【学案】2017高三物理二轮练习:专题五第12讲碰撞与动量守恒近代物理初步含解析
- 格式:doc
- 大小:270.50 KB
- 文档页数:18
高三物理二轮专题训练(碰撞与动量守恒部分)限时:10分钟一.单项选择题(4分×4=16分) 1.下列说法中正确的是( ) A . B . C .物体的速度大小改变,其动量可能不 D .物体的速度方向改变,其动量一定改变2.如图所示,光滑的水平地面上放着一个光滑的凹槽,槽两端固定有两轻质弹簧,一弹性小球在两弹簧间往复运动,把槽、小球和弹簧视为一个系统,则在运动过程中 ( ) A.系统的动量守恒,机械能不守恒B.系统的动量守恒,机械能守恒C.系统的动量不守恒,机械能守恒D.系统的动量不守恒,机械能不守恒3.如图所示,物体A 静止在光滑的水平面上,A 的左边固定有轻质弹簧,与A 质量相等的物体B 以速度v 向A 运动并与弹簧发生碰撞.A 、B 始终沿同一直线运动,则A 、B 组成的系统动能损失最大的时刻是 ( )A.A 开始运动时B.A 的速度等于v 时C.B 的速度等于零时D.A 和B 的速度相等时4.如图所示,在光滑水平面上有直径相同的a 、b 两球,在同一直线上运动.选定向右为正方向,两球的动量分别为Pa =6 kg ·m/s 、P b =-4 kg ·m/s.当两球相碰之后,两球的动量可能是( ) A.Pa=-6 kg ·m/s 、P b =4 kg ·m/sB.Pa=-6 kg ·m/s 、P b =8 kg ·m/sC.Pa=-4 kg ·m/s 、P b =6 kg ·m/sD.Pa=2 kg ·m/s 、P b =0二.双项选择(6分×5=30分)5.在“验证动量守恒定律实验”中,下列关于小球落点的说法,正确的是 ( ) A.如果小球每次从同一点无初速度释放,重复几次的落点一定是重合的B.由于偶然因素的存在,重复操作时小球落点不重合是正常的,但落点应当比较密集C.测定P 的位置时,如果重复10次的落点分别是P1,P2,P3,……,P10,则OP 应取OP1、OP2、OP3、……、OP10的平均值,即:OP=1231010OP OP OP OP ++++D.用半径尽可能小的圆把P1、P2、P3,……,P10圈住,这个圆的圆心是入射小球落点的平均位置P6.相互作用的物体组成的系统在某一相互作用过程中,以下判断正确的是( ) A.系统的动量守恒是指只有初、末两状态的动量相等 B.系统的动量守恒是指任意两个状态的动量相等 C.系统的动量守恒是指系统中任一物体的动量不变 D.系统所受合外力为零时,系统动量一定守恒7.长木板A 放在光滑的水平面上,质量为m=2 kg 的另一物体B 以水平速度v 0=2 m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图所示,则下列说法正确的是( )A.木板获得的动能为2 JB.系统损失的机械能为4 JC.木板A 的最小长度为1 mD.A 、B 间的动摩擦因数为0.18.如图甲所示,在光滑水平面上的两个小球发生正碰.小球的质量分别为m 1和m 2.图乙为它们碰撞前后的s-t 图象.已知m1=0.1 kg.由此可以 确定下列正确的是( )A.碰前m 2静止,m 1向右运动B.碰后m 2和m 1都向右运动C.由动量守恒可以算出m 2=0.3 kgD.碰撞过程中系统损失了0.4 J 的机械能9.如图所示,一根足够长的水平滑杆SS ′上套有一质量为m 的光滑金属圆环,在滑杆的正下方与其平行放置一足够长的光滑水平的绝缘轨道PP ′,PP ′穿过金属环的圆心.现使质量为M 的条形磁铁以水平速度v0沿绝缘轨道向右运动,则( ) A.磁铁穿过金属环后,两者将先、后停下来B.磁铁将不会穿越滑环运动C.磁铁与圆环的最终速度n M M +0vD.整个过程最多能产生热量2()Mm M m +v 02参考答案:。
全国高考理综物理专题复习辅导精品学案《碰撞与动量守恒》考点1 碰撞模型1.碰撞的特点(1)作用时间极短,内力远大于外力,总动量总是守恒的。
(2)碰撞过程中,总动能不增。
因为没有其他形式的能量转化为动能。
(3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。
(4)碰撞过程中,两物体产生的位移可忽略。
2.碰撞的种类及遵从的规律两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律。
在光滑的水平面上,质量为m 1的钢球沿一条直线以速度v 0与静止在水平面上的质量为m 2的钢球发生弹性碰撞,碰后的速度分别是v 1、v 2①②由①②可得:③④利用③式和④式,可讨论以下五种特殊情况:a .当12m m >时,10v >,20v >,两钢球沿原方向原方向运动;b .当12m m <时,10v <,20v >,质量较小的钢球被反弹,质量较大的钢球向前运动;c .当12m m =时,10v =,20v v =,两钢球交换速度。
d .当12m m <<时,10v v ≈,20v ≈,m 1很小时,几乎以原速率被反弹回来,而质量很大的m 2几乎不动。
例如橡皮球与墙壁的碰撞。
e .当12m m >>时,0v v ≈,202v v ≈,说明m 1很大时速度几乎不变,而质量很小的m 2获得的速度是原来运动物体速度的2倍,这是原来静止的钢球通过碰撞可以获得的最大速度,例如铅球碰乒乓球。
4.一般的碰撞类问题的分析 (1)判定系统动量是否守恒。
(2)判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度。
(3)判定碰撞前后动能是否不增加。
例:两个质量相等的小球在光滑水平面上沿同一直线同方向运动,A 球的动量是7 kg·m/s ,B 球的动量是5 kg·m/s ,A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量可能值是 A .p A =6 kg·m/s ,p B =6 kg·m/s B .p A =3 kg·m/s ,p B =9 kg·m/s C .p A =–2 kg·m/s ,p B =14 kg·m/s D .p A =–5 kg·m/s ,p B =15 kg·m/s 【参考答案】A【试题解析】以A 、B 两球组成的系统为对象。
