高中数学选修4-5第一讲 不等式4
- 格式:ppt
- 大小:610.00 KB
- 文档页数:15
2.绝对值不等式的解法1.|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法只需将ax+b看成一个整体,即化成|x|≤a,|x|≥a(a>0)型不等式求解.|ax+b|≤c(c>0)型不等式的解法:先化为-c≤ax+b≤c,再由不等式的性质求出原不等式的解集.不等式|ax+b|≥c(c>0)的解法:先化为ax+b≥c或ax+b≤-c,再进一步利用不等式性质求出原不等式的解集.2.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法①利用绝对值不等式的几何意义求解,体现数形结合思想,理解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键.②以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负性,进而去掉绝对值符号是解题关键.③通过构造函数,利用函数的图象求解,体现函数与方程的思想,正确求出函数的零点并画出函数图象(有时需要考查函数的增减性)是解题关键.|ax+b|≤c与|ax+b|≥c(c>0)型的不等式的解法解下列不等式:(1)|5x-2|≥8;(2)2≤|x-2|≤4.利用|x|>a及|x|<a(a>0)型不等式的解法求解.(1)|5x-2|≥8?5x-2≥8或5x-2≤-8?x≥2或x≤-6 5,∴原不等式的解集为x x≥2或x≤-65.(2)原不等式价于|x-2|≥2,①|x-2|≤4.②由①得x-2≤-2,或x-2≥2,∴x≤0或x≥4.由②得-4≤x-2≤4,∴-2≤x≤6.∴原不等式的解集为{x|-2≤x≤0或4≤x≤6}.|ax+b|≥c和|ax+b|≤c型不等式的解法:①当c>0时,|ax+b|≥c?ax+b≥c或ax+b≤-c,|ax+b|≤c?-c≤ax+b≤c.②当c=0时,|ax+b|≥c的解集为R,|ax+b|<c的解集为?.③当c<0时,|ax+b|≥c的解集为R,|ax+b|≤c的解集为?.1.解下列不等式:(1)|3-2x|<9;(2)|x-x2-2|>x2-3x-4;(3)|x2-3x-4|>x+1. 解:(1)∵|3-2x|<9,∴|2x-3|<9.∴-9<2x-3<9.即-6<2x<12.∴-3<x<6.∴原不等式的解集为{x|-3<x<6}.(2)∵|x-x2-2|=|x2-x+2|,而x2-x+2=x-122+74>0,∴|x-x2-2|=|x2-x+2|=x2-x+2.故原不等式等价于x2-x+2>x2-3x-4?x>-3.∴原不等式的解集为{x|x>-3}.(3)不等式可转化为x2-3x-4>x+1或x2-3x-4<-x-1,∴x2-4x-5>0或x2-2x-3<0.解得x>5或x<-1或-1<x<3,∴不等式的解集是(5,+∞)∪(-∞,-1)∪(-1,3).2.已知常数a满足-1<a<1,解关于x的不等式:ax+|x+1|≤1. 解:若x≥-1,则ax+x+1≤1,即(a+1)x≤0.因为-1<a<1,所以x≤0.又x≥-1,所以-1≤x≤0.若x<-1,则ax-x-1≤1,即(a-1)x≤2.因为-1<a<1,所以x≥2a-1.因为-1<a<1,所以2a-1-(-1)=a+1a-1<0.所以2a-1≤x<-1.综上所述,2a-1≤x≤0.故不等式的解集为2a-1,0.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法解不等式|x-3|-|x+1|<1.解该不等式,可采用三种方法:(1)利用绝对值的几何意义;(2)利用各绝对值的零点分段讨论;(3)构造函数,利用函数图象分析求解.法一:在数轴上-1,3,x对应的点分别为A,C,P,而B点对应的实数为12,B点到C点的距离与到A点的距离之差为 1.由绝对值的几何意义知,当点P在射线Bx上(不含B点)时不等式成立,故不等式的解集为x x>12.法二:原不等式?①x<-1,--++或②-1≤x<3,---+或③x≥3,--+①的解集为?,②的解集为x 12<x<3,③的解集为{x|x≥3}.综上所述,原不等式的解集为x x>12.法三:将原不等式转化为|x-3|-|x+1|-1<0,构造函数y=|x-3|-|x+1|-1,即y=3,-2x+1,-5,x≤-1,-1<x<3,x≥3.作出函数的图象(如下图所示),它是分段函数,函数与x轴的交点是12,0,由图象可知,当x>12时,有y<0,即|x-3|-|x+1|-1<0,所以原不等式的解集是x x>12.|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.3.解不等式|2x-1|+|3x+2|≥8.解:①当x≤-23时,|2x-1|+|3x+2|≥8?1-2x-(3x+2)≥8?-5x≥9?x≤-95,∴x≤-95;②当-23<x<12时,|2x-1|+|3x+2|≥8?1-2x+3x+2≥8?x+3≥8?x≥5,∴x∈?;③当x≥12时,|2x-1|+|3x+2|≥8?5x+1≥8?5x≥7?x≥75,∴x≥75.∴原不等式的解集为-∞,-95∪75,+∞.4.设函数f(x)=x+1a+|x-a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.解:(1)证明:由a>0,得f(x)=x+1a+|x-a|≥x+1a--=1a+a≥2,所以f(x)≥2.(2)f(3)=3+1a+|3-a|.当a>3时,f(3)=a+1a,由f(3)<5,得3<a<5+212.当0<a≤3时,f(3)=6-a+1a,由f(3)<5,得1+52<a≤3.综上所述,a的取值范围是1+52,5+212.含绝对值不等式的恒成立问题已知不等式|x+2|-|x+3|>m.(1)若不等式有解;(2)若不等式解集为R;(3)若不等式解集为?,分别求出m的取值范围.解答本题可以先根据绝对值|x-a|的意义或绝对值不等式的性质求出|x+2|-|x+3|的最大值和最小值,再分别写出三种情况下m的取值范围.法一:因|x+2|-|x+3|的几何意义为数轴上任意一点P(x)与两定点A(-2),B(-3)距离的差.即|x+2|-|x+3|=|PA|-|PB|.又(|PA|-|PB|)max=1,(|PA|-|PB|)min=-1.即-1≤|x+2|-|x+3|≤1.(1)若不等式有解,m只要比|x+2|-|x+3|的最大值小即可,即m<1,m的取值范围为(-∞,1);(2)若不等式的解集为R,即不等式恒成立,m只要比|x+2|-|x+3|的最小值还小,即m<-1,m的取值范围为(-∞,-1);(3)若不等式的解集为?,m只要不小于|x+2|-|x+3|的最大值即可,即m≥1,m的取值范围为.6.把本例中的“-”改成“+”,即|x+2|+|x+3|>m时,分别求出m的取值范围.解:|x+2|+|x+3|≥|(x+2)-(x+3)|=1,即|x+2|+|x+3|≥1.(1)若不等式有解,m为任何实数均可,即m∈R;(2)若不等式解集为R,即m∈(-∞,1);(3)若不等式解集为?,这样的m不存在,即m∈?.课时跟踪检测(五)1.不等式|x+1|>3的解集是( )A.{x|x<-4或x>2} B.{x|-4<x<2}C.{x|x<-4或x≥2} D.{x|-4≤x<2}解析:选 A |x+1|>3,则x+1>3或x+1<-3,因此x<-4或x>2.2.满足不等式|x+1|+|x+2|<5的所有实数解的集合是( )A.(-3,2) B.(-1,3) C.(-4,1) D.-32,72解析:选C |x+1|+|x+2|表示数轴上一点到-2,-1两点的距离和,根据-2,-1之间的距离为1,可得到-2,-1距离和为5的点是-4,1.因此|x+1|+|x+2|<5解集是(-4,1).3.不等式1≤|2x-1|<2的解集为( )A.-12,0∪1,32B.-12,0∪1,32C.-12,0∪1,32D.-12,0∪1,32解析:选 D 由1≤|2x-1|<2,得1≤2x-1<2或-2<2x-1≤-1,因此-12<x≤0或1≤x<32.4.若关于x的不等式|x-1|+|x+m|>3的解集为R,则实数m的取值范围是( )A.(-∞,-4)∪(2,+∞) B.(-∞,-4)∪(1,+∞)C.(-4,2) D.解析:选 A 由题意知,不等式|x-1|+|x+m|>3恒成立,即函数f(x)=|x-1|+|x+m|的最小值大于3,根据绝对值不等式的性质可得|x-1|+|x+m|≥|(x-1)-(x+m)|=|m+1|,故只要满足|m+1|>3即可,所以m+1>3或m+1<-3,解得m>2或m<-4,故实数m的取值范围是(-∞,-4)∪(2,+∞).5.不等式|x+2|≥|x|的解集是________.解析:∵不等式两边是非负实数,∴不等式两边可以平方,两边平方,得(x+2)2≥x2,∴x2+4x+4≥x2,即x≥-1,∴原不等式的解集为{x|x≥-1}.答案:{x|x≥-1}6.不等式|2x-1|-x<1的解集是__________.解析:原不等式等价于|2x-1|<x+1?-x-1<2x-1<x+1?3x>0,x<2?0<x<2.答案:{x|0<x<2}7.已知函数f(x)=|x+1|+|x-2|-|a2-2a|,若函数f(x)的图象恒在x轴上方,则实数a的取值范围为________.解析:因为|x+1|+|x-2|≥|x+1-(x-2)|=3,所以f(x)的最小值为3-|a2-2a|.由题意,得|a2-2a|<3,解得-1<a<3.答案:(-1,3)8.解不等式:|x2-2x+3|<|3x-1|.解:原不等式?(x2-2x+3)2<(3x-1)2?<0?(x2+x+2)(x2-5x+4)<0?x2-5x+4<0(因为x2+x+2恒大于0)?1<x<4.所以原不等式的解集是{x|1<x<4}.9.解关于x的不等式|2x-1|<2m-1(m∈R).解:若2m-1<0,即m≤12,则|2x-1|<2m-1恒不成立,此时,原不等式无解;若2m-1>0,即m>12,则-(2m-1)<2x-1<2m-1,所以1-m<x<m.综上所述:当m≤12时,原不等式的解集为?;当m>12时,原不等式的解集为{x|1-m<x<m}.10.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈-a2,12时,f(x)≤g(x),求a的取值范围.解:(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0. 设函数y=|2x-1|+|2x-2|-x-3,则y=-5x,x<12,-x-2,12≤x≤1,3x-6,x>1.其图象如图所示.从图象可知,当且仅当x∈(0,2)时,y<0,所以原不等式的解集是{x|0<x<2}.(2)当x∈-a2,12时,f(x)=1+a.不等式f(x)≤g(x)化为1+a≤x+3,所以x≥a-2对x∈-a2,12都成立.故-a2≥a-2,即a≤43.从而a的取值范围是-1,43.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,绝对值不等式主要考查解法及简单的应用,题目难度中档偏下,着重考查学生的分类讨论思想及应用能力.解绝对值不等式的关键是去掉绝对值符号,化成不含绝对值的不等式,其一是依据绝对值的意义;其二是先令每一个绝对值等于零,找到分界点,通过讨论每一区间内的代数式的符号去掉绝对值.真题体验1.(湖南高考)若实数a,b满足1a+2b=ab,则ab的最小值为( )A. 2 B.2C.2 2 D.4解析:选 C 由1a+2b=ab,知a>0,b>0,所以ab=1a+2b≥22ab,即ab≥22,当且仅当1a=2b,1a+2b=ab,即a=42,b=242时取“=”,所以ab的最小值为2 2.2.(重庆高考)设a,b>0,a+b=5,则a+1+b+3的最大值为________.解析:令t=a+1+b+3,则t2=a+1+b+3+2++=9+2++≤9+a+1+b+3=13+a+b=13+5=18,当且仅当a+1=b+3时取等号,此时a=72,b=32.∴t max=18=3 2.