PCB走线策略
- 格式:doc
- 大小:46.00 KB
- 文档页数:8
PCB布线的基本规则与技巧
敬迎:翼彳1.一般规则
1.1PCB板上预划分数字、模拟、DAA信号布线区域。
1.2数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。
1.3高速数字信号走线尽量短。
1.4敏感模拟信号走线尽量短。
1.5合理分配电源和地。
1.6DGND、AGND、实地分开。
1.7电源及临界信号走线使用宽线。
1.8数字电路放置於并行总线/串行DTE接口附近,DAA电路放置於电话线接口附近。
2.元器件放置
2.1在系统电路原理图中:
a)划分数字、模拟、DAA电路及其相关电路;
b)在各个电路中划分数字、模拟、混合数字/模拟元器件;
c)注意各IC芯片电源和信号引脚的定位。
2.2初步划分数字、模拟、DAA电路在PCB板上的布线区域(一般比例2/1/1),数字、模拟元器件及其相应走线尽量远离并限定在各自的布线区域内。
Note:当DAA电路占较大比重时,会有较多控制/状态信号走线穿越其布线区域,可根据当地规则限定做调整,如元器件间距、高压抑制、电流限制等。
2.3初步划分完毕彳爰,从Connector和Jack开始放置元器件:
a)Connector和Jack周围留出插件的位置;
b)元器件周围留出电源和地走线的空间;
c)Socket周围留出相应插件的位置。
2.4首先放置混合型元器件(如Modem器件、A/D、D/A转换芯片等):
a)确定元器件放置方向,尽量使数字信号及模拟信号引脚朝向各自布线区域;。
PCB Layout中的走線策略壞將直接影響到整個系統的性能,大多數高速的設計理論也要最終經過Layout得以實現並驗證,由此可見,佈線在些情況,分析其合理性,並給出一些比較優化的走線策略。
主要從直角走線,差分走線,蛇形線等三個方面來闡述。
1.直角走線線好壞的標準之一,那麽直角走線究竟會對信號傳輸産生多大的影響呢?從原理上說,直角走線會使傳輸線的線寬線都可能會造成阻抗變化的情況。
主要體現在三個方面:一是拐角可以等效爲傳輸線上的容性負載,減緩上升時間;二是阻抗不連續會造成信號的反射傳輸線的直角帶來的寄生電容可以由下面這個經驗公式來計算:C=61W(Er)[size=1]1/2[/size]/Z0(單位:inch),εr指介質的介電常數,Z0就是傳輸線的特徵阻抗。
舉個例子,對於一個4Mils的50歐姆傳輸線(ε算由此引起的上升時間變化量:T10-90%=2.2*C*Z0/2 = 2.2*0.0101*50/2 = 0.556ps通過計算可以看出,直角走線帶來的電容效應是極其微小的。
反射現象,我們可以根據傳輸線章節中提到的阻抗計算公式來算出線寬增加後的等效阻抗,然後根據經驗公式計算反2線長的時間內傳輸線阻抗變化到最小,再經過W/2時間又恢復到正常的阻抗,整個發生阻抗變化的時間極短,往可以忽略的。
,産生EMI,這也成爲許多人認爲不能直角走線的理由之一。
然而很多實際測試的結果顯示,直角走線並不會比直精確性,但至少說明瞭一個問題,直角走線的輻射已經小於儀器本身的測量誤差。
用中,其産生的任何諸如電容,反射,EMI等效應在TDR測試中幾乎體現不出來,高速PCB設計工程師的重點還直角線,注意細節是每個優秀工程師必備的基本素質,而且,隨著數位電路的飛速發展,PCB工程師處理的信號頻可能成爲高速問題的重點物件。
2.差分走線廣泛,電路中最關鍵的信號往往都要採用差分結構設計,什麽另它這麽倍受青睞呢?在PCB設計中又如何能保證其動端發送兩個等值、反相的信號,接收端通過比較這兩個電壓的差值來判斷邏輯狀態“0”還是“1”。
线路板走线:导线应尽可能短;
当印制两面板时,两面的导线应避免平行(减少寄生耦合)
当作为电路的输入和输出导线时应尽量避免平行,以免发生回授在这些导线之间最好加地线当布线密度较低时信号线与信号线之间应尽量加大间距,减小线间互感
印制导线的公共地线时应尽可能粗,有条件的应在2~3mm以上,该条在微处理器布线方面尤为重要,地线过细时由于流过的电流变化造成地电位变动,电平不稳会导致噪声容限劣化甚至反复重启
印刷公共地线时应尽量布置在板子边缘,有条件的布置地平面,增加屏蔽效果,在大多数情况下地平面的屏蔽效果要优于地线,并可有效减小分布电容
尽量用地平面代替地线
如果地平面被信号线分割,尽量使信号线与地平面垂直
