GIS算法基础lecture5 地统计插值算法1
- 格式:ppt
- 大小:5.76 MB
- 文档页数:34
地类计算与统计一、数据准备。
应用到的数据包括社界(DWG文件)和所求年份的现状图(Shape或GeoDatabase)DWG文件的注记的插入点(Text为左下角点)要落在对应的社界面上,这样才能保证数据转换后注记和面层的一一对应。
二、数据处理。
数据的处理主要包括数据的转换、点面属性连接、数据相交三个部分。
2.1数据转换2.1.1建立数据集(1)点击打开ArcCatalog程序,找合适的路径然后【右键】→新建→PersonalGeodatabase:▽(2)新建数据库后,【双击】进入数据库,【右键】→新建数据集→输入名称外,其余使用默认设置,不用修改,直接【下一步】,直到【完成】:▽输入数据集名称▽坐标系统选Unknown(未知),或者用【导入】选DWG文件的投影▽容限使用默认即可,点击【完成】▽2.1.2将DWG数据导入数据集!!首先必须确定DWG文件的路径没有中文名(D:\pssj\sj.dwg),否则导入会一片空白(1)【双击】进入数据集aaa,【右键】→【导入】→【要素类(多个)】(2)在【Input Features】中添加DWG文件的注记层(Annotation)和面层(Polygon)▽添加注记和面层,然后点【确定】导入▽2.1.3检查修改面层的拓扑!!面层可能存在裂缝和重叠错误,这样会带来计算面积的错误,因此要进行拓扑的检查(1)数据集aaa中,【右键】→【新建】→【拓扑】(2)前面两步使用默认直接【下一步】,选择要素的时候勾选面层然后【下一步】▽使用默认等级,然后【下一步】▽添加拓扑规则,规则选择【不能重叠】和【不能有缝隙】,分两次添加,然后【下一步】▽点击【完成】,然后选【是】验证拓扑▽(3)修改拓扑错误打开ArcMap,添加aaa_Topology,即可看到拓扑检查结果(红色部分)可以看出,面层存在重叠,不存在裂缝,修要修改重叠部分,采用挖空的方法▽【编辑器】→【开始编辑】→用【选择工具】()选中重叠部分:▽【编辑器】→【裁切】(clip,可以将与选择部分有重叠的所有面擦除)▽直接【确定】,对所有重叠部分重复以上步骤▽在ArcMap工具栏位置【右键】→【拓扑】调出拓扑工具栏→【验证全部拓扑】重新验证拓扑看还有没有拓扑错误▽修改完没有拓扑问题后,【编辑器】→【保存编辑】→【停止编辑】▽拓扑错误已经消除,可以进行下一步操作!!如果导入DWG文件的线层,然后用线层构面的话,可以省略掉拓扑检查和修改这一步,操作会相对简单些。
地理信息系统算法基础课件地理信息系统(Geographic Information System,简称GIS)是一种以电子方式存储、管理、分析和展示地理空间数据的系统。
而地理信息系统算法基础则是指用于处理地理空间数据的各种算法原理和方法。
在地理信息系统中,算法是至关重要的。
它们可以帮助我们有效地处理和分析大量的地理数据,从而提供有用的决策支持和解决方案。
下面,我们将介绍一些常见的地理信息系统算法基础。
1. 空间数据查询算法:这些算法用于从大规模地理空间数据集中快速检索数据。
其中,最常见的算法是R树算法和四叉树算法。
它们利用树状结构来组织空间数据,从而实现高效的查询。
2. 空间分析算法:这些算法主要用于对地理空间数据进行分析和处理。
例如,缓冲区分析算法可以计算某个地理要素周围一定距离范围内的区域,用于确定一些特定范围内的地理特征。
另一个例子是最短路径算法,它可以找到两个地点之间最短的路径。
3. 空间插值算法:这些算法主要用于从有限的采样数据中推断整个地理区域的属性。
例如,反距离加权插值算法可以根据已知的点数据来估计未知点的值。
其他常见的插值算法包括克里金插值算法和样条插值算法。
4. 空间统计算法:这些算法用于对地理空间数据进行统计分析。
例如,点模式分析算法可以识别地理空间中的聚集点、随机点或均匀点。
空间回归分析算法则用于探索地理特征之间的关联性。
除了上述的算法基础之外,还有许多其他的地理信息系统算法,如空间交互性度量算法、区域边界演化算法等。
它们为地理信息系统的发展和应用提供了重要的支持和指导。
地理信息系统算法基础是地理信息系统领域的核心内容。
通过学习和掌握这些算法,我们能够更好地处理和分析地理空间数据,为实际问题的解决提供良好的工具和方法。
arcgis插值方法ArcGIS插值方法是一种利用已知的离散点数据来推算未知地点的值的技术。
