TD-SCDMAWCDMA基站射频测试基础
- 格式:ppt
- 大小:409.00 KB
- 文档页数:59
TD-SCDMA/TD-HSDPA终端射频测试用户都是通过终端来体会感受网络所提供的各项功能,因此终端的成熟度与质量直接关系到移动通信业务本身的推广与发展。
对于中国独自开发的TD-SCDMA来说,这一点显得尤为重要。
随着3G牌照的正式发布以及TD-SCDMA网络的不断扩容,政策因素与网络覆盖问题都将得到完美的解决,终端本身的性能与质量将成为最为关注的话题。
测试仪表对于确保终端的质量来说是一个非常关键的设备。
对于运营商来说,不可能将TD-SCDMA网络做到与GSM一样的覆盖范围,在TD-SCDMA 无法覆盖的区域需要现有的2G网络来提供相应的替代服务。
因此,能够兼容TD-SCDMA/GSM两种制式的双模终端成为一个必然的趋势。
与之相应,TD-SCDMA终端测试仪表需要增加GSM测量的能力,以提高测试效率。
目前在部分TD-SCDMA终端生产测试中采用的非信令模式(仅测量射频指标、不建立网络连接及呼叫测试)适合于校准及射频测量,并不适合于对TD-SCDMA终端进行最终测试,因为TD-SCDMA终端相对还不是很成熟,仅采用非信令模式进行测试,可能在实际通话时还会遇到问题。
因此,整的信令测试模式对于还在起步阶段的TD-SCDMA终端来说很有必要。
对于终端的应用业务及功能测试、协议测试来说,目前还缺乏相应的网络仿真器,都是使用实际的基站来构建模拟网络。
对于手机终端不可缺少的一致性测试(协议、应用、USIM 等),更是需要基于基站仿真器的模拟网络环境来保证测试条件的统一性。
TD-SCDMA/TD-HSDPA终端射频测试TD-SCDMA终端的射频测试主要包括以下两方面:(1)研发测试包括对终端设计过程的板级、整机测试验证,以保证终端主要指标符合规范的要求。
(2)生产线测试包括非信令校准、信令连接测试,以保证最终终端产品的性能指标稳定。
在3GPP TS34.122规范中详细规定了TD-SCDMA终端需要符合的无线发射与接收指标,主要包括发射机特性、接收机特性、性能、无线资源管理、HSDPA性能等。
WCDMA射频测试指导书目录前言 (3)1 范围 (1)2 应用标准及参考资料 (1)3 符号和缩略语 (4)4 测试条件和设备 (3)5 测试内容 (7)前言本指南为手机硬件测试系列指南中的WCDMA 射频测试部分。
因为3G(WCDMA)手机硬件的测试在涉及基带相关的测试与2G(GSM)差别不大,所以此文档中主要描述的主要是3G (WCDMA)射频相关的测试。
本指南由深圳市朵唯致远科技有限公司硬件测试小组起草制定。
手机硬件测试指南 3G射频测试1 范围本规范明确了WCDMA手机硬件的项目、测试方法和测试设备。
由于手机平台的不同,导致手机功能的多样性,难免保证该测试规范能适合所有的机型,故在实际测试中应根据实际情况予以取舍。
本规范适用于深圳市朵唯致远科技有限公司硬件测试人员对3G手机硬件的测试。
2 引用标准及参考资料[1] 3GPP TS 34.121 Terminal conformance Specification; Radio transmissionand reception (FDD)(Release 6)[2] 3GPP TS 34.123 UE Conformance Specification, Part 1,2,3[3] 3GPP TS 34.124 Electromagnetic compatibility (EMC) requirements forMobile terminals and ancillary equipment3 符号和缩略语BER Bit Error Ratio 误比特率BLER Block Error Ratio 误块率BTS Base Transmitter Station 基站DL Down Link (forward link) 下行链路(前向链路)FDD Frequency Division Duplex 频分复用UL Up Link (reverse link) 上行链路(反向链路)BCH Broadcast Channel 广播信道CCPCH Common Control Physical Channel 公共控制物理信道CCTrCH Coded Composite Transport Channel 码组合传输信道CPICH Common Pilot Channel 公共导频信道DCH Dedicated Channel 专用信道DPCCH Dedicated Physical