第二章 液液萃取
- 格式:ppt
- 大小:1.13 MB
- 文档页数:77
液液萃取实验报告液液萃取实验报告一、实验目的:1. 了解液液萃取的原理和操作方法;2. 掌握常见有机化合物的液液萃取方法。
二、实验原理:液液萃取是一种常见的分离和提纯有机化合物的方法,通过溶剂的选择性相溶性使得待提取物质从一个相转移到另一个相中。
常见的液液萃取包括酸碱萃取、溶剂萃取和分区萃取等。
三、实验仪器与试剂:仪器:胶囊漏斗、滴管、温差计、天平、热板、集气瓶。
试剂:苯酚、四氯化铁溶液、水、盐酸、氢氧化钠。
四、实验步骤:1. 准备液液萃取装置,将滤纸放置在胶囊漏斗的滤纸环上;2. 在快慢漏斗中加入苯酚和四氯化铁溶液;3. 调整快慢漏斗中液面的高低,让液面相联系到滴管口;4. 操作人员通气时,快慢漏斗中的液体将可以缓慢地通过滴管;5. 用50%盐酸进行酸化,酸度适中溶解铁络合物,并加热苯酚层10分钟;6. 超过20分钟后,液面平稳,开始排液;7. 用0.1mol/L的氢氧化钠进行碱化,同时用水蒸腾,蒸腾盐酸;8. 收集盐酸水层,再用酸酐除去氢氧化钠;9. 用硫酸将均一苯酚层溶液酸化,与水层失去联系;10. 离心机离心操作,将水层分离出来;11. 回收苯酚。
五、实验结果:1. 在酸化后,铁络合物溶解于水相,苯酚溶于有机相;2. 在碱化后,盐酸溶于水相,苯酚溶于有机相;3. 在酸化后,苯酚溶解于水相,盐酸溶解于有机相。
六、实验讨论:本实验中,通过液液萃取的方法,成功回收和分离了苯酚、四氯化铁和盐酸等化合物。
实验中快慢漏斗的液面调节对于液液萃取的成功与否至关重要,需要根据实际情况进行调整。
在实验中,操作人员应注意观察液面和溶液的变化,及时调节漏斗液面数量,以保证液液萃取的顺利进行。
七、实验结论:通过本实验,我们了解了液液萃取的基本原理和操作方法,并且成功回收和分离了苯酚、四氯化铁和盐酸等化合物。
液液萃取是一种常见的分离和提纯有机化合物的方法,具有简单、快速、效果明显的特点,是化学实验中常用的手段之一。
一、实验目的1. 了解液液萃取的基本原理和方法。
2. 掌握液液萃取实验的操作步骤。
3. 通过实验,学习如何根据不同物质的溶解度选择合适的萃取剂,提高萃取效率。
4. 分析实验数据,得出结论。
二、实验原理液液萃取是利用两种互不相溶的溶剂对同一溶质的溶解度差异,通过接触、混合和分离,将溶质从一种溶剂转移到另一种溶剂中的方法。
根据溶质在两种溶剂中的溶解度差异,选择合适的萃取剂,使溶质在萃取剂中的溶解度大于在原溶剂中的溶解度,从而实现溶质的分离。
三、实验器材和药品1. 实验器材:分液漏斗、烧杯、量筒、铁架台(带铁圈)、搅拌棒、滤纸等。
2. 药品:碘水、四氯化碳、酒精、蒸馏水等。
四、实验步骤1. 准备工作:将碘水、四氯化碳、酒精、蒸馏水等药品分别倒入分液漏斗、烧杯、量筒中,备用。
2. 萃取操作:a. 取一个分液漏斗,加入10 mL碘水,再加入10 mL四氯化碳,盖紧漏斗口。
b. 将分液漏斗倒转,充分振荡,使碘水与四氯化碳充分混合。
c. 将振荡后的分液漏斗静置,待液体分层。
d. 将分液漏斗放在铁架台上,打开下端活塞,慢慢放出下层四氯化碳溶液,直至分离层完全放出。
e. 将上层碘水溶液收集在烧杯中。
3. 验证萃取效果:a. 将收集到的上层碘水溶液滴在滤纸上,观察滤纸上的颜色变化。
b. 将原碘水溶液滴在另一张滤纸上,对比观察颜色变化。
4. 记录实验数据,分析实验结果。
五、实验现象1. 振荡过程中,碘水与四氯化碳混合均匀,形成紫红色溶液。
2. 静置分层后,上层为无色或浅黄色的四氯化碳溶液,下层为紫红色的碘水溶液。
3. 将上层溶液滴在滤纸上,滤纸呈浅黄色或无色;将原碘水溶液滴在滤纸上,滤纸呈紫红色。
六、实验结论1. 液液萃取实验成功分离了碘水中的碘。
2. 四氯化碳作为萃取剂,能有效地将碘从碘水中萃取出来。
3. 振荡、静置分层、分液等操作步骤对提高萃取效率有重要作用。
七、实验注意事项1. 实验过程中,注意安全,避免接触皮肤和眼睛。
