完整性测试仪失败原因调查-滤芯完整性测试
- 格式:docx
- 大小:99.45 KB
- 文档页数:5
滤芯完整性失败分析/故障解决如果除菌过滤器没有成功完成完整性测试,它可能受到损坏,但是也有其他的失败原因,包括错误装配(不完全密封)和不完全润湿(参见7.7.1)。
应在文件中记录过滤器失败调查和再测试程序。
为了区别过滤器损坏和测试造成失败或假结果,可采取以下措施;·确认选择适当的完整性测试方法·使用了正确的测试参数·使用了正确的润湿液和润湿方法·测试系统没有泄露·过滤器装置温度稳定,在测试过程中符合标准(例如隔热效应*。
见下面的备注)·对设备进行了合理的校准·合理装配了测试结构且运转正常·安装了正确的过滤器为了证实纠正措施有效,可采取以下再测试措施:·按照规范重新润湿过滤器,重新测试(参见图的第一步)如果过滤器完整性测试再次失败,可采取如下措施:·通过增加冲洗量/时间、增加压差和/或使用背压来加强润湿条件(参见图中的第二步)如果过滤器完整性测试再次失败,采取如下措施:·在表面张力较低的参比溶液进行完整性测试,来评估过滤器的可润湿性变化(参见的第三步)·如果使用参比溶液仍然失败,则过滤器没有通过测试。
若在进行失败分析过程中(下图中)的任一点上过滤器通过了完整性测试,则认为该过滤器是完整的且能够产生无菌液。
在图中提供了一个判断树,它可用于对完整性测试失败进行评估。
*注意:隔热效应是当测试气体进入滤壳时的快速扩散,这可引起制冷效应,使得气体在滤壳中压缩。
这种效应能够导致假阳性的完整性测试失败,因为在测试时间之外,随着时间的增加,扩散/顺流将持续降低。
为了克服这一点,需对这些系统延长稳定和测试时间。
v1.0 可编辑可修改7.5.1润湿不充分的失败分析一般来说,过滤器完整性测试失败是由于对过滤器的润湿不充分。
不完全润湿可能是由于没有对所有气孔进行充分冲洗加以润湿、吸收了疏水性污染物,或是由于存在能够改变滤膜的表面润湿特点的其他配方成分。
过滤器完整性测试问题分析制药工艺过程中除菌级过滤器的完整性测试,是一个非常关键的操作。
如果正确操作,完整性测试可以快速准确且以非破坏性的方式来确保过滤器的截留效能。
但如果操作不正确,可能会导致一根完整的过滤器产生失败的完整性测试结果,这不仅浪费时间,而且可能导致生产力降低和产品损失。
过滤器的完整性测试是基于完全润湿的膜孔内液体的毛细管力的大小,孔径越小,毛细管力越大。
泡点法测量的是克服液体毛细管力的气体压力,因此跟孔径直接相关。
扩散流测量的是在低于泡点的压力下,气体溶解并扩散通过完全润湿膜的流速。
任何一个影响毛细管力、气体扩散、气体流速和压力测量准确度的因素都会影响完整性测试的结果。
常见的假阴性测试结果(过滤器完整,但完整性测试失败)可能由于膜的不完全润湿造成。
但不完全润湿是一个常见问题,并不是唯一的潜在问题。
这篇技术文章,我们会考虑所有潜在测试错误的根源,应用逻辑方法来解决问题和重新测试。
目的是增强结果的可信度,为重新测试提供理由,最终理解问题所在并排除问题,保证完整性测试在第一时间就被正确执行。
1. 一般的完整性测试结果分类(1)通过泡点和扩散流在指标之内并且在合理范围之内。
例如,一根滤芯的最小泡点是50psi,实际结果在52—58psi;或者扩散流指标是13.3ml/min,典型的结果范围在8-12mL/min。
当测试结果在典型的范围内时,这根滤芯的完整性结果是比较可信的。
