教案新人教版七上1.5.1-乘方(1)
- 格式:doc
- 大小:84.50 KB
- 文档页数:4
七年级(人教版)集体备课教学设计:1.5.1《乘方(1)》一. 教材分析《乘方(1)》这一节的内容,主要让学生理解乘方的概念,掌握有理数的乘方运算法则。
通过学习乘方,学生能更好地理解数学中的指数运算,为以后学习更高级的数学知识打下基础。
教材通过丰富的例子,引导学生探究乘方的规律,让学生在实践中掌握乘方运算。
二. 学情分析七年级的学生已经掌握了有理数的乘法运算,但对乘方的概念和运算法则可能还比较陌生。
因此,在教学过程中,教师需要善于启发学生利用已有的知识经验来理解乘方,同时要注重培养学生的观察、思考、动手能力。
三. 教学目标1.让学生理解乘方的概念,掌握有理数的乘方运算法则。
2.培养学生观察、思考、动手的能力,提高学生解决实际问题的能力。
3.培养学生合作学习、积极探究的精神。
四. 教学重难点1.乘方的概念。
2.有理数的乘方运算法则。
3.运用乘方解决实际问题。
五. 教学方法1.启发式教学:通过提问、讨论等方式,引导学生主动探究乘方的规律。
2.实践性教学:让学生通过动手操作,加深对乘方概念和运算法则的理解。
3.案例教学:选取生活中的实际问题,让学生运用乘方知识解决。
六. 教学准备1.教案、PPT等教学资料。
2.练习题、黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过一个简单的例子,如“2的三次方等于多少?”引发学生对乘方的兴趣,然后简要介绍乘方的概念。
2.呈现(10分钟)教师利用PPT展示乘方的定义、运算法则等知识点,同时引导学生回顾有理数的乘法运算,从而自然地过渡到乘方运算。
3.操练(10分钟)教师设计一些练习题,让学生分组讨论、解答。
教师在这个过程中要注意引导学生运用已有的知识经验来理解乘方,并及时给予反馈、指导。
4.巩固(10分钟)教师继续设计一些练习题,让学生独立完成。
完成后,教师选取部分学生的答案进行讲解,巩固学生对乘方的理解和运用。
5.拓展(10分钟)教师引导学生思考:乘方在实际生活中有哪些应用?让学生举例说明,从而提高学生解决实际问题的能力。
人教版数学七年级上册1.5.1《乘方》教案1一. 教材分析《乘方》是人教版数学七年级上册第一章第五节的第一课时,本节课主要让学生掌握乘方的概念,理解乘方的意义,学会进行乘方的运算。
教材通过引入“幂”的概念,让学生理解乘方的意义,并通过例题和练习,使学生掌握乘方的运算方法。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法,对乘法运算有一定的理解。
但是,乘方作为乘法的推广,学生可能难以理解其本质。
因此,在教学过程中,需要通过具体例题和实际操作,让学生深入理解乘方的意义。
三. 教学目标1.理解乘方的概念,掌握乘方的运算方法。
2.能够运用乘方解决实际问题。
3.培养学生的逻辑思维能力。
四. 教学重难点1.乘方的概念。
2.乘方的运算方法。
五. 教学方法采用讲授法、例题解析法、小组讨论法、练习法等教学方法,通过生动有趣的例题和实际操作,引导学生理解乘方的概念,掌握乘方的运算方法。
六. 教学准备1.PPT课件。
2.练习题。
七. 教学过程1.导入(5分钟)通过复习有理数的乘法,引导学生思考:乘法可以表示为几个相同因数的乘积,那么,几个相同因数的乘积可以表示为什么呢?从而引入乘方的概念。
2.呈现(15分钟)PPT呈现乘方的定义和乘方的运算方法,让学生直观地了解乘方的意义。
通过例题解析,让学生学会进行乘方的运算。
例题1:计算2^3。
解析:2^3表示2乘以自己3次,即2×2×2=8。
例题2:计算3^4。
解析:3^4表示3乘以自己4次,即3×3×3×3=81。
3.操练(10分钟)让学生在课堂上进行乘方的运算练习,教师巡回指导,及时纠正学生的错误。
4.巩固(10分钟)让学生完成一些乘方的练习题,巩固所学知识。
5.拓展(10分钟)引导学生思考:乘方可以表示几个相同因数的乘积,那么,几个相同因数的除法可以表示为什么呢?让学生自己探索并得出答案。
6.小结(5分钟)对本节课的知识进行小结,强调乘方的概念和运算方法。
人教版七年级数学上册:1.5.1 《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,主要介绍有理数的乘方。