在地理信息系统中,插值方法被广泛应用于地形分析、环境模拟、资源评估等领域。
本文将介绍几种常用的ArcGIS插值方法,包括反距离加权插值(IDW)、克里金插值(Kriging)、样条插值(Spline)等。
我们来了解一下反距离加权插值(IDW)方法。
IDW方法假设距离越近的点对结果的影响越大,离待插值点越远的点对结果的影响越小。
IDW方法计算待插值点的值时,根据离待插值点的距离和邻域内点的值进行加权平均,得到待插值点的值。
IDW方法的优点是简单易懂,计算速度较快,适用于点密度较大且趋势较明显的情况。
但是IDW方法对异常值敏感,对点密度不均匀的数据拟合效果较差。
克里金插值(Kriging)是一种基于地统计学原理的插值方法。
克里金插值方法假设未知点的值是其周围点值的线性组合,并尽量使残差(即预测值与实际值之差)的方差最小。
根据克里金插值方法的预测模型,可以得到未知点的值。
克里金插值方法考虑了空间相关性,适用于点密度较低、数据不均匀分布的情况。
克里金插值方法的不足之处在于计算复杂度较高,对数据变异性的要求较高,需要根据实际情况选择合适的克里金模型。
除了IDW和克里金插值方法,ArcGIS还提供了样条插值(Spline)方法。
样条插值方法通过拟合一个平滑的曲面来估计未知点的值。
样条插值方法在计算过程中考虑了各个点的权重,能够较好地反映数据的变化趋势。
样条插值方法的优点是对数据分布没有要求,适用于各种数据类型。
但是样条插值方法需要较大的计算量,对数据噪声敏感。
除了上述三种常用的插值方法,ArcGIS还提供了其他一些插值方法,如最近邻插值、自然邻近插值等。
这些方法各有特点,可以根据实际需求选择合适的插值方法。
在使用ArcGIS进行插值分析时,除了选择合适的插值方法,还需要注意数据的质量和分布情况。
数据质量好、点密度均匀的情况下,插值结果会更加准确可靠。
ARCGIS插值操作在ARCGIS中,有多种插值方法可供选择,如Kriging插值、逆距离权重插值(IDW)、三角网插值(TIN)等。
以下将对这些方法进行探讨。
1. Kriging插值:Kriging是一种基于空间自相关的插值方法,可以通过评估观测点之间的空间相关性来进行数据推断。
Kriging插值对数据点之间的空间关系进行了建模,并生成了准确的等值面。
与其他插值方法相比,Kriging插值可以提供更准确和平滑的结果。
2.逆距离权重插值(IDW):IDW是一种基于观测点之间距离的插值方法,它假设离测量点越近的点对其值的影响越大。
IDW插值通过计算距离加权平均值来生成表面。
这种方法易于实现,并且对数据点的密度变化较为敏感,但可能会产生过度平滑的结果。
3.三角网插值(TIN):TIN是一种基于三角形的插值方法,它通过将测量点连接成三角形网格来生成表面。
TIN插值使用了Delaunay三角剖分算法,该算法有效地处理了不规则观测点布局的数据。
然后,通过线性插值在每个三角形内进行插值。
TIN插值对数据点的布局要求更高,可以有效处理非均匀分布的观测点。
除了这些主要的插值方法外,ARCGIS还提供了其他一些插值方法,如径向基函数插值(RBF),全局多项式插值(GPI),局部多项式插值(LPI)等。
这些方法可以根据数据的特点和用户的需求进行选择。
在ARCGIS中,进行插值操作的步骤包括:1.导入数据集:首先,需要将包含观测点和其对应值的数据集导入ARCGIS中。
2.创建插值图层:选择合适的插值方法,并根据数据分布和用户需求设置相应的插值参数。
然后,创建一个插值图层来表示生成的等值面。
3.插值处理:运行插值操作,ARCGIS会根据所选的插值方法和参数计算观测点的值,并生成光滑的等值面。
4.可视化和分析:通过调整等值面的样式和颜色编码,可以对结果进行可视化。
还可以进一步分析生成的等值面,如计算最大、最小值,获取特定值所在位置等。
评论(25)ArcGIS 地统计学习指南(二)huangyustar2007-8-1 09:14ArcGIS 地统计学习指南(三)(4)Voronoi 图用来发现离群值。
Voronoi 图的生成方法:每个多边形内有一个样点,多变形内任一点到该点的距离都小于其他多边形到该点的距离,生成多边形后。
某个样点的相邻样点便会与该样点的多边形有相邻边。
至于多边形值的计算有多种方法,可以用生成多边形的样点值作为多边形的值(Simple 方法),也可以以相邻样点的平均值为多边形的值(Mean 方法),具体计算方法可以在Type 下拉菜单中选择。