碰撞与动量守恒1.[多选]如图所示,在光滑的水平桌面上有体积相同的两个小球A、B,质量分别为m=0.1 kg 和M=0.3 kg,两球中间夹着一根处于静止状态的压缩的轻弹簧,同时放开A、B球和弹簧,已知A球脱离弹簧时的速度为6 m/s,接着A球进入与水平面相切,半径为0.5 m的竖直面内的光滑半圆形轨道运动,PQ为半圆形轨道的竖直直径,g=10 m/s2,下列说法正确的是()A.弹簧弹开过程,弹力对A的冲量大于对B的冲量B.A球脱离弹簧时B球获得的速度大小为2 m/sC.A球从P点运动到Q点过程中所受合外力的冲量大小为1 N·sD.若半圆轨道半径改为0.9 m,则A球不能到达Q点2.水平地面上有两个固定的、高度相同的粗糙斜面甲和乙,底边长分别为L1、L2,且L1<L2,如图所示.两个完全相同的小滑块A、B(可视为质点)与两个斜面间的动摩擦因数相同,将小滑块A、B分别从甲、乙两个斜面的顶端同时由静止开始释放,取地面所在的水平面为参考平面,则()A.从顶端到底端的运动过程中,滑块A克服摩擦力而产生的热量比滑块B的大B.滑块A到达底端时的动量跟滑块B到达底端时的动量相同C.两个滑块从顶端运动到底端的过程中,重力对滑块A做功的平均功率比滑块B的大D.两个滑块加速下滑的过程中,到达同一高度时,机械能可能相同3.[多选]向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b两部分,若质量较大的a的速度方向仍沿原来的方向,则()A.b的速度方向一定与原速度方向相反B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达水平地面D.在炸裂过程中,a、b受到的爆炸力的大小一定相等4.如图所示,一个质量为m的物块A与另一个质量为2m的物块B发生正碰,碰后物块B刚好能落入正前方的沙坑中.假如碰撞过程中无机械能损失,已知物块B与地面间的动摩擦因数为0.1,与沙坑的距离为0.5 m,g取10 m/s2,物块可视为质点.则A碰撞前瞬间的速度为()A.0.5 m/sB.1.0 m/sC.1.5 m/sD.2.0 m/s5.[多选]质量相等的甲、乙两球在光滑水平面上沿同一直线运动.甲以7 kg·m/s的动量追上前方以5 kg·m/s的动量同向运动的乙球并发生正碰,则碰后甲、乙两球动量不可能是() A.6.5 kg·m/s,5.5 kg·m/s B.6 kg·m/s,6 kg·m/sC.4 kg·m/s,8 kg·m/sD.5.5 kg·m/s,6.5 kg·m/s6.如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dPa打到屏MN上的a点,通过Pa段用时为t.若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.两个微粒所受重力均忽略.新微粒运动的()A.轨迹为Pb,至屏幕的时间将小于tB.轨迹为Pc,至屏幕的时间将大于tC.轨迹为Pb,至屏幕的时间将等于tD.轨迹为Pa,至屏幕的时间将大于t7.如图甲所示,一质量为2 kg的物体受水平拉力F作用,在粗糙水平面上做加速直线运动,其a-t图象如图乙所示,t=0时其速度大小为2 m/s,滑动摩擦力大小恒为2 N,则()图甲图乙A.在t=6 s的时刻,物体的速度为18 m/sB.在0~6 s时间内,合力对物体做的功为400 JC.在0~6 s时间内,拉力对物体的冲量为36 N·sD.在t=6 s的时刻,拉力F的功率为200 W8.有人设想在遥远的宇宙探测时,给探测器安上面积极大、反射率极高(可认为100%)的薄膜,并让它正对太阳,用光压为动力推动探测器加速.已知探测器在某轨道上运行时,每秒每平方米薄膜获得的太阳光能E=1.5×104 J,薄膜面积S=6.0×102 m2,若探测器总质量M=60 kg,光速c=3.0×108m/s,那么下列最接近探测器得到的加速度大小的是(根据量子理论,光子不但有能量,而且有动量.光子能量计算式为E=hν,光子动量的计算式为p=,其中h是普朗克常量,λ是光子的波长) ()A.1.0×10-3 m/s2B.1.0×10-2 m/s2C.1.0×10-1 m/s2D.1 m/s29.[12分]为了验证碰撞中的动量守恒和检验两个小球的碰撞是否为弹性碰撞,某同学选取了两个体积相同、质量不相等的小球,按下述步骤做了如下实验:①用天平测出两个小球的质量(分别为m1和m2,且m1>m2);②按照如图所示安装好实验装置,将斜槽AB固定在桌边,使槽的末端处的切线水平,将一斜面BC连接在斜槽末端;③先不放小球m2,让小球m1从斜槽顶端A处由静止开始滚下,记下小球在斜面上的落点位置;④将小球m2放在斜槽末端边缘处,让小球m1从斜槽顶端A处由静止开始滚下,使它们发生碰撞后,记下小球m1和m2在斜面上的落点位置;⑤用毫米刻度尺量出各个落点位置到斜槽末端B点的距离,图中D、E、F点是该同学记下的小球在斜面上的几个落点位置,到B点的距离分别为L D、L E、L F.根据该同学的实验,回答下列问题.(1)小球m1和m2发生碰撞后,m1的落点是图中的点,m2的落点是图中的点.(2)用测得的物理量来表示,只要满足关系式,则说明碰撞中动量守恒.(3)用测得的物理量来表示,只要再满足关系式,则说明两小球的碰撞是弹性碰撞. 10.[10分]汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1=36 km/h正面撞击固定试验台,经时间t1=0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2=1 600 kg、速度v2=18 km/h同向行驶的汽车,经时间t2=0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.11.