教材通过简单的实例让学生感受乘方的意义,理解乘方的运算规则,为后续学习指数幂、对数等概念打下基础。
本节课的内容在数学体系中起到承前启后的作用,既巩固了有理数的基本运算,又为高中阶段更深入的数学学习奠定基础。
二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。
但乘方作为一个新的概念,需要学生从新的角度去理解。
学生在学习乘方时,可能会对乘方的意义和运算规则产生困惑,因此需要通过实例和练习来帮助学生理解和掌握。
三. 教学目标1.让学生理解乘方的意义,掌握有理数的乘方运算规则。
2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
3.激发学生对数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.乘方的意义和运算规则。
2.乘方在实际问题中的应用。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过问题引导学生的思考,实例让学生理解乘方的意义,小组合作学习法培养学生的团队协作能力。
六. 教学准备1.教学PPT。
2.实例和练习题。
3.小组合作学习的相关材料。
七. 教学过程1.导入(5分钟)通过一个实际问题引出乘方的概念:某商品打八折出售,即按原价的80%出售,问原价为100元的商品现价是多少?让学生思考如何用数学方法表示这个问题。
2.呈现(15分钟)讲解乘方的意义和运算规则,通过PPT展示实例,让学生理解乘方的概念。
例如,2的3次方表示2乘以自己3次,即2×2×2=8。
3.操练(15分钟)让学生进行乘方运算的练习,教师巡回指导,解答学生的疑问。
可以设置一些有趣的题目,让学生在练习中感受乘方的魅力。
4.巩固(10分钟)通过一些实际问题,让学生运用乘方解决实际问题。
例如,一个班级有30人,每次活动参加的人数是上一次的90%,问第三次活动参加的人数是多少?5.拓展(5分钟)讲解乘方在实际生活中的应用,如科学计算、金融理财等。
人教版七年级数学上册:1.5.1 《乘方》教学设计一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,本节课主要让学生了解乘方的概念,掌握有理数的乘方规则,并能够运用乘方解决一些实际问题。
教材通过引入“幂”的概念,让学生理解乘方的意义,并通过大量的例子让学生掌握有理数的乘方规则。
二. 学情分析七年级的学生已经掌握了有理数的乘法,对数的概念有一定的了解,这为学习乘方打下了基础。
但学生在学习乘方时,可能会对乘方的概念和乘方的规则感到困惑,因此需要通过大量的例子让学生理解和掌握。
三. 教学目标1.了解乘方的概念,理解乘方的意义。
2.掌握有理数的乘方规则,能够运用乘方解决一些实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.乘方的概念。
2.有理数的乘方规则。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,通过引导学生思考、讨论、实践,让学生主动探究乘方的意义和规则。
六. 教学准备1.PPT课件。
2.教学案例和习题。
3.小组合作学习的小组划分和任务分配。
七. 教学过程1.导入(5分钟)通过PPT展示一个实际问题:某商品打八折后的价格是120元,问原价是多少?让学生思考如何解决这个问题,从而引出乘方的概念。
2.呈现(15分钟)PPT展示乘方的定义和有理数的乘方规则,通过讲解和示例让学生理解乘方的意义和掌握乘方的规则。
3.操练(15分钟)让学生进行一些乘方的练习,巩固乘方的概念和规则。
教师可以通过PPT展示练习题,让学生在课堂上完成,并对学生的答案进行讲解和指导。
4.巩固(10分钟)通过PPT展示一些巩固乘方知识的习题,让学生独立完成,教师对学生的答案进行讲解和指导。
5.拓展(10分钟)让学生运用乘方解决一些实际问题,如计算利息、折扣等。
教师可以通过PPT 展示实际问题,让学生在课堂上解决,并对学生的答案进行讲解和指导。
6.小结(5分钟)让学生总结本节课所学的内容,教师对学生的总结进行点评和补充。