huangyustar2007-8-1 09:14ArcGIS 地统计学习指南(四)最后的两个图表是针对两个数据集而言的。
(6)普通Qqplot 分布图评估两个数据集分布的相似程度。
利用两个数据集中具有相同累积分布值的数据值来作图。
huangyustar2007-8-1 09:14ArcGIS 地统计学习指南(五)第四步:半变异函数/协方差模型面板(Semivariogram/covariance Modeling )此步的主要功能为半变异函数建模,是预测过程中的实质性阶段。
在此面板中需要社定许多与拟合半变异函数相关的选项以及半变异函数的参数。
是克里格预测中十分关键的部分。
Semivariogram/covariance 部分显示的是拟和的模型,黄线即半变异函数曲线。
Models 部分:model1,model2,model3表示可以用多个通用函数来拟和半变异函数模型。
如果数据为各向异性,则需要选中Anisotropy (其实大多数空间数据是各向异性的,各向同性只是相对的),当选中此选项时,黄线变为多条,表示多个方向的拟合函数。
Show Search Direction 选项选中后,表示只搜索某个方向的半变异函数。
Nugget :块金值,函数参数之一,即函数与y 轴相交的y 值。
ArcGIS 地统计克里金插值1.1 地统计扩ArcGIS 地统在软件中轻易地统计学的功(1)ESDA:(2)表面预(3)模型检地统计学起源的克里格方法方法是最主要1.2 表面预测ArcGIS 地统程。
一个完整的空现数据的特点Data 菜单及选择和预测模Geostatistic部分,一部分下面将按上述(注:[1]文章量样本),整本理论一般未准名称的也未我们下面的任扩展模块简介统计分析模块在易实现。
体现了功能在地统计分:探索性空间数测(模拟)和验与对比。
源于克里格。
当法。
虽然空间数要、最常用的空测主要过程统计扩展模块的空间数据分析过点,比如是否为其下级菜单完模型的选择;最cal Wizard 菜分作为训练样本述表面预测过程章示例中所使用整个过程均使用未进行解释,可未进行解释。
)任务是根据测量ArcGIS 打印20在地统计学与 G了以人为本、可分析模块的都能数据分析,即数误差建模;当时他用此法预数据分析还有其空间分析方法,的菜单非常简单过程,或者说表为正态分布、有成);然后选最后检验模型是菜单完成)。
1/ 12C本,一部分作为程进行叙述。
用的数据为 Ar用此数据;[2]文可查阅相关地统量所得到的某地地统计学习印 | 推荐 | 评007-8-1 09: GIS 之间架起了可视化发展的趋能实现,包括:数据检查;预测矿产分布,其他方法,如 I下面也以此法单,如下所示,表面预测模型,有没有趋势效应择合适的模型是否合理或几种Create Subse为检验样本。
rcGIS 扩展模文章以操作方统计理论资料;地臭氧浓度数据习指南( 一)评分 11 了一座桥梁。
使趋势。
后来经过别人IDW(反距离加法为主进行。
但由此却可以一般为。
拿到应、各向异性等进行表面预测种模型进行对比ets菜单的作块中所带的学法介绍为主,操作中所用到据进行全区的臭使得复杂的地统改进修改发展加权插值法)等完成完整的空到数据,首先要等等(此功能主,这其中包括比;(后两种功用是为把采样习数据(某地所涉及到的地的某些参数为臭氧浓度预测。
利用ARCGIS进行地类计算与统计讲解ARCGIS是一种强大的地理信息系统软件,被广泛用于地理数据的收集、管理、分析和可视化。
其中一个重要的功能是利用ARCGIS进行地类计算与统计。
在这篇文章中,我们将详细讲解如何使用ARCGIS进行地类计算与统计。
首先,什么是地类计算与统计?地类计算与统计是指对地理空间数据进行分类和统计分析的过程。
通过对地理空间数据进行分类,我们可以将地球表面划分为不同的地类,如森林、湖泊、农田等。
而地类统计则是指对这些地类进行数量、面积和比例等统计分析。
在ARCGIS中,进行地类计算与统计有多种方法。
其中一种常见的方法是通过栅格数据进行分析。
首先,我们需要将矢量数据转换为栅格数据。
ARCGIS提供了多种栅格化工具,如“要素到栅格”工具和“栅格样本”工具,可以将矢量数据转换为栅格数据。
在进行转换时,还可以设置栅格像元的大小、压缩比例和像元值的分配方式等参数。
转换完成后,我们可以使用栅格计算器进行地类计算。