高耗能原件应尽量远离敏感原件(高耗能原件附近地电位不稳)
电源层和地层均可视为屏蔽层在布线时应尽量利用来起到屏蔽效果
地平面布置在底层方便工程师解决问题(评估板),地平面布置在顶层可降低电磁干扰(成品)地线尤其忌环路
如果不能采用地平面应该采用星形连接
数字信号不应经过模拟器件
高速电流不应流经低速器件
模拟地和数字地分开,可采用分割的地平面。
PCB板布线技巧1.合理规划布局:在开始布线之前,应该先对PCB板进行合理规划布局。
要根据电路的功能和信号传输的需求,将元器件和功能块合理地部署在PCB板上。
在布置元器件时,应该注意使信号路径尽可能的短,并保持良好的信号完整性。
2.地线和电源线设计:地线和电源线是电路中非常重要的信号线。
在布线时,要保证地线和电源线的宽度足够大以承受电流负载,并且要尽量减小地线和电源线的阻抗。
此外,还需要注意地线和电源线之间的间距,以避免相互干扰。
3.运用差分信号线:对于高速传输信号线,可以采用差分信号线布线。
差分信号线可以提高信号的抗干扰能力,减小信号线对周围环境的敏感度。
在布线时,应保持差分信号线的长度相等,并保持一定的间距,以避免互相干扰。
4.控制信号和高频信号的布线:对于控制信号和高频信号,布线时需要格外注意。
控制信号线应尽量和地线分开,以减小相互干扰的可能性。
对于高频信号线,应尽量避免走直线,而是采用更曲折的布线方式,以减小信号的辐射和串扰。
5.设计适当的信号地方向:在布线时,需要合理地选择信号的走向。
对于高频信号和运放信号,应尽量避免穿越整个板子。
信号线的走向应避免和其他高频信号和电源线相交,以减小相互干扰的可能性。
6.控制阻抗匹配:在布线中,要注意保持信号线的阻抗匹配。
如果信号线的阻抗不匹配,会导致信号的反射和损耗,从而影响信号的传输和质量。
通过控制信号线的宽度和间距,可以实现阻抗的匹配。
7.确保信号完整性:在布线时,需要注意信号的完整性。
可以通过增加电容和电感等元器件来实现信号的滤波和隔离,以减小干扰和噪声对信号的影响。
此外,还可以采用差分对地布线来降低信号的串扰。
8.注意电流回路:在布线时,需要特别关注电流回路的设计。
电流回路的布线需要注意回路的完整性,避免出现回路断开或者电流集中在其中一小段线路上的情况,从而引起电压降低和电流过载的问题。
以上就是PCB板布线的一些技巧。
在实际设计过程中,还需要根据具体的电路设计要求和特性进行合理的布线设计,从而实现电路性能和可靠性的最优化。
PCB板布局原则布线技巧1.PCB板布局原则:-分区布局:将电路板分成不同的区域,将功能相似的电路组件放在同一区域内,有利于信号的传输和维护。
比如,将稳压电路、放大电路、数字电路等放在不同的区域内。
-尽量减少线路长度:线路长度越长,电阻和电感越大,会引入更多的信号损耗和噪声,影响电路的性能。
因此,尽量把线路缩短,减少线路长度。
-避免线路交叉:线路交叉会引入互相干扰的可能性,产生串扰和相互耦合。
因此,尽量避免线路的交叉,使布局更加清晰。
-电源和地线布局:电源和地线是电路中非常重要的信号传输线路,应该尽量压缩在一起,减小回路面积,从而降低电磁干扰的发生。
-高频和低频电路分离:将高频电路和低频电路分开布局,避免高频电路对低频电路的干扰。
2.PCB板布线技巧:-网格布线:将布线分成网格形式,每个网格中只允许一条线路通过,可以提高布线的整齐度和美观度。
-使用规则层:在PCB设计软件中,可以使用规则层进行布线规划,指定线路的宽度、间距等参数,保证布线的一致性和可靠性。
-使用层次布线:将线路分成不同的层次进行布线,可以减少线路的交叉,降低噪声的产生。
-注意差分信号的布线:对于差分信号线路,保持两条线路的长度和布线路径尽量相同,可以减小差分信号之间的差别,提高信号完整性。
-避免直角和锐角:直角和锐角容易引起信号反射和串扰,应尽量避免使用直角和锐角的线路走向,采用圆滑的线路路径。
总结:PCB板布局和布线是PCB设计中不可忽视的环节,合理的布局和布线可以提高电路的性能和可靠性。
通过遵循一些原则,如分区布局、减少线路长度、避免线路交叉等,并结合一些布线技巧,如网格布线、使用规则层、使用层次布线等,可以实现高质量的布局和布线。
PCB布线的技巧及注意事项布线技巧:1.确定电路结构:在布线之前,需要先确定电路结构。
将电路分成模拟、数字和电源部分,然后分别布线。
这样可以减少干扰和交叉耦合。