人教版七年级数学上册:1.5.1《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册的一个重要内容,主要介绍了乘方的概念、性质和运算法则。
通过学习乘方,学生能够理解和掌握乘方的基本概念,了解乘方的意义和作用,以及运用乘方解决实际问题。
二. 学情分析学生在学习乘方之前,已经掌握了有理数的乘法、除法和加减法等基础知识,具备了一定的数学思维能力。
但部分学生可能对乘方的概念和性质理解不够深入,需要通过实例和练习来进一步巩固。
三. 教学目标1.理解乘方的概念,掌握乘方的性质和运算法则。
2.能够运用乘方解决实际问题,提高解决问题的能力。
3.培养学生的数学思维能力和逻辑推理能力。
四. 教学重难点1.乘方的概念和性质。
2.乘方的运算法则。
3.运用乘方解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究乘方的概念和性质。
2.运用实例和练习,让学生通过实际操作来理解和掌握乘方的运算法则。
3.采用小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学PPT或黑板。
2.教学素材和练习题。
3.学生分组名单。
七. 教学过程1.导入(5分钟)利用PPT或黑板,展示一些生活中的实际问题,如温度、速度等,让学生感受到乘方的意义和作用。
引导学生思考:这些问题能否用乘法来解决?如何用乘法来解决?2.呈现(10分钟)介绍乘方的概念,讲解乘方的意义和作用。
通过实例和练习,让学生理解和掌握乘方的运算法则。
如:2^3 = 2 × 2 × 2 = 83.操练(10分钟)让学生进行乘方运算练习,巩固所学知识。
可以设置一些难度不同的练习题,让学生根据自己的实际情况选择适合自己的题目。
4.巩固(10分钟)通过小组合作学习,让学生运用乘方解决实际问题。
可以设置一些开放性问题,让学生分组讨论和解答。
5.拓展(10分钟)引导学生思考:乘方在实际生活中有哪些应用?如何运用乘方解决更复杂的问题?可以让学生举例说明,并进行讲解。
新人教版七年级数学上册1.5.1《乘方》教学设计1一. 教材分析新人教版七年级数学上册1.5.1《乘方》是学生在掌握了有理数的乘法运算之后,进一步引导学生探索有理数乘方的运算方法。
通过学习乘方,学生能够理解乘方的概念,掌握乘方的运算规则,并能够运用乘方解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,掌握了有理数的乘法运算。
但是,对于乘方的概念和运算规则,学生可能较为抽象,需要通过具体的例子和实际操作来理解和掌握。
三. 教学目标1.理解乘方的概念,掌握乘方的运算规则。
2.能够运用乘方解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.乘方的概念的理解。
2.乘方运算规则的掌握。
五. 教学方法1.讲授法:通过讲解乘方的概念和运算规则,引导学生理解和掌握。
2.案例分析法:通过具体的例子,让学生动手操作,加深对乘方运算的理解。
3.问题解决法:设计一些实际问题,让学生运用乘方进行解决,培养学生的应用能力。
六. 教学准备1.PPT课件:制作相关的PPT课件,展示乘方的概念和运算规则。
2.练习题:准备一些相关的练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用乘法来解决。
例如,计算100的平方根,学生可能会想到10的平方等于100,从而引出乘方的概念。
2.呈现(15分钟)讲解乘方的概念,乘方表示的是一个数自乘的次数。
例如,2的3次方表示2自乘3次,即2×2×2=8。
同时,展示乘方的运算规则,例如,a的m次方乘以a的n次方等于a的m+n次方。
3.操练(15分钟)让学生动手计算一些乘方的例子,例如,计算2的3次方、3的4次方等。
同时,让学生观察和总结乘方的运算规则。
4.巩固(10分钟)让学生做一些练习题,巩固对乘方的理解和掌握。
可以设置一些选择题和填空题,让学生判断和填充。
5.拓展(10分钟)讲解乘方在实际问题中的应用,例如,科学计算中的幂次方运算,物理中的能量公式等。
1.5.1乘方(一)教学目标:1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。
重点:正确理解乘方的意义,能利用乘方的运算法则进行有理数的乘方运算。