答案:3 23.(重庆高考)若函数f(x)=|x+1|+2|x-a|的最小值为5,则实数a=________. 解析:由于f(x)=|x+1|+2|x-a|,当a>-1时,f(x)=-3x+2a--,-x+2a+-,3x-2a+作出f(x)的大致图象如图所示,由函数f(x)的图象可知f(a)=5,即a+1=5,∴a=4.同理,当a≤-1时,-a-1=5,∴a=-6.答案:-6或44.(全国乙卷)已知函数f(x)=|x+1|-|2x-3|.(1)画出y=f(x)的图象;(2)求不等式|f(x)|>1的解集.解:(1)由题意得f(x)=错误! 故y=f(x)的图象如图所示.(2)由f(x)的函数表达式及图象可知,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=13或x=5.故f(x)>1的解集为{x|1<x<3},f(x)<-1的解集为x x<13或x>5.所以|f(x)|>1的解集为x x<13或1<x<3或x>5.5.(江苏高考)设a>0,|x-1|<a3,|y-2|<a3,求证:|2x+y-4|<a.证明:因为|x-1|<a3,|y-2|<a3,所以|2x+y-4|=|2(x-1)+(y-2)|≤2|x-1|+|y-2|<2×a3+a3=a.6.(全国丙卷)已知函数f(x)=|2x-a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求a的取值范围.解:(1)当a=2时,f(x)=|2x-2|+2.解不等式|2x-2|+2≤6得-1≤x≤3. 因此f(x)≤6的解集为{x|-1≤x≤3}.(2)当x∈R时,f(x)+g(x)=|2x-a|+a+|1-2x|≥3,即x-a2+12-x≥3-a2.又x-a2+12-x min=12-a2,所以12-a2≥3-a2,解得a≥2.所以a的取值范围是“a+c>b+d”是“a>b且c>d”的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件易得a>b且c>d时必有a+c>b+d.若a+c>b+d时,则可能有a>b且c>d.A基本不等式的应用利用基本不等式求最值问题一般有两种类型:①和为定值时,积有最大值;②积为定值时,和有最小值,在具体应用基本不等式解题时,一定要注意适用的范围和条件:“一正、二定、三相等”.已知x,y,z∈R+,x-2y+3z=0,则y2xz的最小值为________.由x-2y+3z=0,得y=x+3z2,则y2xz=x2+9z2+6xz4xz≥6xz+6xz4xz=3,当且仅当x=3z时,等号成立.3设a,b,c为正实数,求证:1a3+1b3+1c3+abc≥2 3.因为a,b,c为正实数,由平均不等式可得1a3+1b3+1c3≥331a3·1b3·1c3.即1a3+1b3+1c3≥3abc,当且仅当a=b=c时,等号成立.所以1a3+1b3+1c3+abc≥3abc+abc,而3abc+abc≥23abc·abc=2 3.所以1a3+1b3+1c3+abc≥23,当且仅当abc=3时,等号成立.含绝对值的不等式的解法1.公式法|f(x)|>g(x)?f(x)>g(x)或f(x)<-g(x);|f(x)|<g(x)?-g(x)<f(x)<g(x).2.平方法|f(x)|>|g(x)|?2>2.3.零点分段法含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间上的符号,转化为不含绝对值的不等式去解.解下列关于x的不等式:(1)|x+1|>|x-3|;(2)|x-2|-|2x+5|>2x.(1)法一:|x+1|>|x-3|,两边平方得(x+1)2>(x-3)2,∴8x>8.∴x>1.∴原不等式的解集为{x|x>1}.法二:分段讨论:当x≤-1时,有-x-1>-x+3,此时x∈?;当-1<x≤3时,有x+1>-x+3,即x>1,此时1<x≤3;当x>3时,有x+1>x-3成立,∴x>3.∴原不等式的解集为{x|x>1}.(2)分段讨论:①当x<-52时,原不等式变形为2-x+2x+5>2x,解得x<7,∴原不等式的解集为x x<-52.②当-52≤x≤2时,原不等式变形为2-x-2x-5>2x,解得x<-35.∴原不等式的解集为x-52≤x<-35.③当x>2时,原不等式变形为x-2-2x-5>2x,解得x<-73,∴原不等式无解.综上可得,原不等式的解集为x x<-35.不等式的恒成立问题对于不等式恒成立求参数范围问题,常见类型及其解法如下:(1)分离参数法运用“f(x)≤a?f(x)max≤a,f(x)≥a?f(x)min≥a”可解决恒成立中的参数范围问题.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能时,可转换思维角度,将主元与参数互换,常可得到简便的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维与抽象思维各自的优势,可直观地解决问题.设有关于x的不等式lg(|x+3|+|x-7|)>a.(1)当a=1时,解此不等式.(2)当a为何值时,此不等式的解集是R?(1)当a=1时,lg(|x+3|+|x-7|)>1,?|x+3|+|x-7|>10,?x≥7,2x-4>10或-3<x<7,10>10或x≤-3,4-2x>10,?x>7或x<-3.∴不等式的解集为{x|x<-3或x>7}.(2)设f(x)=|x+3|+|x-7|,则有f(x)≥|(x+3)-(x-7)|=10,当且仅当(x+3)(x-7)≤0,即-3≤x≤7时,f(x)取得最小值10.∴lg(|x+3|+|x-7|)≥1.要使lg(|x+3|+|x-7|)>a的解集为R,只要a<1.。
第一讲 不等式和绝对值不等式复习课学习目标 1.梳理本讲的重要知识要点,构建知识网络.2.进一步强化对基本不等式的理解和应用,尤其注意等号成立的条件.3.巩固对绝对值三角不等式的理解和掌握,进一步熟练绝对值三角不等式的应用.4.会解绝对值不等式.1.实数的运算性质与大小顺序的关系:a >b ⇔a -b >0,a =b ⇔a -b =0,a <b ⇔a -b <0,由此可知要比较两个实数的大小,判断差的符号即可. 2.不等式的基本性质 (1)对称性:a >b ⇔b <a . (2)传递性:a >b ,b >c ⇒a >c . (3)可加性:a >b ⇔a +c >b +c .(4)可乘性:如果a >b ,c >0,那么ac >bc ; 如果a >b ,c <0,那么ac <bc .(5)乘方:如果a >b >0,那么a n >b n(n ∈N ,n ≥2). (6)开方:如果a >b >0n a >nb n ∈N ,n ≥2). 3.基本不等式(1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a =b 时,等号成立). (2)定理2:如果a ,b >0,那么a +b2≥ab (当且仅当a =b 时,等号成立).(3)引理:若a ,b ,c ∈R +,则a 3+b 3+c 3≥3abc (当且仅当a =b =c 时,等号成立). (4)定理3:如果a ,b ,c ∈R +,那么a +b +c3≥3abc (当且仅当a =b =c 时,等号成立).(5)推论:若a 1,a 2,…,a n ∈R +,则a 1+a 2+…+a n n≥na 1a 2…a n .当且仅当a 1=a 2=…=a n时,等号成立;(6)在应用基本不等式求最值时一定要注意考虑是否满足“一正,二定,三相等”的要求. 4.绝对值不等式的解法解含绝对值的不等式的基本思想是通过去掉绝对值符号,把含绝对值的不等式转化为一元一次不等式,或一元二次不等式.去绝对值符号常见的方法(1)根据绝对值的定义.(2)分区间讨论(零点分段法).(3)图象法.5.绝对值三角不等式(1)|a|的几何意义表示数轴上的点到原点的距离,|a-b|的几何意义表示数轴上两点间的距离.(2)|a+b|≤|a|+|b|(a,b∈R,ab≥0时等号成立).(3)|a-c|≤|a-b|+|b-c|(a,b,c∈R,(a-b)(b-c)≥0时等号成立).(4)||a|-|b||≤|a+b|≤|a|+|b|(a,b∈R,左边“=”成立的条件是ab≤0,右边“=”成立的条件是ab≥0).(5)||a|-|b||≤|a-b|≤|a|+|b|(a,b∈R,左边“=”成立的条件是ab≥0,右边“=”成立的条件是ab≤0).类型一不等式的基本性质的应用例1 “a+c>b+d”是“a>b且c>d”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案 A解析易得当a>b且c>d时,必有a+c>b+d.若a+c>b+d,则可能有a>b且c>d. 反思与感悟利用不等式的性质判断不等式或有关结论是否成立,再就是利用不等式性质,进行数值或代数式大小的比较,常用到分类讨论的思想.跟踪训练1 如果a∈R,且a2+a<0,那么a,a2,-a,-a2的大小关系是( )A.a2>a>-a2>-aB.-a>a2>-a2>aC.-a>a2>a>-a2D.a2>-a>a>-a2答案 B解析由a2+a<0知,a≠0,故有a<-a2<0,0<a2<-a.故选B.类型二 基本不等式及其应用命题角度1 用基本不等式证明不等式 例2 已知a >b >c >d ,求证:1a -b +1b -c +1c -d ≥9a -d. 证明 ∵a >b >c >d ,∴a -b >0,b -c >0,c -d >0, ∴⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d (a -d ) =⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d ·[(a -b )+(b -c )+(c -d )] ≥331a -b ·1b -c ·1c -d·33(a -b )(b -c )(c -d )=9. ∴1a -b +1b -c +1c -d ≥9a -d. 反思与感悟 不等式的证明方法很多,关键是从式子的结构入手分析,运用基本不等式证明不等式时,要注意成立的条件,同时熟记一些变形形式. 跟踪训练2 设a ,b ,c 均为正数,证明:(ab +a +b +1)(ab +ac +bc +c 2)≥16abc . 证明 (ab +a +b +1)·(ab +ac +bc +c 2) =(b +1)(a +1)(b +c )(a +c ) ≥2b ·2a ·2bc ·2ac =16abc , ∴所证不等式成立.命题角度2 求最大、最小值例3 若x ,y ,z ∈R +,x -2y +3z =0,则y 2xz的最小值为________.答案 3解析 由x -2y +3z =0,得y =x +3z2,则y 2xz =x 2+9z 2+6xz 4xz ≥6xz +6xz 4xz=3, 当且仅当x =3z 时取“=”.反思与感悟 利用基本不等式求最值问题一般有两种类型(1)和为定值时,积有最大值;(2)积为定值时,和有最小值,在具体应用基本不等式解题时,一定要注意适用的范围和条件:“一正、二定、三相等”.跟踪训练3 当0<x <π2时,函数f (x )=1+cos2x +8sin 2xsin2x 的最小值为( )A .2B .2 3C .4D .4 3答案 C解析 f (x )=2cos 2x +8sin 2x 2sin x cos x =cos x sin x +4sin xcos x.∵x ∈⎝⎛⎭⎪⎫0,π2,∴cos x >0,sin x >0.故f (x )=cos x sin x +4sin xcos x ≥2cos x sin x ·4sin xcos x=4,当且仅当cos x =2sin x >0时,等号成立.故选C.类型三 含绝对值的不等式的解法 例4 解下列关于x 的不等式. (1)|x +1|>|x -3|; (2)|x -2|-|2x +5|>2x . 解 (1)方法一 |x +1|>|x -3|,两边平方得(x +1)2>(x -3)2,∴8x >8,∴x >1. ∴原不等式的解集为{x |x >1}. 