[14分]如图所示,水平传送带两端分别与光滑水平轨道MN和光滑圆弧轨道PQ平滑连接.P 是圆弧轨道的最低点,P、Q两点的高度差H=5 cm.传送带长L=13.75 m,以v=0.45 m/s的速度顺时针匀速转动.物块A以初速度v0=4.35 m/s沿MN向右运动,与静止在水平轨道右端的物块B碰撞后粘为一体(称为C),A、B、C均可视为质点,B的质量是A的两倍,C与传送带间的动摩擦因数μ=0.02.已知C从P进入圆弧轨道再滑回P的时间始终为Δt=4.5 s,重力加速度g=10 m/s2.(1)求A、B碰后粘为一体的C的速度v1;(2)从A、B碰后开始计时,求C经过P点的可能时刻t;(3)若传送带速度大小v可调,要使C能到达但又不滑出PQ轨道,求v的取值范围.12.[10分]如图所示,光滑固定的水平直杆(足够长)上套着轻弹簧和质量m1=4 kg的小球A,用长度L=0.2 m的不可伸长的轻绳将A与质量m2=5 kg的小球B连接起来,已知弹簧左端固定,右端不与A相连.现在让A压缩弹簧使之储存4 J的弹性势能,此时A、B均静止.再由静止释放A,发现当A脱离弹簧后,B运动至最高点时绳与杆的夹角为53°.取重力加速度g=10 m/s2,cos 53°=0.6,sin 53°=0.8,求:(1)弹簧给A的冲量大小;(2)A脱离弹簧后的最大速度.13.[18分]如图所示,一个半径为R=1.00 m的粗糙圆弧轨道,固定在竖直平面内,其下端切线是水平的,轨道下端距地面高度为h=1.25 m,在轨道末端放有质量为m B=0.05 kg的小球B(视为质点),B左侧轨道下装有微型传感器,另一质量为m A=0.10 kg 的小球A(也视为质点)由轨道上端点从静止开始释放,运动到轨道最低处时,传感器显示读数为2.6 N,A与B发生正碰,碰后。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
专题检测卷(十七)碰撞与动量守恒近代物理初步(45分钟100分)1.(16分)(1)如图所示,小车M由光滑的弧形段AB和粗糙的水平段BC组成,静止在光滑水平面上。
当小车固定时,从A点由静止滑下的物块m到C点恰好停止。
如果小车不固定,物块m仍从A点静止滑下( )A.还是滑到C点停住B.滑到BC间某处停住C.会冲出C点落到车外D.上述三种情况都有可能=0.4 kg,开始时都静止于光滑水平面上,(2)两木板M小物块m=0.1 kg以初速度v=10 m/s滑上M1的表面,最后停在M2上时速度为v2=1.8 m/s,求:①最后M1的速度v1;②在整个过程中克服摩擦力所做的功。
2.(17分)(2012·天津高考)(1)下列说法正确的是( )A.采用物理或化学方法可以有效地改变放射性元素的半衰期B.由玻尔理论知道氢原子从激发态跃迁到基态时会放出光子C.从高空对地面进行遥感摄影是利用紫外线良好的穿透能力D.原子核所含核子单独存在时的总质量小于该原子核的质量(2)如图所示,水平地面上固定有高为h的平台,台面上有固定的光滑坡道,坡道顶端距台面高也为h,坡道底端与台面相切。
小球A从坡道顶端由静止开始滑下,到达水平光滑的台面后与静止在台面上的小球B发生碰撞,并粘连在一起,共同沿台面滑行并从台面边缘飞出,落地点与飞出点的水平距离恰好为台高的一半。
两球均可视为质点,忽略空气阻力,重力加速度为g。
求:①小球A刚滑至水平台面的速度v A;②A、B两球的质量之比m A∶m B。
3.(17分)(2013·宿迁一模)(1)下列说法中正确的是( )A.光电效应现象说明光具有粒子性B.普朗克在研究黑体辐射问题时提出了能量子假说C.玻尔建立了量子理论,成功解释了各种原子发光现象D.运动的宏观物体也具有波动性,其速度越大物质波的波长越大(2)如图所示,一水平面上P点左侧光滑,右侧粗糙,质量为m的劈A在水平面上静止,上表面光滑,A轨道右端与水平面平滑连接,质量为M的物块B恰好放在水平面上P点,物块B与水平面的动摩擦因数为μ=0.2。
专题十五动量守恒与近代物理初步(选修3-5)考纲展示命题探究考点一碰撞与动量守恒基础点知识点1 动量、冲量、动量定理、动量守恒定律1.动量(1)定义:运动物体的质量与速度的乘积。
(2)表达式:p=mv。
(3)单位:kg·m/s。
(4)标矢性:动量是矢量,其方向与速度的方向相同。
(5)动量、动能、动量变化量的比较。
(1)定义:力和力的作用时间的乘积叫做力的冲量。
(2)表达式:I=Ft。
单位:N·s。
(3)标矢性:冲量是矢量,它的方向由力的方向决定。
3.动量定理(1)内容:如果一个系统不受外力,或者所受合外力为0,这个系统的总动量保持不变。
(2)表达式①m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
②Δp1=-Δp2,相互作用的两个物体动量的增量等大反向。
③Δp=0,系统总动量的增量为零。
(3)适用条件①系统不受外力或所受外力的合力为零,不是系统内每个物体所受的合外力都为零,更不能认为系统处于平衡状态。
②近似适用条件:系统内各物体间相互作用的内力远大于它所受到的外力。
③如果系统在某一方向上所受外力的合力为零,则系统在该方向上动量守恒。
知识点2 碰撞、反冲和爆炸问题1.碰撞:物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。
2.特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒。
3.分类(1)在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。
这类问题相互作用的过程中系统的动能增大,且常伴有其他形式能向动能的转化。
(2)反冲运动的过程中,如果合外力为零或外力的作用远小于物体间的相互作用力,可利用动量守恒定律来处理。
5.爆炸问题:爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒,爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动。