2.分区布线:将电路分成不同的区域进行布线,每个区域都有自己的电源和地线。
这可以减少干扰和噪声,提高信号完整性。
3.高频和低频信号分离:将高频和低频信号分开布线,避免相互干扰。
可以通过设立地板隔离和电源隔离来降低电磁干扰。
4.绕规则:维持布线规则,如保持电流回路的闭合、尽量避免导线交叉、保持电线夹角90度等。
这样可以减少丢失信号和干扰。
5.简化布线:简化布线路径,尽量缩短导线长度。
短导线可以减少信号传输延迟,并提高电路稳定性。
6.差分线布线:对于高速信号和差分信号,应该采用差分线布线。
差分线布线可以减少信号的传输损耗和干扰。
7.用地平面:在PCB设计中,应该用地平面层绕过整个电路板。
地平面可以提供一个低阻抗回路,减少对地回路电流的干扰。
8.参考层对称布线:如果PCB板有多层,应该选择参考层对称布线。
参考层对称布线可以减少干扰,并提高信号完整性。
注意事项:1.信号/电源分离:要避免信号线与电源线共享同一层,以减少互相干扰。
2.减小射频干扰:布线时要特别注意射频信号传输的地方,采取屏蔽措施,如避免长线路、使用高频宽接地等。
3.避免过长接口线:如果接口线过长,则信号传输时间会增加,可能导致原始信号失真。
4.避免过短导线:过短的导线也可能引发一些问题,如噪声、串扰等。
通常导线长度至少应该为信号上升时间的三分之一5.接地技巧:为了减少地回路的电流噪声,应该尽量缩短接地回路路径,并通过增加地线来提高接地效果。
6.隔离高压部分:对于高压电路,应该采取隔离措施,避免对其他电路产生干扰和损坏。
7.注重信号完整性:对于高速和差分信号,应该特别注重信号完整性。
可以采用阻抗匹配和差分线布线等技术来提高信号传输的稳定性。
总结起来,PCB布线需要遵循一些基本原则,如简化布线、分区布线、差分线布线等,同时需要注意电源和信号的分离、射频干扰的减小等问题。
PCB布线与布局优化技巧在电子设备的设计中,PCB(Printed Circuit Board,印刷电路板)的布线与布局对于整个电路性能和稳定性起着至关重要的作用。
优秀的PCB布线与布局可以提高电路的抗干扰能力、信号完整性和性能稳定性。
下面就介绍一些PCB布线与布局优化技巧,帮助设计师提高产品质量和性能。
1. 分割电源平面:在PCB设计中,将电源平面分割成多个部分可以减少信号干扰及电磁辐射。
分割电源平面时,需要注意将模拟和数字电源分开,避免互相干扰。
通过合理设置分割线路,可以降低信号交叉干扰,提高信噪比。
2. 最短路径布线:尽量保持布线路径短,减少信号传输的延迟和损耗。
在选取布线路径时,应避免走线交叉、绕线等现象,以确保信号传输的稳定性和可靠性。
布线时还需考虑信号走线的方向,避免信号环路和共模噪声的产生。
3. 差分信号布线:对于高速信号线,尤其是差分信号线,需要特别注意其布线。
差分信号线的长度要尽量保持一致,以减少信号失真和串扰。
此外,差分信号线应在布线过程中尽量保持相邻,以减小信号传输的时间差。
4. 阻抗匹配:在PCB设计中,特别是在高频电路中,阻抗匹配是非常重要的。
正确设计差分对地、微带线、板厚等参数,以保证信号传输的稳定性和准确性。
利用阻抗匹配技术可以尽量减小信号的反射和衰减,提高信号完整性。
5. 地线布线:地线布线是PCB设计中的关键环节。
要尽量减小地线回路面积,避免干扰信号传输。
将地线设置为宽带,减小地线阻抗,提高地线的导电性。
另外,地线布线还要尽量与信号走线相互垂直,避免共模干扰。
6. 噪声隔离:在PCB布局设计中,要将噪声源与敏感信号源隔离开来,以减少噪声对信号的影响。
在设计布局时,可以使用屏蔽罩、滤波器等措施来隔离噪声源,确保信号传输的稳定性和准确性。
7. 确保热量散发:在PCB布局设计中,要考虑电路元件的散热问题。
合理安排元件的位置,保证元件之间的通风通道畅通,以便排出热量。
在布局时应注意避免高功率元件集中布局,以减小热量聚集的风险。
PCB布局布线技巧及原则1. 引言PCB(Printed Circuit Board)布局布线是电子产品设计中至关重要的一步。
良好的布局布线能够确保电路的可靠性、性能和EMI (Electromagnetic Interference)抗干扰能力。
本文将介绍一些常见的PCB布局布线技巧及原则,帮助读者更好地进行电路设计和布线。
2. PCB布局技巧2.1 分区布局在设计复杂的电路板时,将电路板分为几个功能区域进行布局是一个很好的策略。