Control Channel 专用物理控制信道DPCH Dedicated Physical Channel 专用物理信道DPDCH Dedicated Physical Data Channel 专用物理数据信道DSCH Downlink Shared Channel 下行共享信道DTX Discontinuous Transmission 不连续发射FACH Forward Access Channel 前向接入信道PCH Paging Channel 寻呼信道主公共控制物理信道P-CCPCH Primary Common Control PhysicalChannelPDSCH Physical Downlink Shared Channel 物理下行共享信道PICH Page Indicator Channel 寻呼指示信道PRACH Physical Random Access Channel 物理随机接入信道PSC Primary Synchronisation Code 主同步码RACH Random Access Channel 随机接入信道从公共控制物理信道S-CCPCH Secondary Common Control PhysicalChannelSCH Synchronisation Channel 同步信道SF Spreading Factor 扩频因子TSTD Time Switched Transmit Diversity 时间切换发射分集传输格式组合指示TFCI Transport Format CombinationIndicatorTPC Transmit Power Control 发射功率控制ACLR Adjacent Channel Leakage power Ratio 邻道泄漏功率比BER Bit Error Ratio 误码率BLER Block Error Ratio 误块率DPCH Dedicated Physical Channel 专用物理信道DPCH_E c Average energy per PN chip for DPCH. DPCH每个伪随机码的平均能量EIRP Effective Isotropic Radiated Power 有效全向辐射功率EVM Error Vector Magnitude 误差矢量幅度FDD Frequency Division Duplexing 频分双工FER Frame Erasure Rate, Frame Error Rate 误帧率F uw Frequency of unwanted signal. 非有用信号的频率GSM Global System for Mobile全球移动通信系统communicationsTDD Time Division Duplexing 时分双工TFC Transport Format Combination 传输格式组合UE User Equipment 用户设备宽带码分多址WCDMA Wideband Code Division MultipleAccess4 测试条件及设备4.1 环境温度4.1.1 正常温湿条件正温度: 15ºC~60ºC,相对湿度:20%-75%。
TD-SCDMA-AND-CDMA-TESTTD-SCDMA测试TD-SCDMA(Time Division-Synchronous Code Division Multiple Access ,时分同步的码分多址技术,是中国提出的第三代移动通信标准)终端一致性测试包括射频指标测试(参考标准:3GPPTS34.122),协议信令测试(参考标准:3GPPTS34.123)和其它测试(参考标准:3GPPTS31.120)三类测试。
1.射频指标测试分为“发射机特性测试”“接收机特性测试”“性能指标测试”和“支持无线资源管理测试”。
发射机特性测试:包括UE最大发射功率、频率稳定性、最小发射功率、占用带宽、邻道泄漏抑制比、杂散辐射、互调特性、开环功率控制、闭环功率控制、发射开关模板、发射关功率、频谱发射模板误差矢量幅度(EVM)、峰值域码误差(PCDE)等。
接收机特性测试:接收灵敏度电平、最大输入电平、邻道选择性、阻塞特性、杂散辐射等。
性能指标测试:包括静态传播条件下的解调、各种不同衰落条件下的DCH解调、下行链路的功率控制、上行链路的功率控制等。
支持无线资源管理测试:包括小区选择、重选、切换等。
2.协议信令测试主要是保证UE的信令、协议的一致性和规范化,这部分测试主要包括三项内容:3G网络的基本功能,电路域基本过程和分组域基本过程。