重点:会进行有理数的乘方运算,弄清(-a )n 与-a n 的区别教学过程:一、创设情境,讲授新课问题1:如果正方形的边长为a ,那么正方形的面积是多少?问题2:如果正方体的棱长为a ,那么正方体的体积是多少?问题3:假设一张纸的厚度为0.09mm ,如果它的连续对折始终是可以的,对折多少次后得到的厚度将超过你的身高?你能算吗?学生回答:正方形的面积为a ×a ,正方体的体积为a ×a ×a ,1次对折后,厚度为0.09×2mm ,2次对折后,厚度为0.09×2×2mm ,14次对折后,厚度为0.09×2×2×2×2×…×2mm ≈1.47(m )为了表示简便,我们把2×2×2×2×…×2记为214教师归纳:(1)a ×a 可记为a2(2)a ×a ×a 可记为a3 (3)2×2×2×2×2×2可记为25 (4)a ×a ×a ×a ×…×a (n 个a )可记为an乘方的概念(1)乘方的意义求n 个相同的因数a 的乘积的运算叫做乘方,乘方的结果叫做幂,a 叫做底数,n 叫做指数。
(2)乘方的读法把an 读作a 的n 次方或者a 的n 次幂其中一个数可以看作这个数本身的一次方。
讲解课本例1教师:请同学们计算下列各题:(12 )5,(35 )5,(-23 )4,(355 )指数 a n 底数 幂一个学生区别(35 )5和(355 )有什么不同。
人教版七年级数学上册1.5.1《有理数的乘方》教学设计一. 教材分析《有理数的乘方》是人教版七年级数学上册1.5.1的内容,主要介绍了有理数的乘方概念、乘方法则和乘方运算。
本节内容是在学生掌握了有理数的概念和运算基础上进行学习的,对于学生来说,乘方是一个比较抽象的概念,需要通过实例和练习来理解和掌握。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的概念和运算规则有一定的了解。
但是,对于乘方这一概念,学生可能比较难以理解,需要通过具体的例子和实际操作来帮助学生理解和掌握。
三. 教学目标1.理解有理数的乘方概念,掌握有理数的乘方法则。
2.能够进行有理数的乘方运算,并解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.有理数的乘方概念的理解。
2.乘方法则的掌握和运用。
3.有理数乘方运算的熟练掌握。
五. 教学方法1.实例教学:通过具体的例子来引导学生理解和掌握乘方概念和乘方法则。
2.问题解决法:通过解决实际问题,让学生运用乘方知识,巩固所学内容。
3.小组合作学习:学生分组讨论和解决问题,培养学生的合作意识和解决问题的能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,内容包括乘方概念、乘方法则和乘方运算的实例和练习题。
2.练习题:准备一些有关有理数乘方的练习题,用于巩固和拓展学生的知识。
3.教学素材:准备一些与乘方相关的实际问题,用于引导学生运用乘方知识解决实际问题。
七. 教学过程1.导入(5分钟)教师通过引入一个实际问题,如“一个物体每次翻倍,翻倍3次后的数量是多少?”来引导学生思考和引入乘方概念。
2.呈现(15分钟)教师通过PPT呈现乘方概念和乘方法则的定义和规则,并用具体的例子来解释和展示乘方的运算过程。
同时,教师引导学生观察和总结乘方的规律。
3.操练(10分钟)教师给出一些有理数的乘方运算题目,让学生独立完成,并及时给予反馈和解释错误的答案。
4.巩固(10分钟)教师学生进行小组合作学习,让学生分组讨论和解决一些与乘方相关的实际问题。
人教版七年级数学上册:1.5.1《乘方》教学设计1一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一部分内容。
本节内容是在学生已经掌握了有理数的乘法、平方根的概念以及性质的基础上进行的。
通过学习乘方,使学生能够理解乘方的概念,掌握乘方的运算法则,并能够运用乘方解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的乘法和平方根的概念有一定的了解。
但是,对于乘方的概念和运算法则可能还比较陌生,需要通过具体例子和实际操作来逐步理解和掌握。
三. 教学目标1.知识与技能目标:学生能够理解乘方的概念,掌握乘方的运算法则,并能够运用乘方解决实际问题。