例如,将微处理器、模拟电路和电源电路分开布局。
这可以降低信号干扰,并更好地管理电源分配和地平面。
2.2 复用层对于多层PCB设计,可以使用复用层的技术来提高布局效率。
复用层是指多个分区共享同一个地平面或电源平面。
这样做可以减少电路板的层数,提高信号完整性和EMI性能。
2.3 阻抗控制在高速设计中,阻抗控制是非常重要的。
通过合理设计走线宽度、间距和层间距,可以实现所需的阻抗匹配。
使用阻抗控制工具进行模拟和仿真分析,以确保信号完整性。
2.4 时钟信号布局时钟信号在高速电子系统中非常关键。
为了降低时钟抖动和噪声,应优先布置时钟信号线。
时钟信号线应尽量短、直接,并与其他信号线保持一定的距离以减少干扰。
2.5 地平面和电源分布良好的地平面和电源分布可以大大改善电路性能和抗干扰能力。
地平面应尽量连续、整齐,并尽可能地覆盖整个PCB区域。
电源分布应合理,避免共享电流,以减少电源波动。
3. PCB布线原则3.1 追求最短和最直接的路径布线时应尽量追求最短和最直接的路径,以降低传输延迟和信号损失。
避免走线过长或弯曲,特别是对于高速信号和时钟信号。
3.2 避免平行和交叉在布线过程中,应尽量避免平行和交叉走线。
平行走线容易引起串扰干扰,而交叉走线则易引起交互耦合。
合理规划走线,尽量平行走线和交叉垂直走线。
3.3 差分信号布线对于高速差分信号,应采用差分布线技术。
差分信号的两条传输线上的信号互为补码,可以大大减小对外部干扰的敏感度。
工艺方法——PCB布局走线最优法则一、布线有限次序要求1、关键信号线优先电源、摸拟小信号、高速信号、时钟信号和同步信号等关键信号优先。
2、布线密度优先原则从单板上连接关系最复杂的器件着手布线。
从单板上连线最密集的区域开始布线。
3、关键信号处理注意事项尽量为时钟信号、高频信号、敏感信号等关键信号提供专门的布线层,并保证其最小的回路面积。
必要时应采取屏蔽和加大安全间距等方法。
保证信号质量。
4、阻抗控制有阻抗控制要求的网络应布置在阻抗控制层上,须避免其信号跨分割。
二、布线串扰控制1、3W原则释义线与线之间的距离保持3倍线宽。
是为了减少线间串扰,应保证线间距足够大,如果线中心距不少于3倍线宽时,则可保持70%的线间电场不互相干扰,称为3W规则。
2、串扰控制串扰(Cross Talk)是指PCB上不同网络之间因较长的平行布线引起的相互干扰,主要是由于平行线间的分布电容和分布电感的作用。
克服串扰的主要措施是:加大平行布线的间距,遵循3W规则;在平行线间插入接地的隔离线;减小布线层与地平面的距离。
三、布线的一般规则要求1、相邻平面走线方向成正交结构避免将不同的信号线在相邻层走成同一方向,以减少不必要的层间窜扰;当由于板结构限制(如某些背板)难以避免出现该情况,特别是信号速率较高时,应考虑用地平面隔离各布线层,用地信号线隔离各信号线。
2、小的分立器件走线须对称间距比较密的SMT焊盘引线应从焊盘外部连接,不允许在焊盘中间直接连接。
3、环路最小规则信号线与其回路构成的环面积要尽可能小,环面积越小,对外的辐射越少,接收外界的干扰也越小。
4、不出现STUB走线不允许出现STUB。
5、同一网络布线宽度一致同一网络的布线宽度应保持一致,线宽的变化会造成线路特性阻抗的不均匀,当传输的速度较高时会产生反射。
在某些条件下,如接插件引出线,BGA封装的引出线类似的结构时,因间距过小可能无法避免线宽的变化,应该尽量减少中间不一致部分的有效长度。
PCB板布局原则布线技巧一、布局原则:1.功能分区:将电路按照其功能划分为若干区域,不同功能的电路相互隔离,减少相互干扰。
2.信号流向:在布局过程中应保持信号流向规则和简洁,避免交叉干扰。
3.重要元件位置:将较重要的元件、信号线和电源线放置在核心区域,以提高系统的可靠性和抗干扰能力。
4.散热考虑:将产热较大的元件、散热器等布局在较为开阔的地方,利于散热,避免过热导致不正常工作。
5.地线布局:地线的布局和连通应该注意短、宽、粗、低阻、尽可能铺满PCB板的底层,减少环路面积,避免回流信号干扰。
二、布线技巧:1.差分信号布线:对于高速传输的差分信号(如USB、HDMI等),应采用相对的布线方式,尽量保持两条信号线的长度、路径和靠近程度等因素相等。
2.信号线长度控制:对于高速信号线,要控制传输时间差,避免信号的串扰,可以采用长度相等的原则,对多个信号线进行匹配。
3.距离和屏蔽:信号线之间应保持一定的距离,减少串扰。
