高考数学二轮复习专题五立体几何5.2空间中的平行与垂直课件理
- 格式:ppt
- 大小:1.19 MB
- 文档页数:34
第52讲 用空间向量判断,证明平行与垂直知识与方法1用空间向量判断证明线面平行或垂直,面面平行或垂直的思路 (1)直接利·用向量运算的几何意义进行证明.(2)通过建立三维坐标系,用向量的坐标形式进行运算和证明. 2用向量证明直线与平面平行的方法(1)证明直线的方向向量与平面某一法向量垂直. (2)证明直线的方向向量与平面内某直线的方向向亘平行. (3)证明直线的方向向量可以用平面内的两个不共线的向量线性表示. 3用向量证明直线与平面垂直的方法(1)证明直线的方向向量与平面的某一法向量平行.(2)证明直线的方向向量与平面内两条相交直线的方向向量垂直. (3)证明直线的方向向量与平面内的任意一条直线的方向向量垂直. 4证明空间两个平面的平行与垂直关系的方法(1)利用两个平面的法向量的平行与垂直关系进行证明,关键是求出两个平面的法向量. (2)将证明两个平面的平行和垂直关系转化为证明直线与平面的平行与垂直关系,再 利用上述介绍的证明方法进行证明.(3)利用面面平行、面面垂直判定定理的向量表示进行证明.典型例题【例1】 如图52-1所示,在正方体111ABCD A BC D 中,M N ,分别是111C C B C ,的中点.证明://MN 平面1.A BD【解析】【解法1】 ∵1111111111111()2222MN C N C M C B C C D A D D D A =-=-=-=1//.MN DA ∴又∵MN 与1DA 不共线,∴1//.MN DA 又MN ⊄平面11,A BD A D ⊂平面1A BD ,//MN ∴平面1A BD .【解法2】设正方体的棱长为1,以D 为原点,分别以1,,DA DC DD 所在直线为x 轴、y 轴、z 轴,建立如图52-2所示空间直角坐标系,则1110,1,,,1,1,(0,0,0),(1,0,1),(1,1,0).22M N D A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭于是111,0,,(1,0,1),(1,1,0)22MN DA DB ⎛⎫=== ⎪⎝⎭.设平面1A BD 的一个法向量为(),,n x y z =,则0,,0n DA n DB ⎧⎪⋅⎨⎪⎩=⋅= 得00x z x y ⎧⎨⎩+=+=,取1x =,得1,1y z =-=-,∴()1,1,1n =--.又1111,0,(1,1,1)10(1)(1)02222n MN ⎛⎫⋅=⋅--=⨯+⨯-+⨯-= ⎪⎝⎭,MN n ∴⊥,又MN ⊄平面1A BD .∴//MN 平面1.A BD【解法3】 如图52-2所示,1DA (1,0,1),(1,1,0),DB ==设1MN sDA tDB =+ , 即11,0,(1,0,1)(1,1,0),22s t ⎛⎫=+ ⎪⎝⎭12012s t t s ⎧+=⎪⎪∴=⎨⎪⎪=⎩解得1,0,2s t ==∴1,2MN DA =∴MN 与1DA 共线,∵MN ⊄平面1A BD ,∴//MN 平面1.A BD【例2】如图524-所示,四棱锥S ABCD -中,///,.CD AB CD BC ⊥侧面SAB 为等边三角形,2,1AB BC CD SD ====. (1)证明:SD ⊥平面SAB .(2)求点A 到平面SBC 的距离.【解析】(1)【证明】以C 为原点,射线CD 为x 轴的正半轴建立如图525-所示的空间直角坐标系C xyz -.设(1,0,0)D ,则(2,2,0),(0,2,0)A B 又设(,,)S x y z ,则0,0,0.x y z >>>(2,2,),(,2,),(1AS x y z BS x y z DS x =--=-=-,)y z .由||||AS BS ==故1x =.由||1DS =,得221y z +=,又由||2BS =,得222(2)4x y z +-+=.即2410x y -+=,即可解得1,22y z ==,于是1333311,,1,,,1,,,0,222222S AS BS DS ⎛⎛⎫⎛⎫⎛=--=-= ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭. 0,0DS AS DS BS ∴⋅=⋅=,故S ,AS B DS DS ⊥⊥,又BS AS S ⋂=,SD ∴⊥平面SAB .(2)设平面SBC 的法向量(,,)a m n p =,则BS 0,CB 0a a ⋅=⋅=.又331,,,(0,2,0)22BS CB ⎛⎫=-= ⎪ ⎪⎝⎭,故30220m n p n ⎧-+=⎪⎨⎪=⎩则(a =,又(2,0,0),AB =-故点A 到平面SBC 的距离为||2||a AB d a ⋅==。