3.TD其它测试部分的测试内容主要有UIGG/USM测试等。
TD-SCDMA系统有如下几个主要的射频指标(1) 占用带宽(Occupied bandwidth)定义:以指定信道的中心频点为中心,包含总发射功率的99%功率的频带宽度。
测试目的:验证基站发射没有占用过多的带宽而干扰其它无线电业务。
(2) 最大输出功率(Maximum output power ,P max)定义:在指定参考条件下,在天线接口处一个激活时隙上(包括保护时间段),每个载波的平均功率电平。
测试目的:验证基站内所有发射单元最大输出功率在其工作频段内的精确性。
1引言作为第三代移动通信系统标准之一的TD-SCDMA,采用了两项最为关键的技术,即智能天线技术和联合检测技术。
其中智能天线对于系统的作用主要包括:(1)通过多个天线通道功率的最大比合并以及阵列信号处理,明显提高了接收灵敏度;(2)波束赋形算法使得基站针对不同用户的接收和发射很高的指向性,因此用户间的干扰在空间上能够得到很好的隔离;(3)波束赋形对用户间干扰的空间隔离,明显增加了CDMA的容量,结合联合检测技术,使得TD-SCDMA能够实现满码道配置;(4)通过波束赋形算法能够实现广播波束宽度的灵活调整,这使得TD-SCDMA在网络优化过程中小区广播覆盖范围的调整可以通过软件算法实现(常规基站天线的广播波束是固定不可变的,若想调整覆盖范围必须要更换天线),从而明显提高了网优效率;(5)通过对天线阵进行波束赋形使得下行信号能够对准一个(或若干个不同位置的用户)用户,这等效于提高了发射机的有效发射功率(EIRP)。
CDMA系统中采用了大功率线性功放,价格比较昂贵;采用智能天线技术的TD系统可以采用多个小功率功放,从而降低了制造成本。
2基本工作机理根据波束成形的实现方式以及目前的应用情况,智能天线通常可分为多波束智能天线和自适应智能天线。
多波束智能天线采用准动态预多波束的波束切换方式,利用多个不同固定指向的波束覆盖整个小区,随着用户在小区中的移动,基站选择其中最合适的波束,从而增强接收信号的强度。
多波束智能天线的优点是复杂度低、可靠性高,但缺点是它受天线波束宽度等参数影响较大,性能差于自适应智能天线。
自适应智能天线采用全自适应阵列自动跟踪方式,通过不同自适应调整各个天线单元的加权值,达到形成若干自适应波束,同时跟踪若干个用户,从而能够对当前的传播环境进行最大程度上的匹配。
自适应智能天线在理论上性能可以达到最优,但是其实现结构和算法复杂度均明显高于多波束智能天线。
TD-SCDMA系统采用的是自适应智能天线阵,天线阵列单元的设计、下行波束赋形算法和上行DOA预估是智能天线的核心技术。
WCDMA与TD-SCDMA终端射频测试差异性分析摘要终端的射频一致性测试是整个移动通信产业链发展中的重要环节,WCDMA和TD-SCDMA是3GPP家族的主要成员,本文对WCDMA和TD-SCDMA终端的射频一致性测试项目、测试条件及不确定度要求等方面进行了对比研究,指出了二者的差别和可以借鉴的地方,并对规范中不太适合我国国情的部分条目进行了分析。
1、前言WCDMA和TD-SCDMA都是当今3G的主流通信标准,二者都采用3GPP指定的UMTS网络结构模型;在无线传输技术方面,都可以采用智能天线、联合检测等技术;在未来技术的演进路线上,都采用了HSDPA(高速下行分组接入)、MIMO(多输入多输出)、OFDM(正交频分复用)等技术,二者在终端一致性测试方面有很多相似的地方。
而WCDMA网络在国外已有商业应用,因此本文将比较它们在终端射频一致性测试内容方面存在的主要差异,希望对TD-SCDMA的终端测试有所帮助。
WCDMA终端射频一致性测试分析的依据是3GPP TS34.121 v6.3.0.TD-SCDMA终端射频一致性测试分析的依据是3GPP TS 34.122 v5.2.0。
其中34.122规范分为HCR(high chip rate)(3.84 Mchip/s)和LCR (10w chip rote)(1.28 Mchip/s)两个选项。
HCR体制是欧洲的UTRA TDD模式,是UTRA FDD模式的补充;LCR是我国TD-SCDMA技术体制和欧洲UTRA TDD在3GPP融合的结果。
HCR和LCR在设计出发点、应用场合、使用的技术和设备成本方面都有所不同。
在目前国内的产业环境下,各大厂商研发的主流产品都是LCR,因此本文只涉及LCR和UTRA FDD的对比。
这里所说的WCDMA即是指UTRA FDD模式,TD-SCDMA是指UTRA TDD LCR模式。
随着技术规范文件版本的更新,不排除此分析结果发生相应变化的可能性。