对于敏感信号线,可以采用屏蔽,如使用屏蔽线或者地层或电源面直接作为屏蔽。
4.平面分布布线:将电路面分布在PCB板的一面,减少控制层(可减少电磁干扰),易于维护。
对于比较大的PCB板,可以将电路分布在多层结构中,减小板子尺寸。
5.电源线和地线:电源线和地线尽量粗而宽,以降低线路阻抗和电压降。
同时,尽量减少电源线和地线与其它信号线的交叉和共面长度,减小可能的电磁干扰。
6.设备端口布局:对于外部设备接口,宜以一边和一角为原则,将各种本机接口尽量分布在同一区域,以保持可维护性和布局的简洁性。
7.组件布局:对于IC和器件的布局,可以按照电路的工作顺序、重要程度和电路结构等因素综合考虑,优先放置重要元件,如主控芯片、存储器等。
三、布局规则:1.尽量缩短信号线的长度,减少信号传输的延迟和串扰。
2.尽量减小信号线的面积,减少对周围信号的干扰。
3.尽量采用四方对称布线,减少线路不平衡引起的干扰。
4.尽量降低线路阻抗,提高信号的传输质量。
布线(Layout)是PCB设计工程师最基本的工作技能之一。
走线的好坏将直接影响到整个系统的性能,大多数高速的设计理论也要最终经过Layout得以实现并验证,由此可见,布线在高速PCB设计中是至关重要的。
下面将针对实际布线中可能遇到的一些情况,分析其合理性,并给出一些比较优化的走线策略。
主要从直角走线,差分走线,蛇形线等三个方面来阐述。
1.直角走线直角走线一般是PCB布线中要求尽量避免的情况,也几乎成为衡量布线好坏的标准之一,那么直角走线究竟会对信号传输产生多大的影响呢?从原理上说,直角走线会使传输线的线宽发生变化,造成阻抗的不连续。
其实不光是直角走线,顿角,锐角走线都可能会造成阻抗变化的情况。
直角走线的对信号的影响就是主要体现在三个方面:一是拐角可以等效为传输线上的容性负载,减缓上升时间;二是阻抗不连续会造成信号的反射;三是直角尖端产生的EMI。
传输线的直角带来的寄生电容可以由下面这个经验公式来计算:C=61W(Er)[size=1]1/2[/size]/Z0在上式中,C就是指拐角的等效电容(单位:pF),W指走线的宽度(单位:inch),εr指介质的介电常数,Z0就是传输线的特征阻抗。
举个例子,对于一个4Mils的50欧姆传输线(εr为4.3)来说,一个直角带来的电容量大概为0.0101pF,进而可以估算由此引起的上升时间变化量:T10-90%=2.2*C*Z0/2 = 2.2*0.0101*50/2 = 0.556ps通过计算可以看出,直角走线带来的电容效应是极其微小的。
由于直角走线的线宽增加,该处的阻抗将减小,于是会产生一定的信号反射现象,我们可以根据传输线章节中提到的阻抗计算公式来算出线宽增加后的等效阻抗,然后根据经验公式计算反射系数:ρ=(Zs-Z0)/(Zs+Z0),一般直角走线导致的阻抗变化在7%-20%之间,因而反射系数最大为0.1左右。
而且,从下图可以看到,在W/2线长的时间内传输线阻抗变化到最小,再经过W/2时间又恢复到正常的阻抗,整个发生阻抗变化的时间极短,往往在10ps之内,这样快而且微小的变化对一般的信号传输来说几乎是可以忽略的。
PCB布线策略与信号完整性分析在现代电子设备中,Printed Circuit Board(PCB)扮演着至关重要的角色。
PCB的设计布线策略和信号完整性分析对于确保设备的正常运行和性能至关重要。
本文将讨论PCB布线策略和信号完整性分析的重要性,以及一些常见的方法和技术。
首先,PCB布线策略是确保信号的正确传输和减少干扰的关键。
布线策略的主要目标是最短地连接各个元件、尽量减小电流回路的面积,以减少电磁干扰和信号损失。
其中一个重要的布线策略是保持信号线和地线的平行走向,以减少噪声的传播和干扰。
此外,还可以使用分层布线技术,在不同层次的PCB上布置信号线和电源线,以减少干扰。
其次,信号完整性分析是验证信号在PCB上的传输质量的过程。
这一分析可以帮助我们确定信号是否受到噪声、耦合和延迟等问题的影响。
信号完整性分析通常包括时钟和数据的延迟分析、串扰分析和阻抗匹配分析等。
通过这些分析,我们可以确定是否存在信号损失、波形畸变和时序问题等。
在PCB布线策略和信号完整性分析中,有一些常见的方法和技术是非常重要的。
首先是参考平面设计,即通过增加地线或功率平面来隔离信号线。
这可以减少信号的干扰和噪声。
其次是差分信号布线,即将差分信号线以对称的方式布线,以减少串扰和噪声。