2.过程与方法目标:通过具体例子和实际操作,学生能够逐步理解和掌握乘方的概念和运算法则。
3.情感态度与价值观目标:学生能够积极参与课堂活动,培养对数学的兴趣和自信心。
四. 教学重难点1.教学重点:乘方的概念,乘方的运算法则。
2.教学难点:乘方的运算法则的应用。
五. 教学方法1.情境教学法:通过具体例子和实际操作,引导学生理解和掌握乘方的概念和运算法则。
2.启发式教学法:通过提问和讨论,激发学生的思维,培养学生的解决问题的能力。
六. 教学准备1.教学PPT:制作教学PPT,包括具体的例子和实际操作的演示。
2.练习题:准备一些练习题,用于巩固学生的理解和掌握。
七. 教学过程通过一个实际问题,引出乘方的概念。
例如,一个正方形的边长为2,求它的面积。
学生可以通过计算得出答案,进而引出乘方的概念。
2.呈现(10分钟)通过PPT展示乘方的定义和运算法则,结合具体的例子进行解释和演示。
让学生直观地理解乘方的概念和运算法则。
3.操练(10分钟)让学生进行一些乘方的运算练习,巩固对乘方概念和运算法则的理解。
可以设置一些不同难度的题目,让学生根据自己的能力选择练习。
4.巩固(5分钟)通过一些实际问题,让学生运用乘方进行解决。
例如,计算一些数的乘方,或者解决一些与乘方相关的实际问题。
人教版七年级数学上册:1.5.1《乘方》教学设计一. 教材分析人教版七年级数学上册1.5.1《乘方》是学生在学习了有理数乘法和算术平方根的基础上,进一步探究乘方的概念及运算法则的一节课。
本节课的内容在数学知识的体系中起着承前启后的作用,既是对前面所学内容的延伸,又是后面学习指数运算、对数等知识的基础。
教材通过丰富的实例,引导学生探究乘方的规律,让学生在自主学习的过程中体会数学的归纳与演绎思想。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和数学基础,对于乘法和算术平方根的概念有一定的了解。
但是,对于乘方的概念和运算法则,学生可能还比较陌生。
因此,在教学过程中,需要结合学生的实际情况,用生动形象的实例引导学生理解乘方的本质,逐步掌握乘方的运算法则。
三. 教学目标1.知识与技能:使学生理解乘方的概念,掌握乘方的运算法则,能正确进行乘方运算。
2.过程与方法:通过观察、分析、归纳等方法,引导学生探究乘方的规律,培养学生的逻辑思维能力和归纳演绎能力。
3.情感态度与价值观:让学生在自主学习的过程中,体验数学的乐趣,培养对数学的兴趣,增强自信心。
四. 教学重难点1.教学重点:乘方的概念,乘方的运算法则。
2.教学难点:乘方运算的规律,乘方在实际问题中的应用。
五. 教学方法采用情境教学法、问题教学法和小组合作学习法。
情境教学法可以帮助学生形象地理解乘方的概念;问题教学法可以激发学生的思考,引导学生自主探究乘方的规律;小组合作学习法可以培养学生的团队合作精神,提高学生的交流表达能力。
六. 教学准备1.教师准备:教材、PPT、黑板、粉笔等教学工具。
2.学生准备:预习教材,了解乘方的基本概念。
七. 教学过程1.导入(5分钟)利用PPT展示一个实际问题:计算3的4次方。
让学生尝试解答,引导学生思考乘方是什么。
2.呈现(10分钟)讲解乘方的概念,用PPT展示乘方的定义和运算法则。
让学生跟随教师一起,用归纳法探究乘方的规律。
1.5.1 乘方(一)
[教学目标]
1.有理数乘方的相关概念;
2.乘方的意义
3.乘方的有关运算
4.乘方的有关性质;
[教学重点与难点]
1.教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算;2.教学难点:准确建立底数、指数和幂三个概念,并能求幂的运算;
3.学生的疑点:乘方和幂的区别以及(-a)n与-a n的区别.
[教学过程设计]
一、知识测评
1、(-2)×(-2)×(-2)= ;
2、(-1)×(-2)×(-3)×(-4)×5= ;
3、(-1)×(-1)×(-1)×(-1)×(-1)= 。
二、新课
(一)新课导入
提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)4个a相乘呢?5个a相乘呢?100个a相乘呢?为了书写简便,引进了乘方
(二)乘方的意义
一般地,n个相同的因数a相乘,即a·a·…·a,记作a n,读作a的n次方.