方法二 分段讨论:当x ≤-1时,有-x -1>-x +3,此时x ∈∅; 当-1<x ≤3时,有x +1>-x +3, 即x >1,∴此时1<x ≤3;当x >3时,有x +1>x -3,∴x >3. ∴原不等式的解集为{x |x >1}.(2)分段讨论:①当x <-52时,原不等式变形为2-x +2x +5>2x ,解得x <7,∴不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-52.②当-52≤x ≤2时,原不等式变形为2-x -2x -5>2x ,解得x <-35,∴不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-52≤x <-35. ③当x >2时,原不等式变形为x -2-2x -5>2x , 解得x <-73,∴原不等式无解.综上可知,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-35. 反思与感悟 含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间的符号,转化为不含绝对值的不等式去解.这种方法通常称为零点分段法.跟踪训练4 已知函数f (x )=|x -a |,其中a >1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解 (1)当a =2时,f (x )+|x -4|=|x -2|+|x -4|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|,得-2x +6≥4,解得x ≤1; 当2<x <4时,f (x )≥4-|x -4|,得2≥4,无解; 当x ≥4时,由f (x )≥4-|x -4|,得2x -6≥4,解得x ≥5. 所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}. (2)记h (x )=f (2x +a )-2f (x ), 则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a -12=1,a +12=2,解得a =3.类型四 恒成立问题例5 设函数f (x )=|x +1|+|x -4|-a . (1)当a =1时,求函数f (x )的最小值;(2)若f (x )≥4a+1对任意的实数x 恒成立,求实数a 的取值范围.解 (1)当a =1时,f (x )=|x +1|+|x -4|-1≥|x +1+4-x |-1=4,∴f (x )min =4.(2)f (x )≥4a+1对任意的实数x 恒成立⇔|x +1|+|x -4|-1≥a +4a对任意的实数x 恒成立⇔a +4a≤4.当a <0时,上式成立; 当a >0时,a +4a≥2a ·4a=4,当且仅当a =4a,即a =2时上式取等号,此时a +4a≤4成立.综上,实数a 的取值范围为(-∞,0)∪{2}.反思与感悟 不等式恒成立问题,通常是分离参数,将其转化为求最大、最小值问题.当然,根据题目特点,还可能用①变更主次元;②数形结合等方法.跟踪训练5 已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪⎪⎪f (x )-2f ⎝ ⎛⎭⎪⎫x 2≤k 恒成立,求k 的取值范围.解 (1)由|ax +1|≤3,得-4≤ax ≤2, ∵f (x )≤3的解集为{x |-2≤x ≤1},∴当a ≤0时,不合题意. 又当a >0时,-4a ≤x ≤2a,∴a =2.(2)令h (x )=f (x )-2f ⎝ ⎛⎭⎪⎫x 2=|2x +1|-|2x +2|,∴h (x )=⎩⎪⎨⎪⎧1,x ≤-1,-4x -3,-1<x <-12,-1,x ≥-12,∴|h (x )|≤1,∴k ≥1,即k 的取值范围是[1,+∞).1.给出下列四个命题:①若a >b ,c >1,则a lg c >b lg c ;②若a >b ,c >0,则a lg c >b lg c ;③若a >b ,则a ·2c>b ·2c;④若a <b <0,c >0,则c a >cb. 其中正确命题的个数为( ) A .1 B .2 C .3 D .4答案 C解析 ①正确,c >1,lg c >0;②不正确,当0<c ≤1时,lg c ≤0;③正确,2c>0;④正确,由a <b <0,得0>1a >1b ,故c a >cb.2.设6<a <10,a2≤b ≤2a ,c =a +b ,那么c 的取值范围是( )A .9<c <30B .0≤c ≤18C .0≤c ≤30D .15<c <30答案 A解析 因为a 2≤b ≤2a ,所以3a2≤a +b ≤3a .又因为6<a <10,所以3a2>9,3a <30.所以9<3a2≤a +b ≤3a <30,即9<c <30.3.不等式4<|3x -2|<8的解集为_______________________________________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2<x <-23或2<x <103 解析 由4<|3x -2|<8,得⎩⎪⎨⎪⎧|3x -2|>4,|3x -2|<8⇒⎩⎪⎨⎪⎧3x -2<-4或3x -2>4,-8<3x -2<8⇒⎩⎪⎨⎪⎧x <-23或x >2,-2<x <103.∴-2<x <-23或2<x <103.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2<x <-23或2<x <103. 4.解不等式3≤|x -2|<4.解 方法一 原不等式等价于⎩⎪⎨⎪⎧|x -2|≥3, ①|x -2|<4. ②由①得x -2≤-3或x -2≥3, ∴x ≤-1或x ≥5. 由②得-4<x -2<4, ∴-2<x <6.∴原不等式的解集为{x |-2<x ≤-1或5≤x <6}.方法二 3≤|x -2|<4⇔3≤x -2<4或-4<x -2≤-3⇔5≤x <6或-2<x ≤-1. ∴原不等式的解集为{x |-2<x ≤-1或5≤x <6}.1.本讲的重点是均值不等式和绝对值不等式,要特别注意含绝对值不等式的解法. 2.重点题型有利用不等式的基本性质、均值不等式、绝对值三角不等式证明不等式或求函数最值问题;解绝对值不等式.3.重点考查利用不等式性质,均值不等式求函数的最值,含参数的绝对值不等式有解、解集是空集或恒成立问题.一、选择题1.若a >b ,则下列不等式中一定成立的是( ) A .a >2b B .-b a>-1 C .2a >2bD .lg(a -b )>1答案 C解析 ∵y =2x 是增函数,又a >b ,∴2a >2b. 2.设a ,b 为正实数,以下不等式恒成立的为( ) ①ab >2aba +b; ②a >|a -b |-b ; ③a 2+b 2>4ab -3b 2; ④ab +2ab>2.A .①③B .①④C .②③D .②④答案 D解析 ①不恒成立,因为a =b 时取“=”; ②恒成立,因为a ,b 均为正数; ④是恒成立的,因为ab +2ab≥22>2.3.若a >b ,b >0,则下列与-b <1x<a 等价的是( )A .-1b <x <0或0<x <1aB .-1a<x <1bC .x <-1a 或x >1bD .x <-1b或x >1a答案 D解析 -b <1x <a ,当x <0时,-bx >1>ax ,解得x <-1b;当x >0时,-bx <1<ax ,解得x >1a,故选D.4.不等式|x +3|-|x -3|>3的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪32<x ≤3 C .{x |x ≥3} D .{x |-3<x ≤0}答案 A解析 ①由⎩⎪⎨⎪⎧x ≤-3,-(x +3)+(x -3)>3,无解;②由⎩⎪⎨⎪⎧-3<x <3,x +3+x -3>3,得32<x <3; ③由⎩⎪⎨⎪⎧x ≥3,x +3-(x -3)>3,得x ≥3.综上,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32. 5.“a <4”是“对任意实数x ,|2x -1|+|2x +3|≥a 成立”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 答案 B解析 ∵|2x -1|+|2x +3|≥|2x -1-(2x +3)|=4, ∴当a <4时⇒|2x -1|+|2x +3|≥a 成立,即充分条件成立;对任意实数x ,|2x -1|+|2x +3|≥a ⇒a ≤4,不能推出a <4,即必要条件不成立. 二、填空题 6.若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围为________.答案 ⎣⎢⎡⎭⎪⎫15,+∞ 解析 令f (x )=xx 2+3x +1=1x +1x+3, ∵x >0,∴x +1x≥2,∴f (x )≤12+3=15,当且仅当x =1x ,即x =1时等号成立,即f (x )的最大值为15. 若使不等式恒成立,只需a ≥15即可. 7.已知不等式|x +2|-|x |≤a 的解集不是空集,则实数a 的取值范围是________. 答案 [-2,+∞)解析 ∵||x +2|-|x ||≤|x +2-x |=2,∴2≥|x +2|-|x |≥-2,∵不等式|x +2|-|x |≤a 的解集不是空集,∴a ≥-2.8.定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.答案 2解析 因为x ⊗y =x 2-y 2xy ,所以(2y )⊗x =4y 2-x 22xy. 又x >0,y >0,故x ⊗y +(2y )⊗x =x 2-y 2xy +4y 2-x 22xy =x 2+2y 22xy ≥22xy 2xy =2,当且仅当x =2y 时,等号成立. 9.不等式14(3|x |-1)≤12|x |+3的解集为________. 答案 {x |-13≤x ≤13}解析 当x <0时,不等式为14(-3x -1)≤-12x +3, 解得-13≤x <0,当x ≥0时,不等式为14(3x -1)≤12x +3, 解得0≤x ≤13,∴不等式的解集为{x |-13≤x ≤13}.10.若f (x )=2|x +1|-|x -1|且f (x )≥22,则x 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫34,+∞ 解析 ∵f (x )=2x 是增函数,∴f (x )≥22,即|x +1|-|x -1|≥32,①⎩⎪⎨⎪⎧ x ≥1,2≥32,∴x ≥1,②⎩⎪⎨⎪⎧ -1<x <1,2x ≥32,∴34≤x <1, ③⎩⎪⎨⎪⎧ x ≤-1,-2≤32,无解.综上x ∈⎣⎢⎡⎭⎪⎫34,+∞. 11.已知函数f (x )=|x -a |,若不等式f (x )≤3的解集为{x |-1≤x ≤5},则实数a 的值为________.答案 2解析 由f (x )≤3,得|x -a |≤3,解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧ a -3=-1,a +3=5,解得a =2,所以实数a 的值为2.三、解答题12.已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.解 (1)当a =-3时,f (x )=|x -3|+|x -2|=⎩⎪⎨⎪⎧ -2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3,得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3,得2x -5≥3,解得x ≥4;所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |,当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a , 由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].13.