此外,控制阻抗也是非常重要的,可以通过合适的追踪宽度和间距来实现。
在实际应用中,还有一些先进的工具和技术可以帮助进行PCB布线策略和信号完整性分析。
其中之一是电磁仿真软件,可以模拟信号在PCB上的传输过程,帮助我们识别问题并进行优化。
另一个工具是减少串扰的布线规则检查器,可以自动检查布线中的串扰问题并提供解决方案。
综上所述,PCB布线策略和信号完整性分析对于确保设备的正常运行和性能至关重要。
通过合理的布线策略和信号完整性分析,我们可以减少信号损失和干扰,提高信号的传输质量。
在实际应用中,我们可以借助工具和技术来帮助进行布线策略和信号完整性分析。
因此,对于开发人员和设计工程师来说,掌握PCB布线策略和信号完整性分析的知识和技巧是非常重要的。
PCB板布线技巧1.分析并规划布线路径:在开始布线之前,要先对电路进行分析并规划布线路径。
合理的布线路径可以最大程度地减小信号传输的延迟、串扰和阻抗不匹配等问题。
2.确定信号分类:根据信号的性质确定分类,然后将它们分配到不同的层上进行布线。
例如,将高频信号和低频信号分别布线在不同的层上,以减少信号之间的互相干扰。
3.使用规范的走线方式:在布线时,要遵循规范的走线方式。
例如,避免走线交叉,特别是在高速信号线上。
可以使用90度转角或弧形转角等方式,减少信号回波和串扰。
4.控制走线长度:尽量缩短信号线的长度,特别是高频信号线。
较长的信号线会引入额外的传输延迟,并可能导致信号衰减。
可以通过合理放置元件和规划布线路径来有效控制走线长度。
5.使用地平面层:在PCB布线中,地平面层在电路的抗干扰能力和信号完整性方面起着重要作用。
可以合理布置地平面,将信号和地面层进行良好的综合接地,减少信号回波和串扰。
6.适当使用电源层:电源层在布线中起到提供电源和地的作用。
可以根据设计要求,合理规划电源层的位置和布线方式,以减小电源噪声和串扰。
7.使用信号层功能:在PCB设计中,信号层不仅有信号传输的功能,还可以通过布线方式起到减小信号噪声和提高阻抗匹配的作用。
可以使用多小地分割的信号层来降低信号层之间的干扰。
8.避免信号线与其它元件的靠近:在布线时,尽量避免信号线过于靠近封装器件或者其他的元件。
这样可以减少信号回波、串扰和互相干扰的可能性。
9.确保信号线宽度:根据信号的特性和传输要求,选择适当的信号线宽度。
信号线宽度过宽或过窄都会影响信号的传输质量和阻抗匹配。
10.保持布线连续性:在布线时,要尽量保持布线的连续性,避免信号线出现分段或者交叉等问题。
这样可以减小信号回波和串扰,并提高信号的完整性。
总之,在进行PCB板布线时,要综合考虑信号传输的延迟、串扰、阻抗匹配、地平面等因素,并采取合适的布线技巧来优化电路性能和可靠性。
PCB走线策略布线(Layout)是PCB设计工程师最基本的工作技能之一。
走线的好坏将直接影响到整个系统的性能,大多数高速的设计理论也要最终经过Layout得以实现并验证,由此可见,布线在高速PCB设计中是至关重要的。
下面将针对实际布线中可能遇到的一些情况,分析其合理性,并给出一些比较优化的走线策略。
主要从直角走线,差分走线,蛇形线等三个方面来阐述。
1.直角走线直角走线一般是PCB布线中要求尽量避免的情况,也几乎成为衡量布线好坏的标准之一,那么直角走线究竟会对信号传输产生多大的影响呢?从原理上说,直角走线会使传输线的线宽发生变化,造成阻抗的不连续。
其实不光是直角走线,顿角,锐角走线都可能会造成阻抗变化的情况。
直角走线的对信号的影响就是主要体现在三个方面:一是拐角可以等效为传输线上的容性负载,减缓上升时间;二是阻抗不连续会造成信号的反射;三是直角尖端产生的EMI。
传输线的直角带来的寄生电容可以由下面这个经验公式来计算:C=61W(Er)1/2/Z0在上式中,C就是指拐角的等效电容(单位:pF),W指走线的宽度(单位:inch),εr指介质的介电常数,Z0就是传输线的特征阻抗。
举个例子,对于一个4Mils 的50欧姆传输线(εr为4.3)来说,一个直角带来的电容量大概为0.0101pF,进而可以估算由此引起的上升时间变化量:T10-90%=2.2*C*Z0/2 = 2.2*0.0101*50/2 = 0.556ps通过计算可以看出,直角走线带来的电容效应是极其微小的。