第三讲碰撞与动量守恒__近代物理初步[以选择题或计算题的形式考查,一般涉及动量守恒定律、弹性碰撞与非弹性碰撞、能量守恒等知识][典例] (2013·山东高考)如图6-3-1所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg。
开始时C 静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞。
求A与C 发生碰撞后瞬间A的速度大小。
图6-3-1[思路点拨](1)A、C相撞时间极短,不考虑B对A的摩擦力,则A、C系统动量守恒。
(2)A、C碰后,A与B相对滑动阶段,A、B组成的系统动量守恒。
(3)A与C恰好不再相撞,则有A与C最终同速。
[解析] 因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C的速度为v C,以向右为正方向,由动量守恒定律得m A v0=m A v A+m C v C①A与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB②A与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C③联立①②③式,代入数据得v A=2 m/s④[答案] 2 m/s一、基础知识要记牢1.动量守恒的条件(1)系统不受外力或系统所受外力的矢量和为零。
(2)系统所受的外力的矢量和虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力、爆炸过程中的重力等,外力比起相互作用的内力小得多,可以忽略不计。
(3)系统所受外力的矢量和虽不为零,但在某个方向上合力的分量为零,则在该方向上系统总动量的分量保持不变。
2.动量守恒定律的三种表达形式(1)p=p′(2)Δp1=-Δp2(3)m1v1+m2v2=m1v1′+m2v2′二、方法技巧要用好1.动量守恒定律解决问题的灵活运用(1)分析题意,明确研究对象。
专题五选修3-5部分第12讲碰撞与动量守恒近代物理初步A卷1.(多选)(2016·梅州模拟)下列叙述正确的是( )A.β衰变所释放的电子是原子核外的电子电离形成的B.普朗克为了解释黑体辐射现象,第一次提出了能量量子化理论C.爱因斯坦为了解释光电效应的规律,提出了光子说D.玻尔将量子观念引入原子领域,其理论能够解释氢原子光谱的特征E.增大环境的压强或升高温度,都可使放射性物质的半衰期减小解析:β衰变的实质是原子核的一个中子变为质子的同时释放一个电子,A错误;普朗克为了解释黑体辐射现象,第一次提出了能量量子化理论,B正确;爱因斯坦为了解释光电效应的规律,受普朗克量子理论的启发,提出了光子说,C正确;玻尔最先把量子观念引入原子领域,提出了原子结构假说,并提出定态和跃迁等概念,很好地解释了氢原子光谱的特征,D正确;半衰期由元素本身决定,与元素所处物理、化学环境无关,E错误.答案:BCD2.(多选)下列说法正确的是( )A.放射性元素发生β衰变时所释放的电子是原子核内的中子转化为质子时产生的B.β衰变现象说明电子是原子核的组成部分C.不仅光具有波粒二象性,实物粒子也具有波粒二象性D.一群氢原子从n=3的激发态跃迁到基态时,能辐射2种不同频率的光子E.根据玻尔理论可知,氢原子辐射出一个光子后,氢原子的电势能减小,核外电子的运动速度增大解析:β衰变时,原子核中的一个中子转化为一个质子和一个电子,释放出来的电子就是β粒子,即β粒子是原子核衰变时由中子转化而来,不能说明原子核中含有电子,选项A正确,B错误;光子、实物粒子都具有波粒二象性,选项C正确;一群氢原子从n=3的激发态跃迁到基态时,能辐射C23=3种不同频率的光子,选项D错误;根据玻尔理论,氢原子辐射出一个光子后,从高能级向低能级跃迁,氢原子的能量减小,轨道半径减小,电子速率增大,动能增大,由于氢原子能量减小,则氢原子电势能减小,故E正确.答案:ACE3.(多选)(2016·济南模拟)下列有关物质组成与物理现象的叙述正确的有( ) A.组成原子核的核子是质子和中子,核子间相互作用的核力只存在于相邻的核子之间B.元素的种类由原子核内核子数决定,几种同位素是同一种元素的不同原子核C.原子和原子核都能发生能级跃迁,γ射线就是原子核能级跃迁产生的D.入射光照射到金属表面发生光电效应后,增大入射光的强度,光电子的最大初动能增大E.在光的颜色不变的情况下,入射光越强,其照射金属发生光电效应时产生的饱和电流越大解析:组成原子核的核子是质子和中子,核力只存在于相邻的核子之间,A选项正确;元素的种类由原子核中质子数决定,B选项错误;原子和原子核都能发生能级跃迁,有些放射性元素发生α衰变或β衰变后的原子核处于高能级,自发向低能级跃迁时释放出高能量的电磁波,就是γ射线,C选项正确;发生光电效应后光电子的最大初动能由入射光频率和金属的逸出功决定,与光的强度无关,D选项错误;饱和电流与入射光子数成正比,入射光越强,光子数越多,饱和电流越大,E选项正确.答案:ACE4.一个人在地面上立定跳远最好成绩是s(m),假设他站在静止于地面的小车的A端(车与地面的摩擦不计),如图所示,他欲从A端跳上l(m)远处的站台上,则( )A.只要l<s,他一定能跳上站台B.只要l<s,他有可能跳上站台C.只要l=s,他一定能跳上站台D.只要l=s,他有可能跳上站台解析:当人往站台上跳的时候,人有一个向站台的速度,由于动量守恒,车子必然有一个离开站台的速度.这样,人相对于地面的速度小于之前的初速度,所以l=s或l>s,人就一定跳不到站台上了,l<s,人才有可能跳上站台,A、C、D错误,B正确.答案:B5.(多选)(2016·湛江模拟)如图所示,一质量M=3.0 kg的长方形木板B放在光滑水平地面上,在其右端放一个质量m=1.0 kg的小木块A,同时给A和B以大小均为4.0 m/s,方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离B板,在小木板A做加速运动的时间内,木板速度大小可能是( )A.2.1 m/s B.2.4 m/sC.2.8 m/s D.3.0 m/s解析:以A、B组成的系统为研究对象,系统动量守恒,取水平向右为正方向,A先做减速运动,然后再做加速运动.