(2017·全国Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解 (1)f (x )=⎩⎪⎨⎪⎧ -3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x ,而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎪⎫|x |-322+54≤54. 当且仅当x =32时,|x +1|-|x -2|-x 2+x =54, 故m 的取值范围是⎝⎛⎦⎥⎤-∞,54. 四、探究与拓展14.已知关于x 的不等式|2x +1|-|x -1|≤log 2a (其中a >0).(1)当a =4时,求不等式的解集;(2)若不等式有解,求实数a 的取值范围.解 (1)令f (x )=|2x +1|-|x -1|,当a =4时,f (x )≤2,当x <-12时,f (x )=-x -2≤2,得-4≤x <-12; 当-12≤x ≤1时,f (x )=3x ≤2,得-12≤x ≤23; 当x >1时,f (x )=x +2≤2,此时x 不存在.所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -4≤x ≤23.(2)设f (x )=|2x +1|-|x -1|=⎩⎪⎨⎪⎧ -x -2,x <-12,3x ,-12≤x ≤1,x +2,x >1,故f (x )∈⎣⎢⎡⎭⎪⎫-32,+∞,即f (x )的最小值为-32, 若f (x )≤log 2a 有解,则log 2a ≥-32,解得a ≥24, 即a 的取值范围是⎣⎢⎡⎭⎪⎫24,+∞. 15.已知不等式|2x -3|<x 与不等式x 2-mx +n <0的解集相同.(1)求m -n ;(2)若a ,b ,c ∈(0,1),且ab +bc +ac =m -n ,求a +b +c 的最小值. 解 (1)|2x -3|<x ,即-x <2x -3<x ,解得1<x <3, ∴1,3是方程x 2-mx +n =0的两根,∴由根与系数的关系,得⎩⎪⎨⎪⎧ m =4,n =3.∴m -n =1.(2)由(1)得ab +bc +ac =1,∴(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac =a 2+b 22+b 2+c 22+a 2+c 22+2.∵a 2+b 22≥ab ,b 2+c 22≥bc ,a 2+c 22≥ac , ∴a 2+b 22+b 2+c 22+a 2+c 22≥ab +bc +ac =1. ∴(a +b +c )2=a 2+b 22+b 2+c 22+a 2+c 22+2≥3(当且仅当a =b =c =33时取等号), ∴a +b +c 的最小值是 3.。
选修4-5 不等式选讲第1课时 绝对值不等式(理科专用)1. 解不等式:|2x -1|<3.解:|2x -1|<3Þ-3<2x -1<3Þ-1<x <2.2. 若关于x 的不等式|x +1|-|x -2|<a 2-4a 有实数解,求实数a 的取值范围.解:∵ ||x +1|-|x -2||≤|(x +1)-(x -2)|=3,∴ -3≤|x +1|-|x -2|≤3.由不等式a 2-4a>|x +1|-|x -2|有实数解,知a 2-4a>-3,解得a>3或a<1.3. 不等式|2-x|+|x +1|≤a 对于任意x ∈[0,5]恒成立的实数a 的集合是多少?解:当x ∈[0,2]时,|2-x|+|x +1|=2-x +x +1=3,当x ∈[2,5]时,|2-x|+|x +1|=x -2+x +1=2x -1≤9,综上可得|2-x|+|x +1|≤9,∴ a ≥9.4. 解不等式:|2x +1|-|x -4|<2.解:① 当x ≥4时,2x +1-(x -4)<2,∴ x ∈Æ;② 当-12≤x<4时,2x +1+x -4<2, ∴ -12≤x<53; ③ 当x<-12时,-2x -1+x -4<2. ∴ -7<x<-12. 综上,该不等式的解集为⎝⎛⎭⎪⎫-7,53. 5. 若f(x)=||x -t +||5-x 的最小值为3,求实数t 的值.解:由f ()x =||x -t +||5-x ≥|(x -t)+(5-x)|=||5-t =3,解得t =2或8.6. 若对任意x ∈R ,||2-x +||3+x ≥a 2-4a 恒成立,求实数a 的取值范围.解:||2-x +||3+x ≥5,要||2-x +||3+x ≥a 2-4a 恒成立,即5≥a 2-4a ,解得-1≤a ≤5.7. 设a ∈R ,函数f(x)=ax 2+x -a(-1≤x ≤1).(1) 若|a|≤1,求证:|f(x)|≤54; (2) 求使函数f(x)最大值为178时a 的值. (1) 证明:∵ |x|≤1,|a|≤1,∴ |f(x)|=|a(x 2-1)+x|≤|a(x 2-1)|+|x|=|a|·|x 2-1|+|x|≤|x 2-1|+|x|=|1-x 2|+|x|=1-|x|2+|x|=-⎝⎛⎭⎪⎫|x|-122+54≤54. (2) 解:当a =0时,f(x)=x(-1≤x ≤1)的最大值是f(1)=1,从而a ≠0,故知f(x)是二次函数.∵ f(±1)=±1,∴ f(x)=ax 2+x -a(-1≤x ≤1)有最大值178⎩⎪⎨⎪⎧-1<-12a <1,f ⎝ ⎛⎭⎪⎫-12a =178,即⎩⎪⎨⎪⎧a<-12,(a +2)⎝ ⎛⎭⎪⎫a +18=0,∴ a =-2. 8. 已知f(x)=x 2-x +c 定义在区间[0,1]上,x 1、x 2∈[0,1],且x 1≠x 2,求证:(1) f(0)=f(1);(2) |f(x 2)-f(x 1)|<|x 1-x 2|.证明:(1) ∵ f(0)=c ,f(1)=c ,∴ f(0)=f(1).(2) |f(x 2)-f(x 1)|=|x 22-x 2+c -x 21+x 1-c|=|x 2-x 1|·|x 2+x 1-1|. ∵ 0≤x 1≤1,0≤x 2≤1,0<x 1+x 2<2(x 1≠x 2),∴ -1<x 1+x 2-1<1,∴ |x 2+x 1-1|<1,∴ |f(x 2)-f(x 1)|<|x 1-x 2|.9. 如图,O 为数轴的原点,A 、B 、M 为数轴上的三点,C 为线段OM 上的动点,设x 表示C 与原点的距离,y 表示C 到A 距离的4倍与C 到B 距离的6倍的和.(1) 将y 表示成x 的函数;(2) 要使y 的值不超过70,x 应该在什么范围内取值?解:(1) y =4|x -10|+6|x -20|,0≤x ≤30.(2) 依题意,x 满足⎩⎪⎨⎪⎧4|x -10|+6|x -20|≤70,0≤x ≤30, 解不等式组,其解集为[9,23],所以x ∈[9,23].10. 设f (x)= x 2-x +1,实数a 满足|x -a|<1,求证:| f (x)-f (a)|<2(|a|+1). 证明:∵ f(x)=x 2-x +1,|x -a|<1,∴ ||f (x )-f (a )=||x 2-x -a 2+a=||x -a ·||x +a -1<||x +a -1=||(x -a )+2a -1≤||x -a +||2a -1<1+||2a +1=2(||a +1).11. 已知函数f(x)=log 2(|x +1|+|x -2|-m)(1) 当m =5时,求函数f(x)的定义域;(2) 若关于x 的不等式f(x)≥1的解集是R ,求m 的取值范围.解:(1) 由题设知|x +1|+|x -2|>5, 不等式的解集是三个不等式组:⎩⎪⎨⎪⎧x ≥2,x +1+x -2>5或⎩⎪⎨⎪⎧-1≤x<2,x +1-x +2>5或⎩⎪⎨⎪⎧x<-1,-x -1-x +2>5解集的并集,解得函数f(x)的定义域为(-∞,-2)∪(3,+∞).(2) 不等式f(x)≥1即|x +1|+|x -2|>m +2.∵ x ∈R 时,恒有|x +1|+|x -2|≥|(x +1)-(x -2)|=3,要使不等式|x +1|+|x -2|≥m +2的解集是R ,∴ m +2≤3,∴ m 的取值范围是(-∞,1].。
第一讲不等式和绝对值不等式本章要览知识概要本讲内容以不等式的性质,解法和最值方面的应用为重点,多数是与函数,方程,三角,数列,几何综合在一起应用.绝对值是历年高考的重点,而绝对值不等式更是常考常新.在教学中要从绝对值的定义和几何意义来分析,绝对值的特点是带有绝对值符号,如何去掉绝对值符号,一定要掌握方法,切不可以题论题.利用重要不等式求最值时,要注意条件:一正,二定,三相等,即在x+y≥2xy中,x和y要大于零,要有定积或定和出现;同时要求“等号”成立;对于三元及n元均值不等式类似.本讲的主要内容有1.不等式的性质及应用.2.正数的算术平均数不小于它们的几何平均数的定理,以及简单的应用.3.含绝对值不等式的解法.4.不等式|a|-|b|≤|a±b|≤|a|+|b|.学法指导1.复习不等式的性质时,要克服“想当然”和“显然成立”的思维定势,要以比较准则和实数的运算法则为依据.2.解(证)某些不等式时,要把函数的定义域,值域和单调性结合起来.3.注意重要不等式和常用思想方法在解决题中的作用,利用平均值定理解决问题时,要注意满足定理成立的三个条件:一“正”,二“定”、三“相等”.4.对于含有绝对值的不等式(问题),要紧紧抓住绝对值的定义实质,充分利用绝对值的几何意义.解含有绝对值的不等式的指导思想是去掉绝对值.常用的方法是:(1)由定义分段讨论;(2)利用绝对值不等式的性质;(3)平方.5.要强化不等式的应用意识,同时要注意到不等式与函数方程的对比与联系.不等式的应用大致可分为两类:一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题.6.解不等式应用问题的三个步骤:(1)审题,必要时画出示意图;(2)建立不等式模型,即根据题意找出常量与变量的不等关系;(3)利用不等式的有关知识解题,即将数学模型转化为数学符号或图形符号.7.化归思想在本节占有重要位置,等式和不等式之间的转化,不等式和不等式之间的转化,函数与不等式之间的转化等,对于这些转化,一定要注意转化的条件.。
1.不等式的基本性质1.实数大小的比较(1)数轴上的点与实数一一对应,可以利用数轴上点的左右位置关系来规定实数的大小.在数轴上,右边的数总比左边的数大.(2)如果a-b>0,则a>b;如果a-b=0,则a=b;如果a-b<0,则a<b.(3)比较两个实数a与b的大小,归结为判断它们的差a-b的符号;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差的符号.2.不等式的基本性质由两数大小关系的基本事实,可以得到不等式的一些基本性质:(1)如果a>b,那么b<a;如果b<a,那么a>b.即a>b⇔b<a.(2)如果a>b,b>c,那么a>c.即a>b,b>c⇒a>c.(3)如果a>b,那么a+c>b+c.(4)如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc.(5)如果a>b>0,那么a n>b n(n∈N,n≥2).(6)如果a>b>0,那么na>nb(n∈N,n≥2).3.对上述不等式的理解使用不等式的性质时,一定要清楚它们成立的前提条件,不可强化或弱化它们成立的条件,盲目套用,例如:(1)等式两边同乘以一个数仍为等式,但不等式两边同乘以同一个数c(或代数式)结果有三种:①c>0时得同向不等式;②c=0时得等式;③c<0时得异向不等式.(2)a>b,c>d⇒a+c>b+d,即两个同向不等式可以相加,但不可以相减;而a>b>0,c>d>0⇒ac>bd,即已知的两个不等式同向且两边为正值时,可以相乘,但不可以相除.(3)性质(5)、(6)成立的条件是已知不等式两边均为正值,并且n∈N,n≥2,否则结论不成立.而当n取正奇数时可放宽条件,a>b⇒a n>b n(n=2k+1,k∈N),a>b⇒na>nb(n=2k+1,k∈N+).(4)在不等式的基本性质中,条件和结论的逻辑关系有两种:“⇒”与“⇔”,即推出关系和等价关系,或者说“不可逆关系”与“可逆关系”.这要求必须熟记与区别不同性质的条件.如a>b,ab>0⇒1a<1b,而反之不成立.