(2)一般性失败例如,无论是扩散流还是泡点测试,在较低压力下就观察到较大的气体流速,通常就为一般性失败。
一根真实的有缺陷的滤芯,典型的结果就是一般性失败。
比如一根滤芯遭受过大的压差、物理性的撞击或者高温等状况,由此产生的缺陷比滤芯的正常孔径要大,其结果就是低的毛细管力和低压下高的气体流速。
出现这种情况时,通常会进行问题分析并且重新测试,但重新测试获得“通过”结果的可能性通常比较低。
(3)边缘性失败例如指标值是50psi 泡点,测试结果为48.8psi;或者扩散流指标是13.3mL/min,测试结果为15mL/min。
过滤器完整性测试问题分析制药工艺过程中除菌级过滤器的完整性测试,是一个非常关键的操作。
如果正确操作,完整性测试可以快速准确且以非破坏性的方式来确保过滤器的截留效能。
但如果操作不正确,可能会导致一根完整的过滤器产生失败的完整性测试结果,这不仅浪费时间,而且可能导致生产力降低和产品损失。
过滤器的完整性测试是基于完全润湿的膜孔内液体的毛细管力的大小,孔径越小,毛细管力越大。
泡点法测量的是克服液体毛细管力的气体压力,因此跟孔径直接相关。
扩散流测量的是在低于泡点的压力下,气体溶解并扩散通过完全润湿膜的流速。
任何一个影响毛细管力、气体扩散、气体流速和压力测量准确度的因素都会影响完整性测试的结果。
常见的假阴性测试结果(过滤器完整,但完整性测试失败)可能由于膜的不完全润湿造成。
但不完全润湿是一个常见问题,并不是唯一的潜在问题。
这篇技术文章,我们会考虑所有潜在测试错误的根源,应用逻辑方法来解决问题和重新测试。
目的是增强结果的可信度,为重新测试提供理由,最终理解问题所在并排除问题,保证完整性测试在第一时间就被正确执行。
1. 一般的完整性测试结果分类(1)通过泡点和扩散流在指标之内并且在合理范围之内。
例如,一根滤芯的最小泡点是50psi,实际结果在52—58psi;或者扩散流指标是13.3ml/min,典型的结果范围在8-12mL/min。
当测试结果在典型的范围内时,这根滤芯的完整性结果是比较可信的。
(2)一般性失败例如,无论是扩散流还是泡点测试,在较低压力下就观察到较大的气体流速,通常就为一般性失败。
一根真实的有缺陷的滤芯,典型的结果就是一般性失败。
比如一根滤芯遭受过大的压差、物理性的撞击或者高温等状况,由此产生的缺陷比滤芯的正常孔径要大,其结果就是低的毛细管力和低压下高的气体流速。
出现这种情况时,通常会进行问题分析并且重新测试,但重新测试获得“通过”结果的可能性通常比较低。
(3)边缘性失败例如指标值是50psi 泡点,测试结果为48.8psi;或者扩散流指标是13.3mL/min,测试结果为15mL/min。
滤芯完整性试验检测方法
1.水浸法:将滤芯完全浸入水中,观察是否有气泡冒出。
如果有气泡
冒出,说明滤芯存在漏孔或裂纹。
2.压力测定法:将滤芯固定在测试设备上,通过给滤芯施加一定的压力,观察是否有压力下降。
如果压力下降较快,说明滤芯存在堵塞或滤材
破损。
3.吸湿比重法:将滤芯完全浸入水中,测量浸入前后的重量差。
如果
重量差明显增加,说明滤芯存在渗漏。
4.气泡点法:在滤芯接口处涂上肥皂水,通过施加一定的气压,观察
是否有气泡冒出。
如果有气泡冒出,说明滤芯存在漏气的问题。
5.核素探测法:在滤芯内加入一定量的放射性核素,并使用探测仪器
来测量核素的透过率。