从A开始运动到A的速度为零过程中,由动量守恒定律得(M -m)v0=Mv B1,代入数据解得v B1=2.67 m/s,当从开始到AB速度相同的过程中,取水平向右方向为正方向,由动量守恒定律得(M -m )v 0=(M +m )v B 2,代入数据解得v B 2=2 m/s ,则在木块A 正在做加速运动的时间内B 的速度范围为 2 m/s<v B <2.67 m/s ,故选项A 、B 正确.答案:AB6.(2016·宜春模拟)如图所示,光滑水平面上有一矩形长木板,木板左端放一小物块.已知木板质量大于物块质量,t =0时两者从图中位置以相同的水平速度v 0向右运动,碰到右面的竖直挡板后木板以与原来等大反向的速度被反弹回来,运动过程中物块一直未离开木板.则关于物块运动的速度v 随时间t 变化的图象可能正确的是( )A BC D解析:木板碰到挡板前,物块与木板一直做匀速运动,速度为v 0;木板碰到挡板后,物块向右做匀减速运动,速度减至零后向左做匀加速运动,木板向左做匀减速运动,最终两者速度相同,设为v .设木板的质量为M ,物块的质量为m ,取向左为正方向,则由动量守恒得Mv 0-mv 0=(M +m )v ,得v =M -m M +mv 0<v 0,故A 正确,B 、C 、D 错误. 答案:A7.如图,质量为m 的b 球静置在水平轨道BC 的左端C 处.质量也为m 的a 球从距水平轨道BC 高度为h 的A 处由静止释放,沿ABC 光滑轨道滑下.a 球滑到C 处与b 球正碰,并与b 球粘合在一起沿水平方向飞出,最后落在地面上的D 点.已知水平轨道BC 距地面的高度为H ,求:(1)a 球与b 球碰前瞬间,a 球的速度大小;(2)C 、D 两点之间的水平距离和碰撞过程中损失的机械能.解析:(1)设a 球与b 球碰前瞬间的速度大小为v C ,则机械能守恒定律有mgh =12mv 2C ,解得v C =2gh .(2)设a 球与b 球碰后的速度大小为v ,由动量守恒定律有mv C =(m +m )v ,得v =12v C =122gh , 设C 、D 两点间的水平距离为L ,两球粘合在一起做平抛运动,有H =12gt 2,L =vt ,联立解得L =hH ,碰撞过程中损失的机械能ΔE =12mv 2C -12×2mv 2=12mgh . 答案:(1)2gh (2)hH 12mgh 8.在光滑的水平面上,一轻弹簧两端连着A 、B 两个小物块以v 0=8 m/s 的速度向右运动,弹簧处于原长状态,另有一个小物块C 静止在前方,如图所示.已知m A =4 kg ,m B =m C =2 kg ,求:(导学号 59230116)(1)B 与C 碰撞并粘在一起共同运动时的速度v BC ;(2)在(1)的情况下,B 与C 碰撞后弹簧能具有的最大弹性势能.解析:(1)B 与C 碰撞过程与A 无关,这一过程动量守恒而机械能不守恒.根据动量守恒定律得m B v 0=(m B +m C )v BC ,解得v BC =4 m/s ,水平向右.(2)在B 、C 碰撞并粘在一起后,作为一整体与A 物块发生持续作用,这一过程动量守恒,机械能也守恒.当弹簧被拉伸到最长或压缩至最短时弹性势能最大,此时整个系统有共同速度,设为v ,由动量守恒定律得m A v 0+(m B +m C )v BC =(m A +m B +m C )v ,解得v =6 m/s ,设弹簧的最大弹性势能为E p ,由机械能守恒定律得 E p =12m A v 20+12(m B +m C )v 2BC -12(m A +m B +m C )v 2,解得E p=16 J.答案:(1)4 m/s (2)16 J9.如图所示,质量为M的物块B穿在光滑的水平杆上,质量为M的砂摆A用轻绳与物块B连接,质量为m的子弹以大小为v0的速度水平向右射入砂摆且未穿出,已知砂摆的摆角小于90°.重力加速度为g,不计空气阻力.(1)若物块B固定在光滑水平杆上,求砂摆能达到的最大高度;(2)若物块B可在光滑水平杆上自由移动,求砂摆能达到的最大高度.解析:(1)子弹打入砂摆过程,由动量守恒定律可得mv0=(m+M)v,若物块B固定在光滑水平杆上,砂摆和子弹整体向上摆动过程,由机械能守恒定律可得12(m+M)v2=(m+M)gh,联立解得砂摆上升的最大高度为h=m2v202g(m+M)2.(2)若物块B可在光滑水平杆上自由滑动,在砂摆和子弹整体与物块B作用的过程中,系统在水平方向上动量守恒(m+M)v=(m+2M)v′,由机械能守恒定律有1 2(m+M)v2=(m+M)gh′+12(m+2M)v′2,联立解得h′=Mm2v202g(M+m)2(2M+m).答案:(1)m2v202g(m+M)2(2)Mm2v202g(M+m)2(2M+m)10.(2016·全国乙卷)(1)现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是________.A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大B.入射光的频率变高,饱和光电流变大C.入射光的频率变高,光电子的最大初动能变大D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生E.遏止电压的大小与入射光的频率有关,与入射光的光强无关(2)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g.求:(导学号 59230117)①喷泉单位时间内喷出的水的质量;②玩具在空中悬停时,其底面相对于喷口的高度.解析:(1)产生光电效应时,光的强度越大,单位时间内逸出的光电子数越多,饱和光电流越大,说法A正确.饱和光电流大小与入射光的频率无关,说法B错误.光电子的最大初动能随入射光频率的增加而增加,与入射光的强度无关,说法C正确.减小入射光的频率,如低于极限频率,则不能发生光电效应,没有光电流产生,说法D错误.遏止电压的大小与入射光的频率有关,与光的强度无关,说法E正确.