数、式大小的比较[例1] 已知p q p q px qy 2px 2qy 2[思路点拨] 利用作差法比较两数的大小,并注意等号成立的条件. [解] (px +qy )2-(px 2+qy 2) =p 2x 2+2pqxy +q 2y 2-px 2-qy 2=p (p -1)x 2+q (q -1)y 2+2pqxy .因为p +q =1,所以p -1=-q ,q -1=-p . 所以(px +qy )2-(px 2+qy 2) =-pq (x 2+y 2-2xy )=-pq (x -y )2. 因为p ,q 为正数,所以-pq (x -y )2≤0. 所以(px +qy )2≤px 2+qy 2.当且仅当x =y 时,不等式中等号成立.比较两个数(式子)的大不,一般用作差法,其步骤是:作差—变形—判断差的符号—结论,其中“变形”是关键,常用的方法是分解因式、配方等.1.已知a ,b ∈R ,比较a 4+b 4与a 3b +ab 3的大小. 解:因为(a 4+b 4)-(a 3b +ab 3) =a 3(a -b )+b 3(b -a ) =(a -b )(a 3-b 3) =(a -b )2(a 2+ab +b 2)=(a -b )2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +b 22+34b 2≥0, (当且仅当a =b 时,取“=”号) 所以a 4+b 4≥a 3b +ab 3.2.已知x ,y 均为正数,设m =1x +1y ,n =4x +y ,试比较m 与n 的大小.解:m -n =1x +1y -4x +y =x +y xy -4x +y=(x +y )2-4xy xy (x +y )=(x -y )2xy (x +y ),∵x ,y 均为正数,∴x >0,y >0,xy >0,x +y >0,(x -y )2≥0, ∴m -n ≥0,即m ≥n ,当且仅当x =y 时取等号.不等式的证明[例2] 已知a >b c d e 求证:ea -c >eb -d.[思路点拨] 可以作差比较,也可用不等式的性质直接证明. [证明] 法一:e a -c -eb -d =e (b -d -a +c )(a -c )(b -d )=e (b -a +c -d )(a -c )(b -d ),∵a >b >0,c <d <0, ∴b -a <0,c -d <0. ∴b -a +c -d <0. 又∵a >0,c <0,∴a -c >0. 同理b -d >0, ∴(a -c )(b -d )>0. ∵e <0,∴e (b -a +c -d )(a -c )(b -d )>0.即ea -c >eb -d.法二:⎭⎪⎬⎪⎫c <d <0⇒-c >-d >0a >b >0⇒⎭⎪⎬⎪⎫a -c >b -d >0⇒1a -c <1b -d e <0⇒e a -c >e b -d.进行简单的不等式的证明,一定要建立在记准、记熟不等式性质的基础之上,如果不能直接由不等式的性质得到,可以先分析需要证明的不等式的结构,利用不等式的性质进行逆推,寻找使其成立的充分条件.3.设a >b >0,求证:a 2-b 2a 2+b 2>a -ba +b .证明:法一:∵a 2-b 2a 2+b 2-a -ba +b=(a -b )[(a +b )2-(a 2+b 2)](a 2+b 2)(a +b )=2ab (a -b )(a 2+b 2)(a +b )>0, ∴原不等式成立.法二:∵a >b >0,故a 2>b 2>0. 故左边>0,右边>0.∴左边右边=(a +b )2a 2+b 2=1+2ab a 2+b 2>1. ∴原不等式成立.4.已知a >b >0,d >c >0,求证:a c >b d. 证明:因为d >c >0,所以1c >1d>0.又因为a >b >0, 所以a ·1c >b ·1d ,即a c >bd.利用不等式的性质求范围[例3] 已知30<x <42,16<y <24,求x +y ,x -2y ,xy的取值范围. [思路点拨] 根据题目提供的条件,结合不等式的性质进行求解. [解] ∵30<x <42,16<y <24, ∴46<x +y <66. ∵16<y <24, ∴-48<-2y <-32, ∴-18<x -2y <10. ∵16<y <24, ∴124<1y <116. ∴54<x y <218.求代数式的取值范围是不等式性质应用的一个重要方面,严格依据不等式的性质和运算法则进行运算,是解答此类问题的基础,在使用不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作差,而要转化为同向不等式后作和.5.已知-π2≤α<β≤π2,求α-β的取值范围.解:∵-π2≤α<β≤π2,∴-π2≤α<π2,-π2≤-β<π2,且α<β.∴-π≤α-β<π,且α-β<0.∴-π≤α-β<0.即α-β的取值范围为[-π,0).6.已知1≤α+β≤4,-2≤α-β≤-1,求2α-β的取值范围. 解:设2α-β=m (α+β)+n (α-β),∴⎩⎪⎨⎪⎧m +n =2,m -n =-1,解得⎩⎪⎨⎪⎧m =12,n =32.又1≤α+β≤4,-2≤α-β≤-1, ∴⎩⎪⎨⎪⎧12≤12(α+β)≤2,-3≤32(α-β)≤-32,∴-52≤2α-β≤12.∴2α-β的取值范围为⎣⎢⎡⎦⎥⎤-52,12.1.已知数轴上两点A ,B 对应的实数分别为x ,y ,若x <y <0,则|x |与|y |对应的点P ,Q 的位置关系是( )A .P 在Q 的左边B .P 在Q 的右边C .P ,Q 两点重合D .不能确定解析:选B ∵x <y <0,∴|x |>|y |>0. 故P 在Q 的右边.2.已知a ,b ,c ∈R ,且ab >0,则下面推理中正确的是( ) A .a >b ⇒am 2>bm 2B.a c >b c⇒a >bC .a 3>b 3⇒1a <1bD .a 2>b 2⇒a >b解析:选C 对于A ,若m =0,则不成立;对于B ,若c <0,则不成立;对于C ,a 3-b 3>0⇒(a -b )(a 2+ab +b 2)>0,∵a 2+ab +b 2=⎝ ⎛⎭⎪⎫a +b 22+34b 2>0恒成立,∴a -b >0,∴a >b .又∵ab >0,∴1a <1b.∴C 成立;对于D ,a 2>b 2⇒(a -b )(a +b )>0,不能说a >b .3.已知a ,b ,c ∈(0,+∞),若ca +b <ab +c <bc +a,则( )A .c <a <bB .b <c <aC .a <b <cD .c <b <a解析:选 A 由ca +b <ab +c <bc +a,可得c a +b+1<a b +c+1<b c +a+1,即a +b +ca +b<a +b +c b +c <a +b +cc +a ,又a ,b ,c ∈(0,+∞),所以a +b >b +c >c +a .由a +b >b +c 可得a >c ;由b +c >c +a 可得b >a ,于是有c <a <b .4.若a ,b 为实数,则“0<ab <1”是“a <1b 或b >1a”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 对于0<ab <1,如果a >0,则b >0,a <1b 成立,如果a <0,则b <0,b >1a成立,因此“0<ab <1”是“a <1b 或b >1a ”的充分条件;反之,若a =-1,b =2,结论“a <1b 或b >1a”成立,但条件0<ab <1不成立,因此“0<ab <1”不是“a <1b 或b >1a”的必要条件,即“0<ab <1”是“a <1b 或b >1a”的充分不必要条件.5.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是f (x )________g (x ).解析:∵f (x )-g (x )=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1≥1>0,∴f (x )>g (x ).答案:> 6.下列命题: ①c -a <c -b ⇔a >b ;②a <0<b ⇒1a <1b;③c a <c b ,且c >0⇒a >b ;④ na <nb (n ∈N ,n >1)⇒a <b . 其中真命题是________.(填序号) 解析:①c -a <c -b ⇒-a <-b ⇒a >b . ②a <0<b ⇒1a <0,1b >0⇒1a <1b.③c a -c b =c (b -a )ab<0,∵c >0,∴有⎩⎪⎨⎪⎧ b -a >0,ab <0或⎩⎪⎨⎪⎧b -a <0,ab >0即⎩⎪⎨⎪⎧a <b ,ab <0或⎩⎪⎨⎪⎧a >b ,ab >0.∴③不正确,④中无论n 为奇数或偶数, 均可由n a <nb (n ∈N ,n >1)⇒a <b . ∴①②④正确. 答案:①②④7.设x =a 2b 2+5,y =2ab -a 2-4a ,若x >y ,则实数a ,b 应满足的条件为________. 解析:∵x >y ,∴x -y =a 2b 2+5-2ab +a 2+4a =(ab -1)2+(a +2)2>0. ∴ab -1≠0或a +2≠0. 即ab ≠1或a ≠-2. 答案:ab ≠1或a ≠-28.若a >0,b >0,求证:b 2a +a 2b ≥a +b .证明:∵b 2a +a 2b -a -b =(a -b )⎝ ⎛⎭⎪⎫a b -b a =(a -b )2(a +b )ab,(a -b )2≥0恒成立,且已知a >0,b >0, ∴a +b >0,ab >0.∴(a -b )2(a +b )ab ≥0.∴b 2a +a 2b≥a +b .9.若f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4,求f (-2)的取值范围. 解:∵f (-1)=a -b ,f (1)=a +b , 令f (-2)=4a -2b =Af (-1)+Bf (1),则⎩⎪⎨⎪⎧A +B =4,B -A =-2⇒⎩⎪⎨⎪⎧A =3,B =1.∴f (-2)=3f (-1)+f (1). ∵1≤f (-1)≤2,2≤f (1)≤4, ∴3≤3f (-1)≤6, ∴5≤f (1)+3f (-1)≤10, ∴5≤f (-2)≤10.故f (-2)的取值范围为[5,10]. 10.已知a >0,a ≠1. (1)比较下列各组大小.①a 2+1与a +a ;②a 3+1与a 2+a ; ③a 5+1与a 3+a 2.(2)探讨在m ,n ∈N +条件下,a m +n+1与a m +a n的大小关系,并加以证明.解:(1)∵a >0,a ≠1, ∴①a 2+1-(a +a )=a 2+1-2a =(a -1)2>0. ∴a 2+1>a +a . ②a 3+1-(a 2+a ) =a 2(a -1)-(a -1) =(a +1)(a -1)2>0, ∴a 3+1>a 2+a , ③a 5+1-(a 3+a 2) =a 3(a 2-1)-(a 2-1) =(a 2-1)(a 3-1). 当a >1时,a 3>1,a 2>1, ∴(a 2-1)(a 3-1)>0. 当0<a <1时,0<a 3<1,0<a 2<1, ∴(a 2-1)(a 3-1)>0. 即a 5+1>a 3+a 2.(2)根据(1)可探讨,得a m+n+1>a m+a n.证明如下:a m+n+1-(a m+a n)=a m(a n-1)+(1-a n)=(a m-1)(a n-1).当a>1时,a m>1,a n>1,∴(a m-1)(a n-1)>0.当0<a<1时,0<a m<1,0<a n<1,∴(a m-1)(a n-1)>0.综上(a m-1)(a n-1)>0,即a m+n+1>a m+a n.。