如果透过率超过设定的限值,说明滤芯存在破损或
滤材不完整。
6.阻力测定法:在滤芯的进出口处测量流量和压力差,通过计算得到
阻力差。
如果阻力差超过设定的限值,说明滤芯存在堵塞或使用寿命已经
过半。
7.外观检查法:通过目测滤芯的外观,观察是否存在破损、变形或污
染等问题。
如果有明显的外观缺陷,说明滤芯存在问题。
需要注意的是,不同类型的滤芯可能需要不同的完整性试验检测方法。
在实际应用中,应根据滤芯的特点和要求来选择适合的方法进行检测,并
严格按照相应的标准和规范进行操作。
同时,滤芯的完整性试验检测应该
定期进行,以保证其性能和过滤效果的稳定性和可靠性。
过滤器完整性检测仪的检测原理分析检测仪工作原理过滤器的完整性检测紧要有:起泡点法测试原理:当滤膜和滤芯用确定的溶液完全浸润,然后通过气源在一侧加压(我们仪器里面有进气掌控系统,可以稳定压力,调整进气),随着压力的加添,气体从滤膜的一侧放出,表现膜一侧显现大小、数量不等的气泡,通过仪器判定出对应的压力值就是泡点。
扩散流法测试原理:扩散流测试是指当气体压力在滤芯起泡点值的80%时,这时还没有显现大量的气体穿孔而过,只是少量的气体先溶解到液相的隔膜中,然后从该液相扩散到另一面的气相中,这部分气体称之为扩散流。
为什么扩散流的方法更好:起泡点值只是一个定性的值,从开始起泡到后的群起泡是一个比较长的过程,不能精准的定量。
而测量扩散流值是一个定量值,不但能精准的确定过滤器的完整性,而且还能反应出膜的孔隙率、流量和有效过滤面积等方面的问题,这也就是为什么国外厂家都用扩散流法测试完整性的原因。
水侵入法测试原理:水侵入法专用于疏水性滤芯的测试,疏水性膜抗拒水,孔径越小,把水挤入疏水膜中需要的压力越大。
所以在确定的压力下,测量挤入滤膜中的水流量来判定滤芯的孔径。
在选择有毒有害气体检测仪时存在的问题我们在选用各类检测仪时存在的问题还比较多,实在体现在如下几点:(1)对可燃气体的检测重于对有毒气体的检测。
(2)对可能引起急性中毒气体的检测重于对可能引起慢性中毒的气体的检测。
由于浩繁可燃气体泄漏所引起的爆炸事故的血的教训,使人们对于可燃气体检测特别重视,可以讲,任何一个石化、化工厂,绝大多数的不安全气体检测仪都是LEL检测仪。
但仅配备LEL检测仪对于真正保护工人的安全和健康还是远远不够的。
不可否认的是,大多数的挥发性不安全气体都是可燃气体,但是,催化燃烧式的可燃气体检测仪(LEL)并不是对全部的可燃气体检测都是较佳选择。
它是专门为检测甲烷设计的,而对其它物质的检测性能比较差。
所以,它们可以检测出的除甲烷以外的可燃气体的下限浓度要远远高于它们的允许浓度。
滤芯完整性失败分析/故障解决如果除菌过滤器没有成功完成完整性测试,它可能受到损坏,但是也有其他的失败原因,包括错误装配(不完全密封)和不完全润湿(参见7.7.1)。
应在文件中记录过滤器失败调查和再测试程序。
为了区别过滤器损坏和测试造成失败或假结果,可采取以下措施;·确认选择适当的完整性测试方法·使用了正确的测试参数·使用了正确的润湿液和润湿方法·测试系统没有泄露·过滤器装置温度稳定,在测试过程中符合标准(例如隔热效应*。
