塔设备强度计算裙座基础环和螺栓计算
- 格式:docx
- 大小:268.76 KB
- 文档页数:4
二、裙座的强度计算
裙座是最常见的塔设备支承结构,如右图所示。
按所支承设备的高度与直径比,裙座可分成两种:
一种是圆筒形,一种是圆锥形。
由于圆筒形裙座制
造方便和节省材料,所以被广泛采用。
但对于承受
较大风载荷和地震载荷的塔,需要配置较多的地角
螺栓和承受面积较大的基础环,则采用圆锥形裙座
支撑结构。
裙座由裙座体、基础环板、螺栓座及基础螺栓Array等结构组成。
裙座的上端与塔体的底封头焊接,下
端与基础环、筋板焊接,距地面一定高度处开有人
孔、出料孔等通道,基础环上筋板之间还组成螺栓
座结构。
裙座体常用Q235-A或16Mn材料。
裙座体
直径超过800mm时,一般开设人孔。
裙座体上方开
直径为50mm的排气孔,在底部开设排液孔,以便
随时排除液体。
座体和塔体的联接焊缝应和塔体本身的环焊封
保持一定距离。
如果封头是由数块钢板拼焊而成,
则应在裙座上相应部位开有缺口,以免联接焊缝和
封头焊缝相互交叉,见下图。
基础环板通常是一块环形板,基础环板上的螺栓孔开成圆缺口而不是圆形孔,如下图螺栓座
由筋板和压板构成。
地脚螺栓穿过基础环板与压板,便把裙座固定在地基上。
㈡基础环板设计1. 基础环板内、外径的确定裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用(4-68)式中:D ob-基础环的外径,mm;D ib-基础环的内径,mm;D is-裙座底截面的外径,mm。
2. 基础环板厚度计算在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为:(4-69)式中:A b-基础环面积,mm2;W b-基础环的截面系数,mm3;(1)基础环板上无筋板基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷σbmax的作用下,基础环厚度:(4-70)式中:δb-基础环厚度,mm;[σ]b-基础环材料的许用应力,MPa。
对低碳钢取[σ]b=140MPa。
(2)基础环板上有筋板基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。
此时,可将基础环板简化为一受均布载荷σbmax作用的矩形板(b×l)。
基础环厚度:(4-71)式中:δb-基础环厚度,mm;M s-计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按计算,N·mm/mm。
无论无筋板或有筋板的基础环厚度均不得小于16mm。
㈢地脚螺栓地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。
在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。
塔设备在基础面上由螺栓承受的最大拉应力为:(4-72)式中:σB-地脚螺栓承受的最大拉应力,MPa。
当σB≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。
当σB>0时,塔设备必须设置地脚螺栓。
地脚螺栓的螺纹小径可按式(4-73)计算:(4-73)式中:d1-地脚螺栓螺纹小径,mm;C2-地脚螺栓腐蚀裕量,取3mm;n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6;[σ]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。
塔器裙座兼作储液槽时地脚螺栓和圆底板的强度计算刘武昌;关永祥;刘鑫杰;高建明【摘要】对裙座兼作储液槽的化工塔器,提出了地脚螺栓和圆底板的强度计算方法---根据“维赫曼法”的概念,假设一个“虚拟基础环”。
在抵抗外力矩时,该“虚拟基础环”所应提供的拉应力,由地脚螺栓的拉力来提供,由此计算出地脚螺栓的直径。
对于圆底板,则按圆形截面计算出其抵抗外力矩所需提供的压应力,以此计算出圆底板的厚度。
%Proposeastrengthcalculation methodforanchorboltsandroundbaseplate when chemicaltowerskirt doublesasaliquid storagetant.The methodis asfollows:according to Weiherrmannmethodconcept,assumea virtualbasering",whenresistingexte rnaltorque,thetensilestressshouldbeofferedby virtualbasering"isofferedbyanchorboltsinf act,therebycalculatethediameteroftheanchorbolt.Tocalculatestrengthoftheroundbasep late,calculateit s compressivestressstrengthresistingtoexternaltorqueaccordingtosizeofthecir cularcross-section, therebycalculatethethicknessofroundbaseplate.【期刊名称】《化工设计通讯》【年(卷),期】2013(000)002【总页数】5页(P90-94)【关键词】维赫曼法;虚拟基础环;地脚螺栓;圆底板;扇形圆环;合力矩;弯矩;抗弯截面模量【作者】刘武昌;关永祥;刘鑫杰;高建明【作者单位】天津市创举科技有限公司,天津300130;天津市创举科技有限公司,天津300130;天津市创举科技有限公司,天津300130;天津市创举科技有限公司,天津 300130【正文语种】中文【中图分类】TQ053在化工塔器中,常有利用裙座兼作储液槽的情况。