由于直角走线的线宽增加,该处的阻抗将减小,于是会产生一定的信号反射现象,我们可以根据传输线章节中提到的阻抗计算公式来算出线宽增加后的等效阻抗,然后根据经验公式计算反射系数:ρ=(Zs-Z0)/(Zs+Z0),一般直角走线导致的阻抗变化在7%-20%之间,因而反射系数最大为0.1左右。
而且,从下图可以看到,在W/2线长的时间内传输线阻抗变化到最小,再经过W/2时间又恢复到正常的阻抗,整个发生阻抗变化的时间极短,往往在10ps之内,这样快而且微小的变化对一般的信号传输来说几乎是可以忽略的。
很多人对直角走线都有这样的理解,认为尖端容易发射或接收电磁波,产生EMI,这也成为许多人认为不能直角走线的理由之一。
然而很多实际测试的结果显示,直角走线并不会比直线产生很明显的EMI。
也许目前的仪器性能,测试水平制约了测试的精确性,但至少说明了一个问题,直角走线的辐射已经小于仪器本身的测量误差。
总的说来,直角走线并不是想象中的那么可怕。
至少在GHz以下的应用中,其产生的任何诸如电容,反射,EMI等效应在TDR测试中几乎体现不出来,高速PCB设计工程师的重点还是应该放在布局,电源/地设计,走线设计,过孔等其他方面。
当然,尽管直角走线带来的影响不是很严重,但并不是说我们以后都可以走直角线,注意细节是每个优秀工程师必备的基本素质,而且,随着数字电路的飞速发展,PCB工程师处理的信号频率也会不断提高,到10GHz以上的RF 设计领域,这些小小的直角都可能成为高速问题的重点对象。
2.差分走线差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计,什么另它这么倍受青睐呢?在PCB 设计中又如何能保证其良好的性能呢?带着这两个问题,我们进行下一部分的讨论。
何为差分信号?通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态“0”还是“1”。
而承载差分信号的那一对走线就称为差分走线。
差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面:a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。
b.能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。
c.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。
目前流行的LVDS(low voltage differentialsignaling)就是指这种小振幅差分信号技术。
对于PCB工程师来说,最关注的还是如何确保在实际走线中能完全发挥差分走线的这些优势。
也许只要是接触过Layout的人都会了解差分走线的一般要求,那就是“等长、等距”。
等长是为了保证两个差分信号时刻保持相反极性,减少共模分量;等距则主要是为了保证两者差分阻抗一致,减少反射。
“尽量靠近原则”有时候也是差分走线的要求之一。
但所有这些规则都不是用来生搬硬套的,不少工程师似乎还不了解高速差分信号传输的本质。
下面重点讨论一下PCB差分信号设计中几个常见的误区。
误区一:认为差分信号不需要地平面作为回流路径,或者认为差分走线彼此为对方提供回流途径。
造成这种误区的原因是被表面现象迷惑,或者对高速信号传输的机理认识还不够深入。
从图1-8-15的接收端的结构可以看到,晶体管Q3,Q4的发射极电流是等值,反向的,他们在接地处的电流正好相互抵消(I1=0),因而差分电路对于类似地弹以及其它可能存在于电源和地平面上的噪音信号是不敏感的。
地平面的部分回流抵消并不代表差分电路就不以参考平面作为信号返回路径,其实在信号回流分析上,差分走线和普通的单端走线的机理是一致的,即高频信号总是沿着电感最小的回路进行回流,最大的区别在于差分线除了有对地的耦合之外,还存在相互之间的耦合,哪一种耦合强,那一种就成为主要的回流通路,图1-8-16是单端信号和差分信号的地磁场分布示意图。
在PCB电路设计中,一般差分走线之间的耦合较小,往往只占10~20%的耦合度,更多的还是对地的耦合,所以差分走线的主要回流路径还是存在于地平面。
当地平面发生不连续的时候,无参考平面的区域,差分走线之间的耦合才会提供主要的回流通路,见图1-8-17所示。
尽管参考平面的不连续对差分走线的影响没有对普通的单端走线来的严重,但还是会降低差分信号的质量,增加EMI,要尽量避免。