绪论4.1 液液萃取过程4.2 液液相平衡4.3 萃取过程计算4.4 萃取设备4.5 萃取过程的新进展基本概念利用组分在两个互不相溶的液相中的溶解度差而将其从一个液相转移。
到另一个液相的分离过程称为液液萃取,也叫溶剂萃取,简称萃取。
待分离的一相称为被萃相,萃取后成为萃余相,用做分离剂的相称为萃取相。
萃取相中起萃取作用的组分称为萃取剂,起溶剂作用的组分称为稀释剂或溶剂。
具有处理量大、分离效果好、回收率高、可连续操作以及自动控制等特点,因此得到了广泛的应用。
1. 液液萃取过程的特点(1)萃取过程的传质前提是两个液相之间的相互接触;(2)两相的传质过程是分散相液滴和连续相之间相际传质过程。
(3)两相间的有效分散是提高萃取效率的有效手段。
(4)两相的分离需借助两相的密度差来实现。
(5)液液萃取过程可以在多种形式的装置中通过连续或间歇的方式实现。
2. 液液萃取的主要研究内容(1)确定萃取体系包括被萃相体系和萃取相体系的构成,如被萃相的酸碱度、萃取相的稀释剂等。
(2)测定相平衡数据分配系数和分离系数。
(3)确定工艺和操作条件相比、萃取剂和稀释剂用量、被萃物浓度、萃取温度等。
(4)萃取流程的建立完整的萃取和反萃流程。
(5)设备的确定设备形式和结构。
1. 萃取剂的选择(1) 萃取剂应具备的特点①萃取剂中至少要有一个能与被萃物形成萃合物的官能团。
常见的萃取官能团通常是一些包含N、O、P、S的基团。
②萃取剂中还应包含具有较强亲油能力结构或基团,如长链烃、芳烃等,以利于萃取剂在稀释剂中的溶解,并防止被萃相对它的溶解夹带损失。
1. 分配比达到萃取平衡时,被萃物在两相中的浓度比称为被萃物的分配比,也称为分配系数。
D=其中,为被萃物A在萃取相(有机相)中的浓度;为被萃物A在被萃相(水相)中的浓度。
分配比D的值越大,被萃物越容易进入萃取相。
D通常不是常数,要受萃取体系和萃取条件的影响,应根据实验来测定;D=0,表示待萃取物完全不被萃取,D=∞,表示完全被萃取。
液-液萃取第一节 概述利用原料液中各组分在适当溶剂中溶解度的差异而实现混合液中组分分离的过程称为液-液萃取,又称溶剂萃取。
液-液萃取, 它是30年代用于工业生产的新的液体混合物分离技术。
随着萃取应用领域的扩展,回流萃取,双溶剂萃取,反应萃取,超临界萃取及液膜分离技术相继问世, 使得萃取成为分离液体混合物很有生命力的操作单元之一。
一.萃取操作原理萃取是向液体混合物中加入某种适当溶剂,利用组分溶解度的差异使溶质A 由原溶液转移到萃取剂的过程。
在萃取过程中, 所用的溶剂称为萃取剂。
混合液中欲分离的组分称为溶质。
混合液中的溶剂称稀释剂,萃取剂应对溶质具有较大的溶解能力,与稀释剂应不互溶或部分互溶。
右图是萃取操作的基本流程图。
将一定的溶剂加到被分离的混合物中, 采取措施(如搅拌)使原 料液和萃取剂充分混合混合,因溶质在两相间不呈平衡,溶质在萃取相中的平衡浓度高于实际浓度, 溶质乃从混合液相萃取集中扩散,使溶质与混合中的其它组分分离,所以萃取是液、液相间的传质过程。
通常 ,萃取过程在高温下进行,萃取的结果是萃剂 提取了溶质成为萃取相,分离出溶质的混合液成为萃余相。
萃取相时混合物,需要用精馏或取等方法进行分离,得到溶质产品和溶剂,萃取剂供循环使用。
萃取相通常含有少量萃取剂,也需应用适当的分离方法回收其中的萃取剂,然后排放。
用萃取法分离液体混合物时,混合液中的溶质既可以是挥发性物质,也可以是非挥发性物质,(如无机盐类)。
当用于分离挥发性混合物时,与精馏比较,整个萃取过程比较复杂,譬如萃取相中萃取剂的回收往往还要应用精馏操作。
但萃取过程本身具有常温操作,无相变以及选择适当溶剂可以获得较高分离系数等优点,在很多的情况下,仍显示出技术经济上的优势。
一般来说,在以下几种情况下采取萃取过程较为有利:⑴ 溶液中各组分的沸点非常接近,或者说组分之间的相对挥发度接近于一。
⑵ 混合液中的组成能形成恒沸物酸, 用一般的精馏不能得到所需的纯度。