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n中,a叫做底数,n叫做指数,当a n看作a的n次方的结果时,也可读作a的n次幂.说明:(1)举例94说明概念及读法;
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写;
(3)因为a n 就是n 个a 相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;
(4)乘方是一种运算,幂是乘方运算的结果.
对应练习
一、把下列乘法式子写成乘方的形式:
1、1×1×1×1×1×1×1= ;
2、3×3×3×3×3= ;
3、(-3)×(-3)×(-3)×(-3)= ;
4、 = ;
二、把下列乘方写成乘法的形式:
1、 = ;
2、 = ;
3、 = (三).乘方的有关运算
例题讲解
例1 (1)(-4)3; (2)(-2)4; (3)-24.
强调:(1)计算时仍然是要先确定符号,再确定绝对值;
(2)注意(-2)4与-24的区别.
根据有理数的乘法法则得出有理数乘方的符号规律:
乘方的有关性质
负数的奇次幂是负数,负数的偶次幂是正数;
正数的任何次幂都是正数,0的任何次幂都是0.
例2 计算:
(1)(32)3; (2)(-32)3; (3)(-3
2)4; (4)-3
24
; (5)-22×(-3)2; (6)-22+(-3)2. 例3 教材P50例2.
(四)课堂练习
1.教材P51练习1,2;
65656565⨯⨯⨯()3
9.0-479⎪⎭⎫ ⎝⎛()2b a -
2.补充练习
(1)在(-2)6中,指数为 ,底数为 .
(2)在-26中,指数为 ,底数为 .
(3)若a 2=16,则a= .
(4)平方等于本身的数为 ,立方等于本身的数为 .
(5)计算(-151)×46
1= . (6)在(-2)5,(-3)5,(-21)5,(-3
1)5中,最大的数是 . (7)下列说法正确的是( )
A .平方得9的数是3
B .平方得-9的数是-3
C .一个数的平方只能是正数
D .一个数的平方不能是负数
(8)下列运算正确的是( )
A .-24=16
B .-(-2)2=-4
C .(-31)2=-91
D .(-21)2=-4
1 (9)下列各组数中,不相等的是( )
A .(-3)2与-32
B .(-3)2与32
C .(-2)3与-23
D .33
22--与
(10)下列各式计算不正确的是( )
A .(-1)2003=-1
B .-12002=1
C .(-1)2n =1(n 为正整数)
D .(-1)2n+1=-1(n 为正整数)
(11)计算(-2)2002+(-2)2003所得的结果为( )
A .-2
B .-22002
C .22002
D .-22003
(12)下列各数表示正数的是( )
A .1+a
B .(a -1)2
C .-(-a )
D .
a 1 (五)小结
(1)引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数、和幂三个基本概念.
(2)教师扩展:首先,有理数的乘方就是几个相同因数积的运算,可以运用有
理数乘方法则进行符号的确定和幂的求值.乘方的含义:①表示一种运算;②表示运算的结果.乘方的读法:①当a n 表示运算时,读作a 的n 次方;②当a n 表示运算结果时,读作a 的n 次幂.乘方的符号法则:①正数的任何次幂都是正数;②零的任何次幂都是零;③负数的偶次幂是正数,奇次幂是负数.注意(-a )n
与-a n 及(a b )n 与a b n
的区别和联系. (六)课后作业
1.教材P56中1,2.
2.补充
(1)试一试从1开始你能迅速连续说出多少正整数的平方?
(2)计算: ①(25)×(-25)×(-25)2,-(-2
5)2,-252; ②(-1)2003,3×22,-42×(-4)2,-23÷(-2)3;
③(-1)n -1; ④31×24,423
1)( ; ⑤(-103)÷25,(-10÷25)3;
⑥(-12÷4)2,(-12)÷42;
⑦-32×(-31)2,[-3×(-3
1)2] . (3)填空:
①如果a <0,那么a 7 0;②如果a 5>0,那么a 0;
③如果a <0,那么a 6 0;④如果a 4>0,且-a >0,那么a 5 0. (。