(2)①设Δt时间内,从喷口喷出的水的体积为ΔV,质量为Δm,则Δm=ρΔV①ΔV=v0SΔt;②由①②式得,单位时间内从喷口喷出的水的质量为ΔmΔt=ρv0S③②设玩具悬停时其底面相对于喷口的高度为h,水从喷口喷出后到达玩具底面时的速度大小为v.对于Δt时间内喷出的水,由能量守恒得1 2(Δm)v2+(Δm)gh=12(Δm)v20④在h高度处,Δt时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为Δp=(Δm)v⑤设水对玩具的作用力的大小为F,根据动量定理有FΔt=Δp⑥由于玩具在空中悬停,由力的平衡条件得F=Mg⑦联立③④⑤⑥⑦式得h=v202g-M2g2ρ2v20S2.答案:(1)ACE (2)①ρv0S②v202g -M2g2ρ2v20S2B卷1.(多选)(2016·石家庄模拟)关于原子和原子核,下列说法正确的是( )A.卢瑟福的α粒子散射实验否定了汤姆孙关于原子结构的“枣糕模型”,卢瑟福提出了原子的核式结构模型B .由玻尔理论可知氢原子的能量是量子化的,一个氢原子处于n =3的能级,向较低能级跃迁时最多只能放出两种频率的光子C .要发生核反应10n +11H →21H ,需要高能量的γ光子照射D .研究发现,原子序数大于83的所有天然存在的元素都具有放射性,其半衰期与压强无关E .β衰变所释放的电子来自原子核外的电子解析:卢瑟福通过α粒子散射实验的结果否定了汤姆孙的“枣糕模型”并提出了原子的核式结构模型,A 正确;由玻尔理论知氢原子的能量是不连续的,一个氢原子处于n =3的能级,最多只能放出两种频率的光子,即从n =3能级跃迁到n =2能级和从n =2能级跃迁到n =1能级,B 正确;由于在核力作用范围内核子间存在着强大的核力,当核子结合时核力做正功,会释放出高能量的γ光子,C 错误;研究发现,原子序数大于83的所有天然存在的元素都有放射性,原子序数小于83的天然存在的元素有的具有放射性,有的不具有放射性,放射性元素的半衰期与外部条件无关,D 正确;β衰变所释放的电子是原子核中的一个中子转化为一个质子和一个电子时产生的,E 错误.答案:ABD2.(多选)(2016·保定模拟)以下说法中正确的有( )A .玻尔对氢原子光谱的研究导致了原子的核式结构模型的建立B .核力存在于原子核内所有核子之间C .紫外线照射到金属锌板表面时能产生光电效应,当增大紫外线的照射强度时,从锌板表面逸出的光电子的最大初动能不变D .β衰变的实质是核内的一个中子转化为一个质子和一个电子E .德布罗意提出:实物粒子也具有波动性,而且粒子的能量ε和动量p 跟它们各自对应的波的频率ν和波长λ之间遵从关系ν=εh 和λ=h p解析:根据α粒子散射实验,卢瑟福提出了原子的核式结构模型,A 错误;核力只存在于相邻的核子之间,所以核内的某一核子与其他核子间不一定有核力作用,B 错误;光电子的最大初动能与入射光的频率有关,与光照强度无关,因此增大光照强度,光电子的最大初动能不变,C 正确;β衰变的实质是核内一个中子转化为一个质子和一个电子,D 正确;根据物质波的知识知E 正确.答案:CDE3.(多选)如图所示,当频率为ν的可见光照射到光电管时,灵敏电流表G 中有电流通过,关于该实验,下列说法正确的是( )A.电流的方向是a→bB.增大入射光的强度,则灵敏电流表的示数一定会变大C.增大入射光的频率,则射出光电子的最大初动能将增大D.向右滑动滑片P,则灵敏电流表的示数一定会变大E.其他条件不变,更换频率为ν′的另一可见光照射光电管,如果灵敏电流表没有示数,则一定没有光电子逸出解析:电子从右侧金属逸出后朝着左侧移动,故电流方向为a→b,A选项正确;增大入射光的强度,单位时间内发出的光电子数目增多,则光电流增大,B选项正确;增大入射光的频率,由hν=W+E kmax,则射出光电子的最大初动能将增大,C选项正确;向右滑动滑片P时,使得电压U增大,如果没有达到饱和电流,则电流增大,如果已经达到饱和电流,则电流不变,D选项错误;当更换频率为ν′的另一可见光照射光电管时,可能已发生光电效应,但所加的是反向电压且大于或等于遏止电压,故没有光电流,E选项错误.答案:ABC4.(多选)在不计空气阻力作用的条件下,下列说法中正确的是( )A.自由下落的小球在空中运动的任意一段时间内,其增加的动能一定等于其减少的重力势能B.做平抛运动的小球在空中运动的任意相等的时间内,其速度的变化量一定相同C.做匀速圆周运动的小球在任意一段时间内其合外力做的功一定为零,合外力的冲量也一定为零D.单摆在一个周期内,合外力对摆球做的功一定为零,合外力的冲量也一定为零解析:不计空气阻力,自由下落的小球,其所受合外力为重力,则小球在运动的过程中机械能守恒,其增加的动能一定等于其减小的重力势能,故A正确;做平抛运动的小球所受合外力为重力,加速度的大小与方向都不变,所以小球在空中运动的任意相等的时间内,其速度的变化量一定相同,故B正确;做匀速圆周运动的小球,其所受合外力的方向一定指向圆心,小球在任意一段时间内其合外力做的功一定为零;但由于速度的方向不断变化,所以速度的变化量不一定等于0,所以合外力的冲量也不一定为零,故C错误;经过一个周期,单摆的小球又回到初位置,所有的物理量都与开始时相等,所以单摆在一个周期内,合外力对摆球做的功一定为零,合外力的冲量也一定为零,故D正确.答案:ABD5.(多选)(2016·扬州模拟)A、B两球在光滑水平面上做相向运动,已知m A>m B,当两球相碰后,其中一球停止,则可以断定( )A .碰前A 的动量等于B 的动量B .碰前A 的动量大于B 的动量C .若碰后A 的速度为零,则碰前A 的动量大于B 的动量D .若碰后B 的速度为零,则碰前A 的动量小于B 的动量解析:两球组成的系统所受合外力为零,系统动量守恒,以A 的运动方向为正方向,由动量守恒定律得:m A v A -m B v B =m A v ′A +m B v ′B ,如果碰撞前A 的动量等于B 的动量,碰撞后两者速度都等于零,故A 错误;若碰后A 的速度为零,则碰撞后B 反向运动,否则两者会发生第二次相撞,这说明系统总动量与A 的动量方向相同,则碰撞前A 的动量大于B 的动量;若碰后B 的速度为零,则碰撞后A 反向运动,否则两者会发生第二次相撞,这说明系统总动量与B 的动量方向相同,则碰撞前A 的动量小于B 的动量;由以上分析可知,两球碰撞后一球静止,可能是碰撞前A 的动量大于B 的动量,也可能是碰撞前A 的动量小于B 的动量,故B 错误,CD 正确,故选CD.