4 第4章 模型预测控制
- 格式:ppt
- 大小:1.31 MB
- 文档页数:101
模型预测控制(MPC)预测控制预测控制或称为模型预测控制(MPC)是仅有的成功应用于工业控制中的先进控制方法之一。
各类预测控制算法都有一些共同的特点,归结起来有三个基本特征:(1)预测模型,(2)有限时域滚动优化,(3)反馈校正。
这三步一般由计算机程序在线连续执行。
预测控制是一种基于预测过程模型的控制算法,根据过程的历史信息判断将来的输入和输出。
它强调模型的函数而非模型的结构,因此,状态方程、传递函数甚至阶跃响应或脉冲响应都可作为预测模型。
预测模型能体现系统将来的行为,因此,设计者可以实验不同的控制律用计算机仿真观察系统输出结果。
预测控制是一种最优控制的算法,根据补偿函数或性能函数计算出将来的控制动作。
预测控制的优化过程不是一次离线完成的,是在有限的移动时间间隔内反复在线进行的。
移动的时间间隔称为有限时域,这是与传统的最优控制最大的区别,传统的最优控制是用一个性能函数来判断全局最优化。
对于动态特性变化和存在不确定因素的复杂系统无需在全局范围内判断最优化性能,因此这种滚动优化方法很适用于这样的复杂系统。
预测控制也是一种反馈控制的算法。
如果模型和过程匹配错误,或者是由于系统的不确定因素引起的控制性能问题,预测控制可以补偿误差或根据在线辨识校正模型参数。
虽然预测控制系统能控制各种复杂过程,但由于其本质原因,设计这样一个控制系统非常复杂,要有丰富的经验,这也是预测控制不能预期那样广泛得到应用的主要原因。
预测控制适用于先进过程控制(APC)和监督控制场合,其控制输出作用主要是跟踪设定值的变化。
但预测控制并不能很好地处理调节控制难题。
模型预测控制是一种基于模型的闭环优化控制策略,已在炼油、化工、冶金和电力等复杂工业过程控制中得到广泛的应用。
模型预测控制具有控制效果好、鲁棒性强等优点,可有效地克服过程的不确定性、非线性和关联性,并能方便处理过程被控变量和操纵变量中的各种约束。
预测控制算法种类较多,表现形式多种多样,但都可以用以下三条基本原理加以概括:①模型预测:预测控制的本质是在对过程的未来行为进行预测的基础上,对控制量加以优化,而预测是通过模型来完成的。
控制工程中的模型预测控制技术及应用控制工程是一个重要的领域,它涉及到我们日常生活中的许多产品、设备和系统。
在控制工程中,模型预测控制技术是一种非常重要的工具,它可以用来预测系统的未来行为,并根据预测结果来控制系统的行为,以达到我们想要的目标。
一、什么是模型预测控制技术模型预测控制技术是一种基于数学模型的控制方法,它将系统建模为一个数学模型,并根据模型预测未来的系统行为。
根据预测结果,该技术可以生成一组控制器输出,以实现所需的控制目标。
这种技术广泛应用于各种类型的系统,例如化工过程、电力系统、交通工具和机器人等。
模型预测控制技术有许多不同的实现方式,例如广义预测控制、序列预测控制和约束优化预测控制等。
这些实现方式都基于不同的数学模型和控制算法,但它们都具有相同的核心思想:根据模型预测未来的系统行为,并根据预测结果来决定控制器的输出。
二、模型预测控制技术的应用模型预测控制技术在很多领域都得到了广泛的应用,以下是其中几个应用案例:1. 化工过程控制模型预测控制技术在化工过程中得到了广泛应用。
它可以用来控制反应器中的化学反应,并确保反应物以正确的比例混合。
这种技术还可以用于控制传送带上的材料,以确保材料以正确的速度和比例传送。
2. 电力系统控制模型预测控制技术在电力系统中也得到了广泛应用。
它可以用来调节发电机的输出,以确保电网的稳定运行。
这种技术还可以用于控制供电网络中的电流和电压,以确保电力系统的正常运行。
3. 交通工具控制模型预测控制技术在交通工具中也得到了广泛应用。
例如,可以将该技术用于汽车的自动驾驶系统中,以实现更加精确的路线跟踪和避免与其他车辆的碰撞。
4. 机器人控制模型预测控制技术还可以用于机器人的控制。
例如,可以将该技术用于机器人的运动控制中,以确保机器人沿着正确的路径移动,并避免与其他对象的碰撞。
三、模型预测控制技术的优缺点虽然模型预测控制技术有很多优点,但它也存在一些缺点。
以下是其中的一些:优点:1. 预测未来行为:模型预测控制技术可以预测系统未来的行为,从而能够做出更好的控制决策。