塔器主体设计参数压力试验类型:液压试验塔板分布段数:0 指定筒体材料负偏差为0: 未指定为0 填料分布段数: 2筒体分段数(不包括变径段且不大于10): 10 连接自下向上第2段与第3段筒体的变径段连接自下向上第1段与第2段筒体的变径段连接自下向上第4段与第5段筒体的变径段连接自下向上第3段与第4段筒体的变径段连接自下向上第6段与第7段筒体的变径段连接自下向上第5段与第6段筒体的变径段连接自下向上第8段与第9段筒体的变径段连接自下向上第7段与第8段筒体的变径段连接自下向上第9段与第10段筒体的变径段自下向上第1段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):14试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1750试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第2段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):5410试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第3段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):4450试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第4段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第5段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第6段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第7段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm): 2 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第8段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第9段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):3260试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第10段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):556试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023填料段数据自下向上第1填料段:操作工况下的填料密度(kg/m ):300 该段填料底部距基础高度hf1(mm):2827 该段填料顶部距基础高度hf2(mm):7827填料段数据自下向上第2填料段:操作工况下的填料密度(kg/m ):300 该段填料底部距基础高度hf1(mm):21577 该段填料顶部距基础高度hf2(mm):24577附件数据介质密度(kg/m ):1000 塔釜液面高度(mm):800 塔体保温层厚度(mm):100 塔体保温层密度(mm ):200 最大管线外径(mm):89 管线保温层厚度(mm):80 塔体上平台总个数:0 塔体上最低平台距基础的高度(mm):塔体上最高平台距基础的高度(mm):0 扶梯与最大管线的相对位置:90°平台宽度(mm):0 平台包角(°):360 载荷数据偏心载荷或集中载荷个数(不大于5):2 塔设备附件质量系数(以壳体质量为基准):1.2基本风压值(N/m ):0地震设防烈度:7度(0.1g) 场地土类型:III类地面粗糙度类别:B类地震类型:第二组第 1 个偏心载荷数据偏心载荷重量(kg):1000偏心载荷的作用位置到容器中心线的距离c(mm):0 偏心载荷中心至基础的距离(mm):5827第 2 个偏心载荷数据偏心载荷重量(kg):1000偏心载荷的作用位置到容器中心线的距离c(mm):0 偏心载荷中心至基础的距离(mm):20000裙座数据裙座数据(1)基础类型:无框架裙座结构:圆筒形裙座与筒体连接形式:对接锥形裙座底截面内径(mm):912 基础高度(mm):200 裙座总高度(mm):1077 裙座设计温度(°):20 裙座名义厚度(mm):12 裙座腐蚀裕量(mm): 2 裙座材料:Q345R 设计温度下许用应力(MPa)189 设计温度下屈服点(MPa):345 设计温度下弹性模量(MPa):201000 裙座防火层厚度(mm):0 裙座防火层密度(kg/m3):0 指定裙座材料负偏差为0 未指定为0 裙座与筒体连接段材料:Q345R 裙座与筒体连接段长度(mm):23 裙座与筒体连接段在设计温度下许用应力(MPa):2裙座数据(2)裙座上同一高度处较大孔(包括人孔)个数:2 裙座上较大孔中心线高度h1(mm):580裙座上较大孔引出管水平方向内径d(mm):36 裙座上较大孔引出管名义厚度t(mm):24裙座上较大孔引出管长度c(mm):140裙座数据(3)地脚螺栓公称直径(mm):36 地脚螺栓个数:8 地脚螺栓根径(mm):31.67 地脚螺栓材料:Q235 地脚螺栓许用应力(MPa):147 基础环板内径(mm):712 基础环板厚度(mm):22 基础环板外径(mm):1112基础环板上地脚螺栓两侧筋板内侧间距(mm):85 基础环板上两相邻筋板外侧最大间距L(mm):319.82全部筋板块数:16 筋板厚度(mm):16 筋板高度(mm):250 筋板宽度(mm):130 盖板结构:整块盖板宽度(mm):0 盖板厚度(mm):22 垫板宽度(mm):80 垫板厚度(mm):16 垫板螺栓孔直径(mm):39 盖板螺栓孔直径(mm):50框架结构数据框架高度(mm):0 框架质量(kg):0框架惯性矩(mm4):0 框架材料(碳钢)弹性模量(MPa):框架材料类型:混凝土上封头数据椭圆形封头数据材料类型板材曲面高度h I (mm) 81.25 材料名称S31603 直边高度h2(mm)25 试验温度下许用应力[σ] (MPa) 120 钢板负偏差C1 (mm) 未指定为0 设计温度下许用应力[σ]t(MPa) 104.8 腐蚀裕量C2 (mm) 0 焊接接头系数φ 1 名义厚度δn (mm) 10 液柱静压力(MPa)0下封头数据椭圆形封头数据材料类型板材曲面高度h I (mm) 81.25 材料名称S31603 直边高度h2(mm)25 试验温度下许用应力[σ] (MPa) 120 钢板负偏差C1 (mm) 未指定为0 设计温度下许用应力[σ]t(MPa) 104.8 腐蚀裕量C2 (mm) 0 焊接接头系数φ 1 名义厚度δn (mm) 14 液柱静压力(MPa)0。
