. (本小题满分8分) 若a ,b 都是非零的有理数,则a |a|+b |b|+ab|ab|的值是多少? 解: 19. (本小题满分6分)在学习有理数乘法时,李老师和同学们做了这样的游戏,将2 018这个数说给第一位同学,第一位同学将它减去它的12的结果告诉第二位同学,第二位同学再将听到的结果减去它的13的结果告诉第三位同学,第三位同学再将听到的结果减去它的14的结果告诉第四位同学,…照这样的方法直到全班40人全部传完,最后一位同学将听到的结果告诉李老师,你知道最后的结果吗? 解:20.(本小题满分4分)计算:(12 019-1)×(12 018-1)×(12 017-1)×…×(11 000-1).解: 21.(本小题满分9分)某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”(1)(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少? (3)这五天的收盘价中哪天的最高?哪天的最低?相差多少? 解:22.(10分) 在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|= 6+7 ;|6-7|=7-6;|7-6|=7- 6;|-6-7|=6+7; (1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7-21|= ;②|-12+0.8|= ;③⎪⎪⎪⎪⎪⎪717-718= ; (2)数a 在数轴上的位置如图所示,则|a -2.5|=( )A.a -2.5B.2.5-aC.a +2.5D.-a -2.5(3)用合理的方法计算:|15-12 018|+|12 018-12|-|-12|+11 009.解:23.(10分)解决下列问题:(1)将-4,-3,-2,-1,1,2,3,4这8个数分别填入如图1所示的方阵图中,其中0已经给出,使得每一行,每一列,斜对角的三个数相加都相等;(2)根据图2中给出的数,请你完成图2的方阵图,使得每一行,每一列,斜对角的三个数相加都相等.图1 图2解:参考答案一、选择题BCBCC DDCDD 11. -15℃. 12. 71盏. 13. -64.14. -2.7×105. 15. 2500=502.16.(本小题满分24分)计算(1)解:原式=-10+8÷4-12 =-10+2-12 =-20.(2)解:原式=4×9-5×(-8)+6 =36+40+6 =82.(3)解:原式=-1-16×(2-9)=-1-16×(-7)=-1+76=16. (4)解:原式=9-13-6÷49=9-13-272=-456.(5)解:原式=2×(5-8)-(-4×2) =2×(-3)-(-8) =2.(6)解:原式=-8-[-3+9÷(-15)]=-8-(-3-45) =-8-(-48) =40. 17.解:(23-34+78)÷(-124)=(23-34+78)×(-24)=-16+18-21=-19.所以原式=-119.根据阅读材料提供的方法,完成下面的计算:(-142)÷[12-13+57+(-23)2×(-6)]. 解:根据题意,得 [12-13+57+(-23)2×(-6)]÷(-142) =[12-13+57+49×(-6)]×(-42) =-21+14-30+112 =75.则原式=175.18. 解:当a>0,b>0时,原式=a a +b b +abab =1+1+1=3;当a>0,b<0时,原式=a a +b -b +ab -ab =1+(-1)+(-1)=-1;当a<0,b>0时,原式=a -a +b b +ab-ab =-1+1+(-1)=-1;当a<0,b<0时,原式=a -a +b -b +abab =-1+(-1)+1=-1.所以a |a|+b |b|+ab |ab|的值为3或-1.19. 解:2 018×(1-12)×(1-13)×(1-14)×…×(1-140)=2 018×12×23×34×…×3940=2 018×140=1 00920.20.解:原式=(-2 0182 019)×(-2 0172 018)×(-2 0162 017)×…×(-1 0001 001)×(-9991 000)=2 0182 019×2 0172 018×2 0162 017×…×1 0001 001×9991 000 =9992 019. 21.解:(1)10+0.28=10.28(元); 10.28-2.36=7.92(元); 7.92+1.80=9.72(元); 9.72-0.35=9.37(元); 9.37+0.08=9.45(元).所以周一至周五这只股票每天的收盘价分别为10.28元、7.92元、9.72元、9.37元、9.45元. (2)10.00-9.45=0.55(元),所以本周末收盘价比上周末收盘价下跌了0.55元.(3)周一最高,周二最低,10.28-7.92=2.36(元),所以相差2.36元. 22.解:原式=15-12 018+12-12 018-12+11 009=15. 23 解:(1)(2)答案不唯一,如:。