第1篇一、实验目的1. 理解液液萃取的基本原理和过程。
2. 掌握分液漏斗的使用方法和操作技巧。
3. 通过实验验证萃取分离的效率。
4. 学习如何通过萃取分离混合物中的特定成分。
二、实验原理液液萃取是利用物质在不同溶剂中的溶解度差异,通过混合、振荡、静置分层和分液等步骤,将混合物中的某一组分从另一组分中分离出来的方法。
其基本原理是:溶质在互不相溶的溶剂中具有不同的溶解度,溶质会从溶解度小的溶剂转移到溶解度大的溶剂中,从而实现分离。
三、实验仪器和药品仪器:- 分液漏斗(梨形)- 铁架台(带铁圈)- 烧杯- 振荡器- 秒表药品:- 混合溶液(含有待萃取的溶质)- 萃取剂(与混合溶液不互溶的溶剂)- 水或无水乙醇(用于洗涤)四、实验步骤1. 准备工作:- 检查分液漏斗是否漏水,确保密封性良好。
- 准备好混合溶液和萃取剂。
2. 加入溶液:- 将混合溶液倒入分液漏斗中,注意不要超过漏斗容积的2/3。
- 向分液漏斗中加入适量的萃取剂。
3. 振荡混合:- 盖好分液漏斗的玻璃塞,轻轻振荡,使混合溶液和萃取剂充分混合。
- 振荡过程中,注意观察两相液体的混合情况,确保充分接触。
4. 静置分层:- 将分液漏斗放置在铁架台上,静置一段时间,等待两相液体分层。
- 观察分层情况,确认两相液体已完全分层。
5. 分液:- 打开分液漏斗下端的活塞,使下层液体(通常为萃取剂层)缓慢流出至烧杯中。
- 待下层液体流尽后,关闭活塞,打开上端玻璃塞,将上层液体(通常为混合溶液层)倒入另一个烧杯中。
6. 洗涤:- 向分液漏斗中加入少量水或无水乙醇,重复振荡、静置分层和分液的步骤,以去除萃取剂层中的残留溶质。
7. 回收萃取剂:- 将萃取剂层倒入烧杯中,加热蒸发,回收萃取剂。
五、实验现象1. 振荡混合过程中,混合溶液和萃取剂充分接触,形成乳白色混合物。
2. 静置分层后,上层液体(混合溶液层)通常颜色较浅,下层液体(萃取剂层)通常颜色较深。
3. 分液过程中,下层液体(萃取剂层)和上层液体(混合溶液层)分离清晰。
思考题1 衡量分离效果的因素主要是哪些?2 试述影响萃取效果的主要因素?3 选择萃取溶剂时还应考虑哪些方面?4 请详述产生乳化的原因及消除乳化的具体措施?5 系统分析法中萃取操作中的三部位法和四部位法常用的溶剂各是何物?一液-液萃取法1 液-液萃取原理液-液萃取法即两相溶剂提取,是利用混合物中各组分在两种互不相溶的溶剂中分配系数的不间而达到分离目的的方法。
简单的萃取过程是将萃取剂加入到样品溶液中,使其充分混合,因某组分在萃取剂中的平衡浓度高于其在原样品溶液中的浓度,于是这些组分从样品溶液中向萃取剂中扩散,使这些组分与样品溶液中的其他组分分离。
组分A在两相间的平衡关系可以用平衡常数K来表示:K=CA/C'A。
式中CA: 组分A在苯取剂中的浓度;C'A:组分A在原样品溶液中的浓度。
这就是分配定律。
对于液一液萃取,K通常称为分配系数,可将其近似地看做组分在萃取剂和原样品溶液中的溶解度之比。
物质在萃取剂和原溶液中的溶解度差别越大,K值越大,萃取分离效果越好。
当K≥100时,所用萃取剂的体积与原溶液体积大致相等时,一次简单萃取可将99%以上的该物质萃取至萃取剂中,但这种情况往往很少。
K值取决于温度、溶剂和被萃取物的性质,而与组分的最初浓度、组分与溶剂的质量无关。
萃取过程的分离效果主要表现为被分离物质的萃取率和分离纯度。
萃取率为萃取液中被萃取的物质与原溶液中该物质的溶质的量之比。
萃取率越高,表示萃取过程的分离效果越好。
1.1 影响萃取效果的因素影响分离效果的主要因素包括:萃取剂、被萃取的物质在萃取剂与原样品溶液两相之间的平衡关系(主要表现为被萃取物质在萃取剂与原样品溶液两相中的溶解度差别)、在萃取过程中两相之间的接触情况。
被萃取物质在一定的条件下,主要决定于萃取剂的选择和萃取次数。
1.1.1萃取溶剂的选择萃取剂对萃取效果的影响很大,萃取溶剂选择的主要依据是被萃取的物质的性质,相似相溶原理是萃取剂选择的基本规则。