mpcc模型预测控制原理MPCC模型预测控制原理概述模型预测控制(Model Predictive Control, MPC)是一种基于模型的控制策略,广泛应用于工业过程控制、机器人控制、交通流量控制等领域。
MPCC模型预测控制是MPC的一种改进形式,通过引入约束条件来优化系统的控制性能。
本文将介绍MPCC模型预测控制的原理、优势以及应用领域。
一、MPCC模型预测控制原理MPCC模型预测控制的基本原理是通过建立系统的数学模型,预测未来一段时间内的系统行为,并根据优化目标函数和约束条件确定最优控制输入。
其主要步骤包括以下几个方面:1. 建立系统模型:根据实际系统的特性,建立数学模型,通常采用离散时间状态空间模型或差分方程模型。
模型的准确性对于MPCC 的控制性能至关重要。
2. 预测未来状态:根据系统模型,使用当前状态和控制输入,预测未来一段时间内系统的状态。
这可以通过迭代计算系统模型的状态转移方程来实现。
3. 优化控制输入:通过优化目标函数和约束条件来确定最优控制输入。
目标函数通常包括系统的性能指标,如控制偏差的最小化、能耗的最小化等。
约束条件可以包括系统状态的约束、输入变量的约束等。
4. 执行控制输入:根据优化结果,执行最优控制输入。
在实际应用中,由于存在执行延迟和测量误差等因素,通常需要进行反馈校正,以实现精确的控制。
二、MPCC模型预测控制的优势MPCC模型预测控制相比传统的控制方法具有以下几个优势:1. 多变量控制能力:MPCC模型预测控制可以处理多变量系统,并考虑变量之间的相互影响,从而实现更精确的控制。
这在工业过程控制等领域尤为重要。
2. 鲁棒性:MPCC模型预测控制可以通过引入约束条件来确保系统在不确定性和扰动的情况下仍能保持稳定性。
这使得MPCC对于工业系统的鲁棒性要求更高。
3. 非线性控制能力:MPCC模型预测控制可以处理非线性系统,并通过在线优化来实现对非线性系统的精确控制。
这在机器人控制等领域尤为重要。
约束模型预测控制其实讲模型预测控制有几个角度去讲,因为它本就是属于优化和控制两个领域的交叉。
我比较习惯于从最优控制的角度去理解,这样的话对于自动化出身的童鞋是比较好理解的,但是其它领域的童鞋之前没有接触过最优控制的,就更加不好去理解模型预测控制了。
所以本文从最最基本的一个动机开始讲起。
模型预测控制(model predictive control)顾名思义有三个主要部分构成,1模型;2预测;3控制(做决策),我们只要理解这三个部分和它们之间的关系即可。
1 模型,模型可以是机理模型,也可以是一个基于数据的模型(例如用神经网络training 一个model出来)2 预测,建立模型的目的是什么呢?建立一个模型并不是放在那里拿来看的,多半是用来做预测用的。
我们每天的生活中就在不停地做建模和预测的事情,例如你过马路的时候,会预测一下是否有车能撞到你,例如我们周末想出去旅游了,可能就会去看一下天气预报。
在实际生产中也有很多类似的例子,淘宝会预测每件商品未来7天的购买量,物理学家会用牛顿三大定律预测小行星的运动轨迹。
3 控制(做出决策),控制就是我需要做出动作了,在前面的例子中对应起来就是,例如你过马路的时候,会预测一下是否有车能撞到你,如果没有你就赶快过马路(控制动作)。
例如淘宝会预测商品未来7天的购买量,就要看如果说有一些商品缺货了的话就赶紧去调货或者生产(控制动作),例如物理学家用牛顿三大定律预测小行星运动轨迹,如果预测到小行星会撞击到地球的话,那就提前需要采取措施来避免小行星的撞击(控制动作)。
在上面的三个例子中,第一个例子你用的是你的大脑根据以往经验学到的模型来做预测,第二个例子中可能你会用神经网络,决策树啊等等机器学习学习到的模型(说到这里可能很多童鞋会比较激动,模型预测控制可以和现在很火的人工智能深度学习结合在一起),第三个例子中物理学家们用到的是机理模型。
总之各种各样的模型都可以做预测,我们身边天天都在做预测,而预测不单单是预测的准就完事了,预测的目的是为了让我们更好的去决策。
专题1作业
(1)简要介绍一下模型预测控制的原理、模型预测控制与基础PID控制回路的闭环实现框图;动态矩阵控制采用什么内部模型?