不等式选作第1讲 绝对值不等式 1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立. 2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集:(2)|ax +b |①|ax +b |≤c ⇔-c ≤ax +b ≤c ;②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .考点一__含绝对值不等式的解法________________解不等式|x -1|+|x +2|≥5.[解] 法一:如图,设数轴上与-2,1对应的点分别是A ,B ,则不等式的解就是数轴上到A 、B 两点的距离之和不少于5的点所对应的实数.显然,区间[-2,1]不是不等式的解集.把A 向左移动一个单位到点A 1,此时|A 1A |+|A 1B |=1+4=5.把点B 向右移动一个单位到点B 1,此时|B 1A |+|B 1B |=5,故原不等式的解集为(-∞,-3]∪[2,+∞).法二:原不等式|x -1|+|x +2|≥5⇔⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)≥5或⎩⎪⎨⎪⎧-2<x <1,-(x -1)+x +2≥5或⎩⎪⎨⎪⎧x ≥1,x -1+x +2≥5, 解得x ≥2或x ≤-3,∴原不等式的解集为(-∞,-3]∪[2,+∞).[规律方法] 形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集. (2)几何法:利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a |+|x -b |≥|x -a -(x -b )|=|a -b |.(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.1.解不等式|x +3|-|2x -1|<x2+1.解:①当x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,∴x <-3.②当-3≤x <12时,原不等式化为(x +3)-(1-2x )<x 2+1,解得x <-25,∴-3≤x <-25.③当x ≥12时,原不等式化为(x +3)-(2x -1)<x2+1,解得x >2,∴x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2.考点二__绝对值不等式性质的应用______________确定“|x -a |<m 且|y -a |<m ”是“|x -y |<2m (x ,y ,a ,m ∈R )”的什么条件.[解] ∵|x -y |=|(x -a )-(y -a )|≤|x -a |+|y -a |<m +m =2m , ∴|x -a |<m 且|y -a |<m 是|x -y |<2m 的充分条件.取x =3,y =1,a =-2,m =2.5,则有|x -y |=2<5=2m ,但|x -a |=5,不满足|x -a |<m =2.5, 故|x -a |<m 且|y -a |<m 不是|x -y |<2m 的必要条件.故为充分不必要条件. [规律方法] 两数和与差的绝对值不等式的性质|a |-|b |≤|a ±b |≤|a |+|b |. (1)对绝对值三角不等式定理|a |-|b |≤|a ±b |≤|a |+|b |中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.(2)该定理可强化为||a |-|b ||≤|a ±b |≤|a |+|b |,它经常用于证明含绝对值的不等式.2.若不等式|x +1|+|x -2|≥a 对任意x ∈R 恒成立,求a 的取值范围.解:由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,所以只需a ≤3即可.故a 的取值范围为(-∞,3]. 考点三__绝对值不等式的综合应用______________(2013·高考辽宁卷)已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. [解] (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|,得-2x +6≥4,解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|,得2x -6≥4,解得x ≥5. 所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}. (2)记h (x )=f (2x +a )-2f (x ),则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎨⎧a -12=1,a +12=2,于是a =3.[规律方法] 1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.2.对于求y =|x -a |+|x -b |或y =|x +a |-|x -b |型的最值问题利用绝对值三角不等式更方便.形如y =|x -a |+|x -b |的函数只有最小值,形如y =|x -a |-|x -b |的函数既有最大值又有最小值.3.(2015·唐山市第一次模拟)已知函数f (x )=|2x -a |+a ,a ∈R ,g (x )=|2x -1|.若当x ∈R 时,恒有f (x )+g (x )≥3,求a 的取值范围.解:f (x )+g (x )=|2x -a |+|2x -1|+a ≥|2x -a -2x +1|+a =|a -1|+a , 当且仅当(2x -a )(2x -1)≤0时等号成立.解不等式|a -1|+a ≥3,得a 的取值范围是[2,+∞).1.求不等式|x +3|-|x -2|≥3的解集.解:原不等式等价于⎩⎪⎨⎪⎧x ≤-3,-x -3+x -2≥3或⎩⎪⎨⎪⎧-3<x <2,x +3+x -2≥3或⎩⎪⎨⎪⎧x ≥2,x +3-x +2≥3,解得1≤x <2或x ≥2,故原不等式的解集为{x |x ≥1}. 2.在实数范围内,解不等式||x -2|-1|≤1.解:依题意得-1≤|x -2|-1≤1,即|x -2|≤2,解得0≤x ≤4.故x 的取值范围是[0,4]. 3.(2015·山西省忻州市联考)已知|2x -3|≤1的解集为[m ,n ]. (1)求m +n 的值;(2)若|x -a |<m ,求证:|x |<|a |+1.解:(1)由不等式|2x -3|≤1可化为-1≤2x -3≤1,解得1≤x ≤2,∴m =1,n =2,m +n =3. (2)证明:若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1. 4.(2014·高考课标全国卷Ⅱ)设函数f (x )=|1|ax ++|x -a |(a >0). (1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围. 解:(1)证明:由a >0,有f (x )=|1|a x ++|x -a |≥|)(1|a x ax --+=1a +a ≥2.所以f (x )≥2. (2)f (3)=|13|a++|3-a |. 当a >3时,f (3)=a +1a ,由f (3)<5,得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5,得1+52<a ≤3.综上,a 的取值范围是⎝⎛⎭⎪⎫1+52,5+212.5.(2015·大连市模拟)设不等式|x -2|+|3-x |<a (a ∈N *)的解集为A ,且2∈A ,32∉A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值.解:(1)由题可得⎩⎪⎨⎪⎧a >1a ≤2所以1<a ≤2,因为a ∈N *所以a =2.(2)因为|x +2|+|x -2|≥|(x +2)-(x -2)|=4,所以f (x )的最小值是4. 6.(2015·新乡许昌平顶山调研)已知函数f (x )=|x -1|+|x -a |.若a >1,∀x ∈R ,f (x )+|x -1|≥1,求实数a 的取值范围.解:令F (x )=f (x )+|x -1|,则F (x )=⎩⎪⎨⎪⎧-3x +2+a ,x <1x -2+a ,1≤x <a ,3x -2-a ,x ≥a所以当x =1时,F (x )有最小值F (1)=a -1,只需a -1≥1,解得a ≥2,所以实数a 的取值范围为[2,+∞).1.(2015·辽宁五校协作体联考)已知函数f (x )=|2x -a |+a . (1)若不等式f (x )≤6的解集为{x |-2≤x ≤3},求实数a 的值;(2)在(1)的条件下,若存在实数t ,使f )(2t≤m -f (-t )成立,求实数m 的取值范围.解:(1)由|2x -a |+a ≤6,得|2x -a |≤6-a ,∴a -6≤2x -a ≤6-a ,即a -3≤x ≤3,∴a -3=-2, ∴a =1.(2)∵f )(2t ≤m -f (-t ),∴|t -1|+|2t +1|+2≤m ,令y =|t -1|+|2t +1|+2,则y =⎩⎪⎨⎪⎧-3t +2,t ≤-12,t +4,-12<t <1,3t +2,t ≥1.∴y min =72,∴m ≥72.2.(2013·高考课标全国卷Ⅰ)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈[-a 2,12)时,f (x )≤g (x ),求a 的取值范围.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1,其图象如图所示,由图象可知,当且仅当x ∈(0,2)时,y <0,所以原不等式的解集是{x |0<x <2}.(2)当x ∈[-a 2,12)时,f (x )=1+a ,不等式f (x )≤g (x )化为1+a ≤x +3,所以x ≥a -2对x ∈[-a 2,12)都成立,故-a 2≥a -2,即a ≤43.从而a 的取值范围是(-1,43].3.(2015·云南省统考)已知a 、b 都是实数,a ≠0,f (x )=|x -1|+|x -2|.(1)若f (x )>2,求实数x 的取值范围;(2)若|a +b |+|a -b |≥|a |f (x )对满足条件的所有a 、b 都成立,求实数x 的取值范围. 解:(1)f (x )=⎩⎪⎨⎪⎧3-2x ,x ≤11,1<x ≤2.2x -3,x >2由f (x )>2得⎩⎪⎨⎪⎧x ≤13-2x >2或⎩⎪⎨⎪⎧x >22x -3>2,解得x <12或x >52.∴所求实数x 的取值范围为(-∞,12)∪(52,+∞).(2)由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ).又∵|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,∴f (x )≤2.∵f (x )>2的解集为{x |x <12或x >52},∴f (x )≤2的解集为{x |12≤x ≤52},∴所求实数x 的取值范围为[12,52].4.已知函数f (x )=|x -4|+|x -a |(a <3)的最小值为2.(1)解关于x 的方程f (x )=a ;(2)若存在x ∈R ,使f (x )-mx ≤1成立,求实数m 的取值范围.解:(1)由f (x )=|x -4|+|x -a |≥|x -4-(x -a )|=|a -4|(当(x -4)(x -a )≤0时取等号),知|a -4|=2,解得a =6(舍去)或a =2.方程f (x )=a 即|x -4|+|x -2|=2,由绝对值的几何意义可知2≤x ≤4.(2)不等式f (x )-mx ≤1即f (x )≤mx +1,由题意知y =f (x )的图象至少有一部分不在直线y =mx +1的上方,作出对应的图象观察可知,m ∈(-∞,-2)∪[14,+∞).。