也有些设计人员认为,可以去掉差分走线下方的参考平面,以抑制差分传输中的部分共模信号,但从理论上看这种做法是不可取的,阻抗如何控制?不给共模信号提供地阻抗回路,势必会造成EMI辐射,这种做法弊大于利。
误区二:认为保持等间距比匹配线长更重要。
在实际的PCB布线中,往往不能同时满足差分设计的要求。
由于管脚分布,过孔,以及走线空间等因素存在,必须通过适当的绕线才能达到线长匹配的目的,但带来的结果必然是差分对的部分区域无法平行,这时候我们该如何取舍呢?在下结论之前我们先看看下面一个仿真结果。
从上面的仿真结果看来,方案1和方案2波形几乎是重合的,也就是说,间距不等造成的影响是微乎其微的,相比较而言,线长不匹配对时序的影响要大得多(方案3)。
再从理论分析来看,间距不一致虽然会导致差分阻抗发生变化,但因为差分对之间的耦合本身就不显著,所以阻抗变化范围也是很小的,通常在10%以内,只相当于一个过孔造成的反射,这对信号传输不会造成明显的影响。
而线长一旦不匹配,除了时序上会发生偏移,还给差分信号中引入了共模的成分,降低信号的质量,增加了EMI。
可以这么说,PCB差分走线的设计中最重要的规则就是匹配线长,其它的规则都可以根据设计要求和实际应用进行灵活处理。
误区三:认为差分走线一定要靠的很近。
让差分走线靠近无非是为了增强他们的耦合,既可以提高对噪声的免疫力,还能充分利用磁场的相反极性来抵消对外界的电磁干扰。
虽说这种做法在大多数情况下是非常有利的,但不是绝对的,如果能保证让它们得到充分的屏蔽,不受外界干扰,那么我们也就不需要再让通过彼此的强耦合达到抗干扰和抑制EMI的目的了。
如何才能保证差分走线具有良好的隔离和屏蔽呢?增大与其它信号走线的间距是最基本的途径之一,电磁场能量是随着距离呈平方关系递减的,一般线间距超过4倍线宽时,它们之间的干扰就极其微弱了,基本可以忽略。
此外,通过地平面的隔离也可以起到很好的屏蔽作用,这种结构在高频的(10G以上)IC封装PCB设计中经常会用采用,被称为CPW结构,可以保证严格的差分阻抗控制(2Z0),如图1-8-19。
差分走线也可以走在不同的信号层中,但一般不建议这种走法,因为不同的层产生的诸如阻抗、过孔的差别会破坏差模传输的效果,引入共模噪声。
此外,如果相邻两层耦合不够紧密的话,会降低差分走线抵抗噪声的能力,但如果能保持和周围走线适当的间距,串扰就不是个问题。
在一般频率(GHz以下),EMI也不会是很严重的问题,实验表明,相距500Mils的差分走线,在3米之外的辐射能量衰减已经达到60dB,足以满足FCC的电磁辐射标准,所以设计者根本不用过分担心差分线耦合不够而造成电磁不兼容问题。
3.蛇形线蛇形线是Layout中经常使用的一类走线方式。
其主要目的就是为了调节延时,满足系统时序设计要求。
设计者首先要有这样的认识:蛇形线会破坏信号质量,改变传输延时,布线时要尽量避免使用。
但实际设计中,为了保证信号有足够的保持时间,或者减小同组信号之间的时间偏移,往往不得不故意进行绕线。
那么,蛇形线对信号传输有什么影响呢?走线时要注意些什么呢?其中最关键的两个参数就是平行耦合长度(Lp)和耦合距离(S),如图1-8-21所示。
很明显,信号在蛇形走线上传输时,相互平行的线段之间会发生耦合,呈差模形式,S越小,Lp越大,则耦合程度也越大。
可能会导致传输延时减小,以及由于串扰而大大降低信号的质量,其机理可以参考第三章对共模和差模串扰的分析。
下面是给Layout工程师处理蛇形线时的几点建议:1.尽量增加平行线段的距离(S),至少大于3H,H指信号走线到参考平面的距离。
通俗的说就是绕大弯走线,只要S足够大,就几乎能完全避免相互的耦合效应。
2.减小耦合长度Lp,当两倍的Lp延时接近或超过信号上升时间时,产生的串扰将达到饱和。
3.带状线(Strip-Line)或者埋式微带线(Embedded Micro-strip)的蛇形线引起的信号传输延时小于微带走线(Micro-strip)。
理论上,带状线不会因为差模串扰影响传输速率。
4.高速以及对时序要求较为严格的信号线,尽量不要走蛇形线,尤其不能在小范围内蜿蜒走线。
5.可以经常采用任意角度的蛇形走线,如图1-8-20中的C结构,能有效的减少相互间的耦合。
6.高速PCB设计中,蛇形线没有所谓滤波或抗干扰的能力,只可能降低信号质量,所以只作时序匹配之用而无其它目的。
7.有时可以考虑螺旋走线的方式进行绕线,仿真表明,其效果要优于正常的蛇形走线。