●模型预测控制原理:模型预测控制不仅利用当前和过去的偏差值,而且还利用预测模型
来预测过程未来的偏差值。
通过滚动优化来确定当前的最优控制策略,使未来一段时间内被控变量与期望值偏差最小。
系统输出的反馈校正用于补偿模型预测误差和其他扰动。
●闭环实现框图:
图1模型预测控制框图
图2基础PID控制框图
●动态矩阵控制内部模型:主要采用基于被控对象单位阶跃响应非参数模型。
(2)软测量包括哪几种类型?变结构控制原理是什么?什么是完整性控制方法?
●软测量:根据软测量模型的建模机制可分为以下几类:
⏹机理建模(白箱建模)
⏹数据驱动建模(黑箱建模)
⏹混合建模
⏹非线性动态软测量建模
●变结构控制原理:在动态控制中,根据系统当时状态,以跃变方式有目的地不断变换,
迫使系统按预定的“滑动模态”的状态轨迹运动。
变结构是通过切换函数实现的。
当系统的状态向量所决定的切换函数值,随着它的运动达到某特定值时,系统中一种结构(运动微分方程)转变成另一种结构。
其系统结构图如下所示。
图3变结构控制系统框图
●完整性控制方法:完整性控制是容错控制的研究热点,所谓完整性是指当系统中某些部
件失效后,系统仍能够稳定工作的特性。
基于该特性的控制方法即为完整性控制方法。
模型预测控制(MPC)是一种优化方法,它结合了模型预测和动态控制,以实现更优的控制性能。
在强化学习中,模型预测控制方法可以用于处理具有不确定性和复杂性的问题,如连续时间的动态系统、连续和离散的动作空间等。
模型预测控制的主要步骤包括:
1. 预测模型:使用系统的动态模型来预测系统的未来状态。
2. 定义约束:定义一系列约束条件,包括系统限制、资源限制和目标限制等。
3. 优化目标:优化一个或多个目标函数,通常包括最大化期望回报和最小化某些损失函数。
4. 动态控制:根据当前的预测和优化结果,生成未来的控制输入,以最大化预测性能并满足所有约束。
在强化学习中应用模型预测控制的方法可以归纳为以下几种:
1. 策略优化:通过寻找一种策略,使得未来的预测性能(如回报)最大化。
强化学习中的Q-learning、Actor-Critic等方法就使用了模型预测控制的思想。
2. 时序规划:对于具有复杂时序结构的问题,可以使用MPC方法来规划连续的动作序列。
3. 动态调整:强化学习中的许多问题都涉及到动态系统的状态转移和奖励函数,这时可以使用MPC来根据系统的状态和过去的经验动态地调整控制策略。
总的来说,模型预测控制方法在强化学习中主要用于解决具有不确定性和复杂性的问题,通过结合模型预测和动态控制,可以实现更优的控制性能。