答案:CD6.(2016·成都模拟)如图所示,半圆形光滑轨道固定在水平地面上,并使其轨道平面与地面垂直,物体m 1、m 2同时由轨道的左、右最高点释放,二者碰撞后粘在一起向上运动,最高能上升到轨道M 点,已知OM 与竖直方向夹角为60°,则两物体的质量之比m 1∶m 2为( )A .(2+1)∶(2-1) B.2∶1 C .(2-1)∶(2+1) D .1∶ 2解析:两球到达最低的过程由动能定理得:mgR =12mv 2, 解得:v =2gR , 所以两球到达最低点的速度均为:2gR ,设向左为正方向,则m 1的速度v 1=-2gR ,则m 2的速度v 2=2gR ,由于碰撞瞬间动量守恒得:m 2v 2+m 1v 1=(m 1+m 2)v 共,解得:v 共=m 2-m 1m 1+m 22gR ,① 二者碰后粘在一起向左运动,最高能上升到轨道P 点,对此过程由动能定理得:-(m 1+m 2)gR (1-cos 60°)=0-12(m 1+m 2)v 2共,②由①②解得:(m 1+m 2)2(m 2-m 1)2=2, 整理得:m 1∶m 2=(2-1)∶(2+1),故选C.答案:C7.某些建筑材料可产生放射性气体氡,氡可发生衰变,若人长期生活在氡浓度过高的环境中,对身体会产生危害.原来静止的氡核(222 86Rn 发生一次α衰变生成新核钋(Po),并放出一个能量为E 0=0.09 MeV 的光子,则其衰变核反应方程为________________,若已知放出的α粒子的动能是新核钋动能的55倍,且α粒子的动能为E α=5.55 MeV ,1 u =931.5 MeV ,则衰变过程中总的质量亏损为_____u(保留三位有效数字).解析:由核反应方程中质量数及核电荷数守恒知衰变方程为222 86Rn →218 84Po +42He +γ,由题意及能量守恒知衰变时放出的总能量为ΔE =E 0+E α+E Po =Δmc 2,代入数据得衰变过程中总的质量亏损为Δm =0.006 16 u.答案:222 86Rn →218 84Po +42He +γ 0.006 168.一弹簧竖直固定在地面上,上面连接一质量为1 kg 的物体A ,A 处于静止状态,此时弹簧被压缩了0.15 m .质量也为1 kg 的物体B 从A 正上方h =0.3 m 处自由下落,碰后A 、B 结合在一起向下运动,重力加速度g 取10 m/s 2,该弹簧形变量为x 时的弹性势能为E p =12k 0x 2,其中k 0为弹簧的劲度系数.求:(导学号 59230143)(1)碰后瞬间两物体的总动能;(2)碰后A 、B 的最大动能.解析:(1)B 自由下落,由机械能守恒定律得m 2gh =12m 2v 20,碰撞过程动量守恒,以向下为正方向,有 m 2v 0=(m 1+m 2)v ,代入数据解得v =62m/s , 碰后瞬间两物体的动能E k =12(m 1+m 2)v 2=1.5 J. (2)A 与B 共同下降过程中,弹力大小等于两物体重力时A 、B 的动能最大,则k 0x 1=mg ,k 0x 2=2mg ,跟平衡位置相比,A 与B 共同下落的距离 Δx =x 2-x 1=0.15 m ,由机械能守恒得(m 1+m 2)g Δx =E kmax -E k +ΔE p , 其中ΔE p =12k 0x 22-12k 0x 21,代入数据解得E kmax =2.25 J. 答案:(1)1.5 J (2)2.25 J9.如图所示,竖直平面内固定有半径R =4.05 m 的14圆弧轨道PQ ,与足够长的水平面相切于Q 点.质量为5m 的小球B 静置于水平面上,质量为m 的小球A 从P 处由静止释放,经过Q 点后与B 发生正碰.两球均可视为质点,不计一切摩擦,所有碰撞过程均为弹性碰撞,重力加速度g 取10 m/s 2.求:(1)A 第一次与B 碰撞后的速度v A 1; (2)B 的最终速度v B 的大小.解析:(1)A 由P 点到Q 点的过程,根据机械能守恒定律有12mv 2=mgR ,得v =9 m/s.以水平向右为正方向,A 第一次与B 碰撞过程,根据动量守恒定律有mv =mv A 1+5mv B 112mv 2=12mv 2A 1+12×5mv 2B 1, 解得v B 1=3 m/s ,v A 1=-6 m/s ,负号表示方向水平向左. (2)A 与B 第二次碰撞前的速度为-v A 1=6 m/s ,A 第二次与B 发生碰撞过程有 m (-v A 1)+5mv B 1=mv A 2+5mv B 2,12mv 2=12mv 2A 2+12×5mv 2B 2, 解得v A 2=1 m/s ,v B 2=4 m/s(另一组根不符合题意,已舍去) 由于v A 2<v B 2,所以B 的最终速度大小v B =v B 2=4 m/s. 答案:(1)-6 m/s (2)4 m/s10.(2016·全国丙卷)(1)一静止的铝原子核2713Al 俘获一速度为1.0×107m/s 的质子p 后,变为处于激发态的硅原子核2814Si.下列说法正确的是________.A .核反应方程为p +2713Al →2814SiB .核反应过程中系统动量守恒C .核反应过程中系统能量不守恒D .核反应前后核子数相等,所以生成物的质量等于反应物的质量之和E .硅原子核速度的数量级为105m/s ,方向与质子初速度的方向一致(2)如图,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m .两物块与地面间的动摩擦因数均相同.现使a 以初速度v 0向右滑动.此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞.重力加速度大小为g .求物块与地面间的动摩擦因数满足的条件.