11 液液萃取(溶剂萃取)Liquid-liquid extraction(Solventextraction)11.1 概述一、液液萃取过程:1、液液萃取原理:根据液体混合物中各组分在某溶剂中溶解度的差异,而对液体混合物实施分离的方法,也是重要的单元操作之一。
溶质 A + 萃取剂 S——————〉S+A (B) 萃取相 Extract分层稀释剂 B B + A (S…少量) 萃余相 Raffinate(残液)一般伴随搅拌过程 => 形成两相系统,并造成溶质在两相间的不平衡则萃取的本质:液液两相间的传质过程,即萃取过程是溶质在两个液相之间重新分配的过程,即通过相际传质来达到分离和提纯。
溶剂 extractant(solvent)S 的基本条件:a、S 不能与被分离混合物完全互溶,只能部分互溶;b、溶剂具有选择性,即溶剂对A、B两组分具有不同溶解能力。
即(萃取相内)(萃余相内)最理想情况: B 与 S 完全不互溶 => 如同吸收过程: B 为惰性组分相同:数学描述和计算实际情况:三组分分别出现于两液相内,情况变复杂2 、工业萃取过程:萃取不能完全分离液体混合物,往往须精馏或反萃取对萃取相和萃余相进行分离,而溶剂可循环使用。
实质:将一个难于分离的混合物转变为两个易于分离的混合物举例:稀醋酸水溶液的分离:萃取剂:醋酸乙酯3 、萃取过程的经济性:取决于后继的两个分离过程是否较原液体混合物的直接分离更容易实现( 1 )萃取过程的优势:(与精馏的关系)a、可分离相对挥发度小或形成恒沸物的液体混合物;b、无相变:液体混合物的浓度很低时,精馏过于耗能(须将大量 B 汽化);c、常温操作:当液体混合物中含有热敏性物质时,萃取可避免受热;d、两相流体:与吸附离子交换相比,操作方便。
( 2 )萃取剂的选择——萃取过程的经济性a、分子中至少有一个功能基,可以与被萃取物质结合成萃合物;b、分子中必须有相当长的烃链或芳香环,可使萃取剂和萃合物容易溶解于有机相,一般认为萃取剂的分子量在350-500之间较为合适。
酒泉职业技术学院《药物分离与纯化技术》学习领域教案作,也可多级组合操作。
每个萃取级包括混合槽和澄清器两个主要部分。
混合槽中安装搅拌装置,也可采用静态混合器、脉冲或喷射器来实现两相的充分混合。
澄清器的作用是将已接近平衡状态的两液相进行有效分离。
对易于澄清的混合液,可以依靠两相间的密度差进行重力沉降(或升浮)。
对于难分离的混合液,可采用离心式澄清器加速两相分离过程。
操作时,被处理的混合液和萃取剂首先在混合槽内充分混合,再进入澄清器中进行澄清分层。
多级混合-澄清槽是由多个单级萃取单元组合而成。
混合-澄清槽的优点:传质效率高(级效率一般80%以上);操作方便;运转稳定可靠;结构简单;可处理含有悬浮固体的物料。
混合-澄清槽的缺点:水平排列的设备占地面积大;每级内都有搅拌装置;液体在级间流动需泵输送,故能耗多;设备费及操作费较高。
为克服水平排列多级的缺点,可采用箱式和立式混合-澄清萃取设备。
二、塔式萃取设备习惯上,将高径比很大的萃取装置统称为塔式萃取设备。
为了获得满意的萃取效果,塔设备应具有分散装置,以提供两相间较好的混合条件。
同时,塔顶、塔底均有足够的分离段,使两相很好的分层。
由于使两相混合和分离所采用的措施不同,因此出现了不同结构形式的萃取塔。
1、填料萃取塔和脉动填料萃取塔用于萃取的填料塔与用于气-液传质过程的填料塔结构基本相同,即在塔体内支承板上充填一定高度的填料层。
萃取操作时,连续相充满整个塔中,分散相以液滴状通过连续相。
为防止液滴在填料入口处聚结和过早出现液泛,轻相入口管应在支承器之上25~50mm处。
选择填料材质时,除考虑料液的腐蚀性外,还应使填料只能被连续相润湿而不被分散相润湿,以利于液滴的生成和稳定。
当填料层高度较大时,每隔3~5m高度应设置再分布器,以减小轴向返混。
填料尺寸应小于塔径的1/8~1/10,以降低壁效应的影响。
填料塔结构简单,操作方便,特别适合处理腐蚀性料液。
当工艺要求小于三个萃取理论级时,可选用填料塔。