塔设备强度设计计算概述首先,塔设备强度设计计算需要对材料的强度特性进行分析和评估。
这包括了材料的抗拉强度、屈服强度、弹性模量等参数的确定,以及对材料的疲劳和断裂性能进行评估。
通过对材料性能的分析,可以确定塔设备所需的材料强度指标,并为后续的结构设计提供基础。
其次,塔设备强度设计计算还需要根据结构的特点和使用环境对其结构强度进行分析和计算。
这包括了对结构的受力情况、应力分布以及可能存在的疲劳破坏和变形情况进行评估。
通过对结构强度的计算,可以确定塔设备的结构形式和尺寸,以满足其强度要求。
另外,塔设备强度设计计算还需要进行荷载计算。
这包括了对塔设备受力情况的分析,根据其所承受的外部荷载和内部荷载进行计算,以确保其在使用过程中能够稳定和安全地工作。
总的来说,塔设备强度设计计算是一项复杂的工程计算工作,需要对材料强度、结构强度和荷载等多个方面进行综合分析和计算。
通过科学合理的设计计算,可以保证塔设备在使用过程中具有足够的强度和稳定性,为生产运行提供可靠的保障。
塔设备强度设计计算在工程领域中的重要性不言而喻。
塔设备通常用于支撑和承载各种重要设备和结构,如通讯设备、风力发电机、天线、烟囱等。
塔设备的稳定性和强度显然是至关重要的,因为如果塔设备结构设计不当或计算不准确,可能会导致结构破坏甚至倒塌,造成严重的人员伤亡和财产损失。
一般而言,塔设备的强度设计计算需要从结构设计、材料选取、受力分析、以及荷载计算等多个方面进行综合考虑。
首先,对于塔设备的结构设计,需要确保塔身、角钢、连接部位等都能够承受预期的荷载。
这需要对实际使用环境、风荷载、地震荷载等进行全面的分析和评估。
因此,在强度设计计算过程中,需要考虑各种极端和临界情况下的力学响应。
其次,材料的选取也是很重要的。
在塔设备强度设计计算中,需要选择合适的结构材料,例如碳钢、合金钢、铝合金等,以保证塔设备在受力状态下有足够的强度和刚度。
材料的强度参数、蠕变性能、疲劳性能等都必须得到足够的评估和证明。
塔设备强度计算裙座基础
环和螺栓计算
The latest revision on November 22, 2020
㈡基础环板设计
1. 基础环板内、外径的确定
裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用
(4-68)
式中:
D
-基础环的外径,mm;
ob
D
-基础环的内径,mm;
ib
D
-裙座底截面的外径,
is
mm。
2. 基础环板厚度计算
在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为:
(4-69)
式中:
A
-基础环面积,mm2;
b
W
-基础环的截面系数,mm3;
b
(1)基础环板上无筋板
基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷s bmax的作用下,基础环厚度:
(4-70)
式中:
d
-基础环厚度,mm;
b
[s]b-基础环材料的许用应力,MPa。
对低碳钢取[s]b=140MPa。
(2)基础环板上有筋板
基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。
此时,可将基础环板简化为一受均布载荷s bmax作用的矩形板(b×l)。
基础环厚度:
(4-71)
式中:
d
b
-基础环厚度,mm;
M
s
-计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按计算,N·mm/mm。
无论无筋板或有筋板的基础环厚度均不得小于16mm。
㈢地脚螺栓
地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。
在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。
塔设备在基础面上由螺栓承受的最大拉应力为:
(4-72)
式中:
s B-地脚螺栓承受的最大拉应力,MPa。
当s B≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。
当s B>0时,塔设备必须设置地脚螺栓。
地脚螺栓的螺纹小径可按式(4-73)计算:
(4-73)
式中:
d1-地脚螺栓螺纹小径,mm;
C2-地脚螺栓腐蚀裕量,取3mm;
n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6;
[s]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[s]bt=147MPa;选取16Mn时,取[s]bt=170MPa。
圆整后地脚螺栓的公称直径不得小于M24。
㈣裙座体与塔体底封头的焊接结构
裙座体与塔体的焊接形式有下表所示的两种:
名称结构要求特点适用对象
对接焊
缝裙座与塔体直径相等,二者
对齐焊在一起
焊缝承受压应力作用,可承受较
高的轴向载荷
大型塔设备
搭接焊
缝裙座内径稍大于塔体外径
焊缝承受剪应力作用,受力条件
差
小型塔设备
1.裙座体与塔体对接焊缝(如)J-J截面的拉应力校核
(4-74)式中D it-裙座顶截面的内直径,mm。
2.裙座体与塔体搭接焊缝(如)J-J截面的剪应力校核
(4-75)
(4-76)
式中:
A W-焊缝抗剪断面面积,mm2;
D
-裙座壳顶部截面的外直径,mm;
ot
M max J-J-搭接焊缝处的最大弯矩,N·mm;
m max J-J-压力试验时塔设备的最大质量(不计裙座质量),Kg;
m0J-J-J-J截面以上塔设备的操作质量,Kg;
W W-焊缝抗剪截面系数,mm3;
[s]W t-设计温度下焊接接头的许用应力,取两侧母材许用应力的小值,MPa。