第一节绝对值不等式1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集(2)|ax+①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想. 法二:利用“零点分段法”求解,体现了分类计论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.1.不等式|x -2|>x -2的解集是________. 解析:原不等式同解于x -2<0,即x <2. 答案:x <22.已知|x -a |<b 的解集为{x |2<x <4},则实数a 等于________. 解析:由|x -a |<b 得a -b <x <a +b ,由已知得⎩⎪⎨⎪⎧a -b =2,a +b =4,解得a =3,b =1.答案:33.若不等式|8x +9|<7和不等式ax 2+bx >2的解集相等,则实数a 、b 的值分别为________.解析:据题意可得|8x +9|<7⇒-2<x <-14,故由{x |-2<x <-14}是二次不等式的解集可知x 1=-2,x 2=-14是一元二次方程ax 2+bx -2=0的两根,根据根与系数关系可知x 1x 2=-2a =12⇒a =-4,x 1+x 2=-b a =-94⇒b =-9.答案:a =-4,b =-94.不等式|2x -1|<3的解集为________. 解析:原不等式可化为-3<2x -1<3, 解得-1<x <2.故所求解集为{x |-1<x <2}. 答案:{x |-1<x <2}5.(2011年陕西)若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是______________.解析:令y =|x +1|+|x -2|,由题意知应|a |≥y min ,而y =|x +1|+|x -2|≥|x +1-x +2|=3,∴a ≥3或a ≤-3.答案:(-∞,-3]∪[3,+∞)例1 解不等式|x -1|+|x +2|<5.【解析】 法一:分别求|x -1|,|x +2|的零点,即1,-2. 由-2,1把数轴分成三部分:x <-2,-2≤x ≤1,x >1. 当x <-2时,原不等式即1-x -2-x <5, 解得-3<x <-2;当-2≤x ≤1时,原不等式即1-x +2+x <5, 因为3<5,恒成立,即-2≤x ≤1; 当x >1时,原不等式即x -1+2+x <5, 解得1<x <2.综上,原不等式的解集为{x |-3<x <2}.法二:不等式|x -1|+|x +2|<5的几何意义为数轴上到-2,1两个点的距离之和小于5的点组成的集合,而-2,1两个端点之间的距离为3,由于分布在-2,1以外的点到-2,1的距离在-2,1外部的距离要计算两次,而在-2,1内部的距离则只计算一次,因此只要找出-2左边到-2的距离等于5-32=1的点-3,以及1右边到1的距离等于5-32=1的点2,这样就得到原不等式的解集为{x |-3<x <2}.【点评】 含绝对值的不等式的解法应想法去掉绝对值符号,转化为不含绝对值的方法求解.其方法有:(1)利用公式或平方法转化;(2)利用绝对值的定义转化;(3)利用数形结合思想转化;(4)利用“零点分段法”等.1.(2011年课标全国)设函数f (x )=|x -a |+3x ,其中a >0. (1)当a =1时,求不等式f (x )≥3x +2的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解析:(1)当a =1时,f (x )≥3x +2 可化为|x -1|≥2. 由此可得x ≥3或x ≤-1.故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}. (2)由f (x )≤0得|x -a |+3x ≤0. 此不等式化为不等式组⎩⎪⎨⎪⎧ x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x ≤a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x ≤a ,x ≤-a 2.因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x |x ≤-a 2.由题设可得-a2=-1,故a =2.例2 已知函数f (x )=1+x 2,设a ,b ∈R ,且a ≠b , 求证:|f (a )-f (b )|<|a -b |.【证明】 证法一:|f (a )-f (b )|<|a -b | ⇔|1+a 2-1+b 2|<|a -b |⇔(1+a 2-1+b 2)2<(a -b )2⇔2+a 2+b 2-2(1+a 2)(1+b 2)<a 2+b 2-2ab⇔1+ab <(1+a 2)(1+b 2).①当ab ≤-1时,式①显然成立;当ab >-1时,式①⇔(1+ab )2<(1+a 2)(1+b 2) ⇐2ab <a 2+b 2.②∵a ≠b ,∴②式成立,故原不等式成立. 证法二:当a =-b 时,原不等式显然成立; 当a ≠-b 时,∵|1+a 2-1+b 2| =|(1+a 2)-(1+b 2)|1+a 2+1+b 2<|a 2-b 2||a |+|b |≤|(a +b )(a -b )||a +b |=|a -b |,∴原不等式成立.证法三:设x =(1,a ),y =(1,b ),则|x |=1+a 2,|y |=1+b 2,x -y =(0,a -b ),|x -y |=|a -b |,而||x |-|y ||≤|x -y |,∴|1+a 2-1+b 2|≤|a -b |,又a ≠b , 即|f (a )-f (b )|<|a -b |.证法四:设y =1+x 2(x ∈R ),则y =1+x 2表示双曲线y 2-x 2=1上支的部分.其渐近线为y =±x ,设A (a ,f (a )),B (b ,f (b ))为曲线y =1+x 2上两不同的点.则|k AB |<1,即⎪⎪⎪⎪⎪⎪f (b )-f (a )b -a <1.∴|f (a )-f (b )|<|a -b |.【点评】 (1)证法一用的是分析法;(2)证法二是综合法,其证明中用到的技巧有:①分子有理化,②不等式|a |+|b |≥|a +b |,③放缩法;(3)证法三用的是构造向量,利用向量不等式;(4)证法四是数形结合思想.2.(2010年广东卷)设A (x 1,y 1),B (x 2,y 2)是平面直角坐标系xOy 上的两点,现定义由点A 到点B 的一种折线距离ρ(A ,B )为ρ(A ,B )=|x 2-x 1|+|y 2-y 1|.对于平面xOy 上给定的不同的两点A (x 1,y 1),B (x 2,y 2),(1)若点C (x ,y )是平面xOy 上的点,试证明:ρ(A ,C )+ρ(C ,B )≥ρ(A ,B ); (2)在平面xOy 上是否存在点C (x ,y ),同时满足 ①ρ(A ,C )+ρ(C ,B )=ρ(A ,B );②ρ(A ,C )=ρ(C ,B ). 若存在,请求出所有符合条件的点;若不存在,请予以证明. 解析:证明:∵ρ(A ,C )=|x -x 1|+|y -y 1|, ρ(C ,B )=|x 2-x |+|y 2-y |. ρ(A ,B )=|x 2-x 1|+|y 2-y 1|,∴ρ(A ,C )+ρ(C ,B )=|x -x 1|+|y -y 1|+|x 2-x |+|y 2-y | =(|x -x 1|+|x 2-x |)+(|y -y 1|+|y 2-y |) ≥|(x -x 1)+(x 2-x )|+|(y -y 1)+(y 2-y )| =|x 2-x 1|+|y 2-y 1|=ρ(A ,B ).(2)注意到点A (x 1,y 1)与点B (x 2,y 2)不同,下面分三种情形讨论. ①若x 1=x 2,则y 1≠y 2,由条件②得 |x -x 1|+|y -y 1|=|x 2-x |+|y 2-y |, 即|y -y 1|=|y -y 2|,∴y =y 1+y 22.由条件①得|x -x 1|+|y -y 1|+|x 2-x |+|y 2-y |=|x 2-x 1|+|y 2-y 1|.∴2|x -x 1|+12|y 2-y 1|+12|y 2-y 1|=|y 2-y 1|,∴|x -x 1|=0, ∵x =x 1.因此,所求的点C 为(x 1,y 1+y 22)②若y 1=y 2,则x 1≠x 2,类似于①, 可得符合条件的点C 为(x 1+x 22,y 1).③当x 1≠x 2,且y 1≠y 2时,不妨设x 1<x 2.(ⅰ)若y 1<y 2,则由(1)中的证明知,要使条件①成立,当且仅当(x -x 1)(x 2-x )≥0与(y -y 1)(y 2-y )≥0同时成立,故x 1≤x ≤x 2且y 1≤y ≤y 2.从而由条件②,得x +y =12(x 1+x 2+y 1+y 2).此时所求点C 的全体为M =⎩⎨⎧(x ,y )|x +y =12(x 1+x 2+y 1+y 2),x 1≤x ≤x 2}且y 1≤y ≤y 2.(ⅱ)若y 1>y 2,类似地由条件①可得x 1≤x ≤x 2且y 2≤y ≤y 1,从而由条件②得x -y =12(x 1+x 2-y 1-y 2).此时所求点的全体为N =⎩⎨⎧(x ,y )|x -y =12(x 1+x 2-y 1-y 2),x 1≤x ≤x 2}且y 2≤y ≤y 1.例3 设函数f (x )=|x -1|+|x -a |. (1)设a =-1,解不等式f (x )≥3;(2)如果∀x ∈R ,f (x )≥2,求a 的取值范围.【解析】 (1)当a =-1时,f (x )=|x -1|+|x +1|,由f (x )≥3得|x -1|+|x +1|≥3. ①x ≤-1时,不等式化为1-x -1-x ≥3, 即-2x ≥3.不等式组⎩⎪⎨⎪⎧x ≤-1f (x )≥3,的解集为⎝ ⎛⎦⎥⎤-∞,-32. ②当-1<x ≤1时,不等式化为 1-x +x +1≥3,不可能成立.不等式组⎩⎪⎨⎪⎧-1<x ≤1,f (x )≥3的解集为∅.③当x >1时,不等式化为 x -1+x +1≥3,即2x ≥3.不等式组⎩⎪⎨⎪⎧x >1,f (x )≥3的解集为⎣⎡⎭⎫32,+∞. 综上得,f (x )≥3的解集为⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞. (2)若a =1,f (x )=2|x -1|,不满足题设条件. 若a <1,∴f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤a ,1-a , a <x <1,2x -(a +1), x ≥1.即,f (x )的最小值为1-a . 若a >1,∴f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤1,a -1, 1<x <a ,2x -(a +1), x ≥a .即,f (x )的最小值为a -1.所以∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,从而a 的取值范围为(-∞,-1)∪[3,+∞).【点评】 如果一个不等式中含有两个(或两个以上)的绝对值符号,应考虑用零点分段讨论法去掉绝对值符号,这时实质是将原不等式转化为n 个不等式组,把每个不等式组的解求出后,取它们的并集得到原不等式的解集.3.已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在①的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.解析:(1)由f (x )≤3得|x -a |≤3, 解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)法一:当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3;5,-3≤x ≤2;2x +1,x >2.所以当x <-3时,g (x )>5; 当-3≤x ≤2时,g (x )=5; 当x >2时,g (x )>5. 综上可得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].法二:当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5).