见下面的备注)·对设备进行了合理的校准·合理装配了测试结构且运转正常·安装了正确的过滤器为了证实纠正措施有效,可采取以下再测试措施:·按照规范重新润湿过滤器,重新测试(参见图7.1-1的第一步)如果过滤器完整性测试再次失败,可采取如下措施:·通过增加冲洗量/时间、增加压差和/或使用背压来加强润湿条件(参见图7.7-1中的第二步)如果过滤器完整性测试再次失败,采取如下措施:·在表面张力较低的参比溶液进行完整性测试,来评估过滤器的可润湿性变化(参见7.7-1的第三步)·如果使用参比溶液仍然失败,则过滤器没有通过测试。
若在进行失败分析过程中(下图中)的任一点上过滤器通过了完整性测试,则认为该过滤器是完整的且能够产生无菌液。
在图7.7-1中提供了一个判断树,它可用于对完整性测试失败进行评估。
*注意:隔热效应是当测试气体进入滤壳时的快速扩散,这可引起制冷效应,使得气体在滤壳中压缩。
这种效应能够导致假阳性的完整性测试失败,因为在测试时间之外,随着时间的增加,扩散/顺流将持续降低。
为了克服这一点,需对这些系统延长稳定和测试时间。
7.5.1润湿不充分的失败分析一般来说,过滤器完整性测试失败是由于对过滤器的润湿不充分。
不完全润湿可能是由于没有对所有气孔进行充分冲洗加以润湿、吸收了疏水性污染物,或是由于存在能够改变滤膜的表面润湿特点的其他配方成分。
来源:作者:时间:2009-07-11 点击:泡点的原理:需要一定压力才能使气体冲破已经湿润的滤膜,气体大量从膜孔流出这一点的压力值是这个膜的泡点,测定这一压力值的方法是泡点法。
对完整性良好的滤芯,空气由于扩散会通过滤膜孔湿润后形成的液体薄膜,测量透过空气的流量(立方厘米/分钟)即可得到前进流数值。
前进流数值可以是在一定压力下已湿润滤膜下游空气透过量,也可以是为维持一定的压力在已湿润滤膜的上游所需的空气流量。
压力保持试验是另一种形式的上游前进流试验。
在这种试验中,过滤器滤壳压力达到一个预定值后,系统与压力源隔开,在一定时间内系统压力的衰减值即等同于扩散通过已湿润滤膜的空气流量。
由于上游完整性试验不破坏下游的无菌状态,故其在严格的流体工艺中非常有用。
起泡点试验如要准确测定,一般最好是用专业厂家生产的起泡点测试仪,没有起泡点测试仪,也可手工测试。
一般只有除菌的0.22µm滤芯或滤膜需作起泡点,方法如下:试验方法如下:微孔滤膜起泡点试验1、将待测试的微孔滤膜或滤芯用注射用水完全润湿,安装到调剂到罐装的输液管路系统中,向装滤膜或滤芯的不锈钢圆盘过滤器或套筒中加入适量的注射用水浸没滤膜或滤芯。
2、从不锈钢圆盘过滤器或套筒的进料端缓慢通入压缩空气,注意压力应按仪器要求。
3、一般仪器可按说明操作,手工测试则需缓慢加大压缩空气至一定压力不同孔径的滤膜或滤芯都有固定的最小泡点值,注意观察在最小泡点值时,注射用水出口是否有气泡冒出。
4、判定标准如仪器测试则可自动给出结果是否合格,手工测试则有气泡冒出时的压力值必须等于或大于厂家的最小起泡点值。
不合格,要查找原因,是否管路有泄露,否则此滤膜不符合生产要求,应更换,并重新进行此实验,直至滤膜符合生产要求。
5、一般生产厂家的滤芯重复使用(进口滤芯较贵,生产批量又不大),有时不是滤芯漏了,而是滤芯处理不净,有残留物质影响起泡点,要特别注意所用原料的性质。
过滤器完整性测试步骤一.消毒前1. 将滤芯润湿,可以先将滤芯完全浸泡在干净水中10-15分钟,也可以将滤芯安装在滤壳中,让干净水滤过滤芯达到湿润目的,一般10英寸需滤过10L以上干净水。
滤芯完整性失败分析/故障解决
如果除菌过滤器没有成功完成完整性测试,它可能受到损坏,但是也有其他的失败原因,包括错误装配(不完全密封)和不完全润湿(参见7.7.1)。