解析:(1)核反应过程中遵循质量数守恒和电荷数守恒,核反应方程为p +2713Al →2814Si ,A 正确.核反应过程中遵从动量守恒和能量守恒,B 正确,C 错误.核反应中发生质量亏损,生成物的质量小于反应物的质量之和,D 错误.根据动量守恒定律有m p v p =m Si v Si ,碰撞后硅原子核速度的数量级为105m/s ,方向与质子初速度方向一致,E 正确.(2)设物块与地面间的动摩擦因数为μ.若要物块a 、b 能够发生碰撞,应有12mv 20>μmgl①即μ<v 202gl②设在a 、b 发生弹性碰撞前的瞬间,a 的速度大小为v 1.由能量守恒有12mv 20=12mv 21+μmgl ③设在a 、b 碰撞后的瞬间,a 、b 的速度大小分别为v ′1、v ′2,由动量守恒和能量守恒有mv 1=mv ′1+34mv ′2④12mv 21=12mv ′21+12⎝ ⎛⎭⎪⎫34m v ′22⑤ 联立④⑤式解得v ′2=87v 1⑥由题意知,b 没有与墙发生碰撞,由功能关系可知 12⎝ ⎛⎭⎪⎫34m v ′22≤μ34mgl ⑦ 联立③⑥⑦式,可得μ≥32v 20113gl⑧所以a 与b 发生弹性碰撞,但b 没有与墙发生碰撞的条件是32v 20113gl ≤μ<v 22gl.答案:(1)ABE (2)32v 20113gl ≤μ<v 22gl。
专题:碰撞与动量守恒李仕才一动量定理与动量守恒定律一、动量1.定义:运动物体的和的乘积,通常用来表示。
2.表达式:3.单位:4.标矢性:动量是,其方向与方向相同。
5.动量、动能、动量变化量的比较1.冲量(1)定义:物理学中把力与力的的乘积叫做力的冲量。
(2)公式:(3)矢量:冲量是,它的方向跟力的方向相同。
(4)物理意义:冲量是反映力对累积效应的物理量,力越大,时间越长,冲量就越大。
2.动量定理(1)内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的 。
(2)公式表示⎩⎪⎨⎪⎧F (t ′-t )=mv ′-mvI =p ′-p(3)意义:冲量是物体动量变化的量度,合外力的 等于物体 的变化量。
例一、一质量为0.5 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示,一物块以v 0=9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7 m/s ,碰后以6 m/s 的速度反向运动直至静止,g 取10 m/s 2。
(1)求物块与地面间的动摩擦因数μ。
(2)若碰撞时间为0.05 s ,求碰撞过程中墙面对物块平均作用力的大小F 。
(3)求物块在反向运动过程中克服摩擦力所做的功W 。
例二、将质量为0.2 kg 的小球以初速度6 m/s 水平抛出,抛出点离地的高度为3.2 m ,不计空气阻力。
求:(1)小球从抛出到它将要着地的过程中重力的冲量; (2)小球将要着地时的动量。
例三、高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动)。
此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为A.m 2ght+mg B.m 2ght-mgC.m gh t+mg D.m gh t-mg例四“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下,将蹦极过程简化为人沿竖直方向的运动。
专题五选修3-5部分
第12讲碰撞与动量守恒近代物理初步
A卷
1.(多选)(2016·梅州模拟)下列叙述正确的是()
A.β衰变所释放的电子是原子核外的电子电离形成的
B.普朗克为了解释黑体辐射现象,第一次提出了能量量子化理论C.爱因斯坦为了解释光电效应的规律,提出了光子说
D.玻尔将量子观念引入原子领域,其理论能够解释氢原子光谱的特征
E.增大环境的压强或升高温度,都可使放射性物质的半衰期减小解析:β衰变的实质是原子核的一个中子变为质子的同时释放一个电子,A错误;普朗克为了解释黑体辐射现象,第一次提出了能量量子化理论,B正确;爱因斯坦为了解释光电效应的规律,受普朗克量子理论的启发,提出了光子说,C正确;玻尔最先把量子观念引入原子领域,提出了原子结构假说,并提出定态和跃迁等概念,很好地解释了氢原子光谱的特征,D正确;半衰期由元素本身决定,与元素所处物理、化学环境无关,E错误.
答案:BCD
2.(多选)下列说法正确的是()
A.放射性元素发生β衰变时所释放的电子是原子核内的中子转化为质子时产生的
B.β衰变现象说明电子是原子核的组成部分
C.不仅光具有波粒二象性,实物粒子也具有波粒二象性
D.一群氢原子从n=3的激发态跃迁到基态时,能辐射2种不同频率的光子
E.根据玻尔理论可知,氢原子辐射出一个光子后,氢原子的电势能减小,核外电子的运动速度增大
解析:β衰变时,原子核中的一个中子转化为一个质子和一个电子,释放出来的电子就是β粒子,即β粒子是原子核衰变时由中子转化而来,不能说明原子核中含有电子,选项A正确,B错误;光子、实物粒子都具有波粒二象性,选项C正确;一群氢原子从n=3的激发态跃迁到基态时,能辐射C23=3种不同频率的光子,选项D错误;根据玻尔理论,氢原子辐射出一个光子后,从高能级向低能级跃迁,氢原子的能量减小,轨道半径减小,电子速率增大,动能增大,由于氢原子能量减小,则氢原子电势能减小,故E正确.
答案:ACE
3.(多选)(2016·济南模拟)下列有关物质组成与物理现象的叙述正确的有()
A.组成原子核的核子是质子和中子,核子间相互作用的核力只存在于相邻的核子之间
B.元素的种类由原子核内核子数决定,几种同位素是同一种元素的不同原子核
C.原子和原子核都能发生能级跃迁,γ射线就是原子核能级跃迁产生的
D.入射光照射到金属表面发生光电效应后,增大入射光的强度,光电子的最大初动能增大
E.在光的颜色不变的情况下,入射光越强,其照射金属发生光电效应时产生的饱和电流越大
解析:组成原子核的核子是质子和中子,核力只存在于相邻的核子。