由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立)得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].一、填空题 1.不等式⎪⎪⎪⎪x -2x >x -2x 的解集是________.解析:由绝对值的意义知,原不等式同解于x -2x <0,即x (x -2)<0,∴0<x <2. 答案:(0,2)2.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R }.若A ⊆B ,则实数a ,b 必满足________.解析:由|x -a |<1得a -1<x <a +1. 由|x -b |>2得x <b -2或x >b +2.∵A ⊆B ,∴a -1≥b +2或a +1≤b -2, 即a -b ≥3或a -b ≤-3,∴|a -b |≥3. 答案:|a -b |≥33.已知不等式|x -m |+|x |≥1的解集为R ,则实数m 的取值范围是________. 解析:由绝对值不等式的几何意义知|x -m |+|x |≥|(x -m )-x |=|m |,故|m |≥1,∴m ≥1或m ≤-1.答案:(-∞,-1]∪[1,+∞)4.若关于x 的不等式|x +1|+k <x 有解,则实数k 的取值范围是________. 解析:∵|x +1|+k <x , ∴k <x -|x +1|.若不等式有解则需k <(x -|x +1|)max . 设f (x )=x -|x +1|,则f (x )=⎩⎪⎨⎪⎧-1,x ≥-1,2x +1,x <-1.由解析式可以看出f (x )max =-1,∴k <-1. 答案:(-∞,-1)5.已知关于x 的不等式|x -1|+|x +a |≤8的解集不是空集,则a 的最小值是________. 解析:由|x -1|+|x +a |≥|1-x +x +a |=|a +1|知|a +1|≤8,故-9≤a ≤7,因此a 的最小值是-9.答案:-96.若不等式|x -a |+|x -2|≥1对任意实数x 均成立,则实数a 的取值范围为________. 解析:由|x -a |+|x -2|≥|(x -a )-(x -2)|=|a -2|. ∴|a -2|≥1解之得a ≤1或a ≥3. 答案:(-∞,1]∪[3,+∞)7.不等式||x +3|-|x -3||>3的解集为________.解析:由绝对值不等式的含义得到:x 到-3和3的距离之差的绝对值大于3, 结合数轴不难得出x >32或x <-32,故x ∈{x |x >32或x <-32}.答案:{x |x >32或x <-32}8.(2011年江西)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________. 解析:法一:|x -1|≤1⇒0≤x ≤2,|y -2|≤1⇒1≤y ≤3,可得可行域如图(阴影部分).∵|x -2y +1|=5,|x -2y +1|5.其中z =|x -2y +1|5为点(x ,y )到直线x -2y +1=0的距离.当(x ,y )为(0,3)时z 取得最大值|0-2×3+1|5=55. 故|x -2y +1|max =5.法二:|x -2y +1|=|(x -1)-2(y -2)-2|≤|x -1|+2|y -2|+2≤1+2+2=5,当且仅当x =0,y =3时,|x -2y +1|取最大值为5.答案:59.给出下列四个命题:①若log a (a 2+4)≤log a (4a )<0,则a 的取值范围是(1,+∞); ②函数f (x )=log 2(x 2-5x +1)的单调递减区间为(-∞,52);③不等式|x |+|log 2 x |>|x +log 2 x |的解集为(0,1); ④若|a +b |<-c (a ,b ,c ∈R ),则|a |<|b |-c . 以上四个命题中,正确命题的序号为________. 解析:对于①,由于a 2+4≥4a且log a (a 2+4)≤log a (4a ),∴0<a <1,∴①错; 对于②,由x 2-5x +1>0, 得x >5+212或x <5-212,∴f (x )=log 2(x 2-5x +1)的递减区间为 ⎝ ⎛⎭⎪⎫-∞,5-212,故②错; 对于③,必有x >0且log 2 x <0, ∴0<x <1故③正确.对于④,∵|a |-|b |≤|a +b |<-c , ∴|a |<|b |-c ,故④正确. 答案:③④ 三、解答题10.(2011年江苏)解不等式x +|2x -1|<3.解析:法一:原不等式可化为|2x -1|<3-x .∴⎩⎪⎨⎪⎧ 2x -1<3-x 2x -1>x -3,∴⎩⎪⎨⎪⎧ x <43x >-2.∴原不等式的解集是{x |-2<x <43} 法二:原不等式可化为⎩⎪⎨⎪⎧ 2x -1≥0,x +(2x -1)<3或⎩⎪⎨⎪⎧2x -1<0,x -(2x -1)<3. 解得12≤x <43或-2<x <12. 所以原不等式的解集是⎩⎨⎧⎭⎬⎫x |-2<x <43. 11.(2011年福建)设不等式|2x -1|<1的解集为M .(1)求集合M :(2)若a ,b ∈M ,试比较ab +1与a +b 的大小.解析:(1)由|2x -1|<1得-1<2x -1<1,解得0<x <1,所以M ={x |0<x <1}.(2)由(1)和a ,b ∈M 可知0<a <1,0<b <1.所以(ab +1)-(a +b )=(a -1)(b -1)>0,故ab +1>a +b .12.已知二次函数f (x )=x 2+ax +b (a ,b ∈R )的定义域为[-1,1],且|f (x )|的最大值为M .(1)试证明|1+b |≤M ;(2)试证明M ≥12; (3)当M =12时,试求出f (x )的解析式. 解析:证明:(1)∵M ≥|f (-1)|=|1-a +b |,M ≥|f (1)|=|1+a +b |,∴2M ≥|1-a +b |+|1+a +b |≥|(1-a +b )+(1+a +b )|=2|1+b |,∴|1+b | ≤M .(2)证明:依题意,M ≥|f (-1)|,M ≥|f (0)|,M ≥|f (1)|,又|f (-1)|=|1-a +b |,|f (1)|=|1+a +b |,|f (0)|=|b |,∴4M ≥|f (-1)|+2|f (0)|+|f (1)|=|1-a +b |+2|b |+|1+a +b |≥|(1-a +b )-2b +(1+a +b )|=2,∴M ≥12. (3)当M =12时,|f (0)|=|b |≤12,-12≤b ≤12① 同理-12≤1+a +b ≤12② -12≤1-a +b ≤12③ ②+③得-32≤b ≤-12④ 由①④得b =-12,当b =-12时,分别代入②③得⎩⎪⎨⎪⎧ -1≤a ≤00≤a ≤1⇒a =0,因此f (x )=x 2-12.。
第1课时课时 不等式的性质不等式的性质 [探索研究]1、实数的运算性质与大小顺序的关系: 0>-Û>b a b a0=-Û=b a b a 0<-Û<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质(、不等式的基本性质(66个): [参考习题]1、若a 、b 、x 、y ∈R ,则()()0x y a b x a y b +>+ìí-->î是x a y b>ìí>î成立的(成立的( ))A. A. 充分不必要条件充分不必要条件充分不必要条件B. B. B. 必要不充分条件必要不充分条件必要不充分条件C. C. 充要条件充要条件充要条件D. D. D. 既不充分也不必要条件既不充分也不必要条件既不充分也不必要条件2、已知2()f x ax c =+,且4(1)1f -££-,1(2)5f -££,求f(3)f(3)的取值范围。
的取值范围。
的取值范围。
3、已知a>0a>0,,2220a ab c -+=,2bc a >,试比较a 、b 、c 的大小。
的大小。
第2课时课时 基本不等式基本不等式 [探索研究]1、定理1:如果R b a Î,,那么ab b a 222³+(当且仅当b a =时取“时取“==”) 2、定理2:如果b a ,是正数,那么ab ba ³+2(当且仅当b a =时取“时取“==”) 3、已知x, y 都是正数。
则都是正数。
则(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值2p ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值214s[参考习题]1、当x 取什么值时,函数2294xx y +=有最小值?最小值是多少?有最小值?最小值是多少? 2、求函数1622++-=x x x y (0³x )的最小值。
绝对值三角不等式目的要求: 理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明不等式 重点难点: 绝对值三角不等式。
教学设计:一、 引入:实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离:任意两个实数a,b 在数轴上的对应点分别为A 、B ,那么|a-b|的几何意义是A 、B 两点间的距离。
二、 给出定理1.综上所述可得定理:定理1 如果a, b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立。
(这个不等式称为绝对值三角不等式。
)2.探究 如果把定理1中的实数a, b 分别换成向量a, b, 能得出什么结果?你能解释它的几何意义吗?3.探究 当向量a, b 共线时,有怎样的结论?Ob ba b a ab +=+>有当,0)1(xOba+b 时当0)2(<ab ba b a b a i +<+<>有时当,0,0)(.,,之间的关系下面研究b a b a +ab b a +xyO.||||||,,,,,,,,,,b a b a b a b a b a b a b a +<++不等式因此我们有向量形式的构成三角形向量三角形法则的法加量由向么那时不共线当向量分别替换用向量在上面的不等式中.边形的两边之和大于第三它的几何意义就是三角4..,1度给出它的证明我们再从代数推理的角为了更好地理解定理:5.5.等之间的关系与与与例如吗系关间的其他之等探究一下的研究思路根据定理能你探究|||||||,||||||,||||:|?||,||,||,||,1b a b a b a b a b a b a b a b a b a ---++--+ 我们有例如题实数的绝对值不等式问我们可以讨论涉及多个方法根据这样的思想最基本、最重要的是这个实数的绝对值不等式以上我们讨论了关于两,.,.,?2的几何解释吗你能给定理探究三、 教学实例:关于绝对值三角不等式的简单应用,只要对不等式稍加变形即可.我们有一般地,.||||||b a b a +≤+|,|,0ab ab ab =≥时当证明()2||b a b a +=+22||||2||b ab a ++=()2||||b a +=||b a +=|,|,0ab ab ab -=<时当()2||b a b a +=+22||||2||b ab a +-=22||2bab a ++<22||||2||b ab a ++=()2||||b a +=||b a +=.||||||b a b a +≤+所以.,0等号成立时当且仅当≥ab ∙∙∙xa bcCBA52.1-图∙∙∙xa bcCBA62.1-图.2.,,62.1的几何解释情形时定理请同学们自己给出其他之间时的一种情形不在给出了当点如图C A B -.||||||||||,,.,b a b a b a b a +≤-≤-那么是实数例如果的结论我们可以得出许多正确事实上()().,0,||||||,,,2等号成立时当且仅当那么是实数如果定理≥---+-≤-c b b a c b b a c a c b a .||||||,,,,,,,,,52.1c b b a c a C A B C B A c b a -+-=--之间时在当点所对应的点分别为在数轴上如图.5|3232|,||,||,01εεεε<--+<-<->b a y x b y a x 求证已知例有关绝对值三角不等式的实际应用题,首先把实际问题转化为数学问题,在求解。