应在文件中记录过滤器失败调查和再测试程序。
为了区别过滤器损坏和测试造成失败或假结果,可采取以下措施;
·确认选择适当的完整性测试方法
·使用了正确的测试参数
·使用了正确的润湿液和润湿方法
·测试系统没有泄露
·过滤器装置温度稳定,在测试过程中符合标准(例如隔热效应*。
见下面的备注)
·对设备进行了合理的校准
·合理装配了测试结构且运转正常
·安装了正确的过滤器
为了证实纠正措施有效,可采取以下再测试措施:
·按照规范重新润湿过滤器,重新测试(参见图7.1-1的第一步)
如果过滤器完整性测试再次失败,可采取如下措施:
·通过增加冲洗量/时间、增加压差和/或使用背压来加强润湿条件(参见图7.7-1中的第二步)
如果过滤器完整性测试再次失败,采取如下措施:
·在表面张力较低的参比溶液进行完整性测试,来评估过滤器的可润湿性变化(参见7.7-1的第三步)
·如果使用参比溶液仍然失败,则过滤器没有通过测试。
若在进行失败分析过程中(下图中)的任一点上过滤器通过了完整性测试,则认为该过滤器是完整的且能够产生无菌液。
在图7.7-1中提供了一个判断树,它可用于对完整性测试失败进行评估。
*注意:隔热效应是当测试气体进入滤壳时的快速扩散,这可引起制冷效应,使得气体在滤壳中压缩。
这种效应能够导致假阳性的完整性测试失败,因为在测试时间之外,随着时间的增加,扩散/顺流将持续降低。
为了克服这一点,需对这些系统延长稳定和测试时间。
7.5.1润湿不充分的失败分析
一般来说,过滤器完整性测试失败是由于对过滤器的润湿不充分。
不完全润湿可能是由于没有对所有气孔进行充分冲洗加以润湿、吸收了疏水性污染物,或是由于存在能够改变滤膜的表面润湿特点的其他配方成分。
润湿特点的变化能够影响完整性测试。
例如,管道材料可进入产品流中而被过滤膜吸收,从而影响其润湿性质,导致完整性测试失败。
为了获取合理的完整性测试结果,应对过滤器的多孔结构完全润湿,因为完整性测试测量根据润穿过湿液层的气流而定。
滤膜的润湿可受到以下因素的影响:
聚合物膜本身:有些聚合体比其他更容易润湿,这取决于膜材料的关键表面张力。
孔径:孔径越小,就越难对孔润湿。
润湿液:有些润湿液可与聚合材料发生反应。
产品残留或污染物:产品残留或污染物能改变膜聚合物的亲水性,抵制润湿液或降低表面张力。
压力条件:应根据生产商的压力建议将膜完全润湿。
温度条件:温度影响润湿液的表面张力。
除了以上内容之外,还有一些影响完整性测试的工艺和使用因素没有在滤芯生产商的使用说明中。
7.7中的故障解决方法和7.7-1中的判断树可用于评估完整性测试失败。
附件D中提供了其他有关故障解决的信息。
附录D
完整性测试问题解决指南
在进行手动完整性测试或使用自动化的设备进行测试时会出现问题。
下表中的问题解决指南有利于进行失败调查。
重要的是要注意自动化的测试装置避免了人的主观性,也更加具有重现性。
在对手动完整性测试进行失败调查时,除了表D-1中内容之外还应考虑以下事项:
·对过滤器润湿不充分
·不适当的润湿介质(例如用溶剂来代替水)
·错误的过滤器孔径级别
表D-1 手动的完整性测试问题解决指南
(绿叶使用的都是自动设备,因此该表没有翻译)
表D-2列出了对由自动化仪器进行的完整性测试开展失败调查时需考虑的事项。
表D-2 自动化仪器的完整性测试问题解决指南。