栅格计算器是ARCGIS中的一个强大的工具,可以对栅格数据进行代数、逻辑和统计运算。
例如,我们可以使用栅格计算器将不同的栅格数据相加、相减或相乘,从而得到地类的组合或交叉。
此外,栅格计算器还可以进行逻辑运算,如AND、OR和NOT等。
除了栅格数据,ARCGIS还支持矢量数据的地类计算与统计。
对于矢量数据的地类计算,首先需要将矢量数据进行分类。
ARCGIS提供了多种分类方法,如自然断点分类、分位数分类和等间距分类等。
通过选择合适的分类方法,可以根据不同属性的值将矢量数据分成不同的类别。
然后,我们可以使用“汇总统计”工具对每个类别进行统计分析。
该工具可以计算每个类别的数量、面积、平均值、最大值和最小值等统计指标。
在进行地类计算与统计时,还可以利用ARCGIS的空间分析工具进行更复杂的分析。
例如,我们可以使用“空间连接”工具对不同的地类进行空间连接分析,以确定它们之间的关系和相似性。
arcgis插值运算【实用版】目录1.插值运算概述2.ArcGIS 插值运算方法2.1 空间插值2.2 统计插值2.3 样条插值2.4 普通插值2.5 三维插值3.插值运算的应用4.常见问题与解决方案正文一、插值运算概述插值运算是一种通过已知数据点来预测或估计未知数据点的方法,广泛应用于地理信息系统(GIS)和遥感领域。
其目的是在空间上或时间上对数据进行平滑或预测,以填充数据空白或扩展数据范围。
二、ArcGIS 插值运算方法1.空间插值空间插值是根据已知数据点的空间关系来预测未知数据点的方法,主要包括以下几种:- 线性插值:通过计算已知点之间的线性关系,预测未知点的值。
- 反距离权重法:根据已知点与预测点的距离,赋予已知点不同的权重,然后计算预测点的值。
- 样条插值:通过计算已知点之间的曲线关系,预测未知点的值。
2.统计插值统计插值是根据已知数据点的统计特征来预测未知数据点的方法,主要包括以下几种:- 普通插值:根据已知数据点的平均值、最大值、最小值等统计特征,预测未知点的值。
- 三维插值:在三维空间中,根据已知数据点的三维坐标和统计特征,预测未知点的值。
3.样条插值样条插值是一种通过计算已知数据点之间的样条函数来预测未知数据点的方法,可以很好地处理数据点的非线性关系。
4.普通插值普通插值是根据已知数据点的平均值、最大值、最小值等统计特征,预测未知点的值,适用于数据点分布较为均匀的情况。
5.三维插值三维插值是在三维空间中,根据已知数据点的三维坐标和统计特征,预测未知点的值,适用于处理立体空间数据的情况。
三、插值运算的应用插值运算在 GIS 领域有着广泛的应用,例如:- 地形分析:通过插值运算,可以生成连续的地形模型,用于地形分析和制图。
- 气象预测:通过插值运算,可以预测未来一段时间内的气象数据,用于气象预报和防灾减灾。
- 生态环境评价:通过插值运算,可以预测生态系统的变化趋势,用于生态环境评价和保护。
作者简介:王艳妮(1984~),女,陕西韩城人,中国地质大学(武汉)硕士研究生,研究方向为地理信息系统;谢金梅(1982~),女,新疆博乐人,中国地质大学(武汉)硕士研究生,研究方向为理理信息系统;郭祥(1984~),女,山西大同人,中国地质大学(武汉)硕士研究生,研究方向为数学地质、三维地质建模。
ArcGIS 中的地统计克里格插值法及其应用王艳妮,谢金梅,郭祥(中国地质大学资源学院,湖北武汉430074)摘要:ArcGIS 软件的地统计分析扩展模块是一个功能强大、简单易用的数据分析与表面建模工具,应用领域广泛。
首先介绍了地质统计学的概念和克里格插值的各种方法,然后从地统计的角度出发,运用ArcGIS 软件中地统计分析模块,探讨了克里格插值法在土地平整工程中的应用。
关键词:GIS ;ArcGIS 地统计分析;克里格插值;土方量中图分类号:TP312文献标识码:A文章编号:1672-7800(2008)12-0036-030引言地质统计学是上个世纪60年代法国人Matheron 在前人的基础上总结并提出的,它又称为克里格方法(Kriging )。
地质统计学中的克里格插值方法,由于其具有插值和估计的双重特点,在许多领域中都得到了广泛应用,已成为空间统计学上的一个重要分支,同时也成为许多专业、商业软件的重要组成部分。
近几十年来,地理信息系统(Geographic Information Sys -tem ,简称GIS )技术发展很快,作为其重要的组成部分———空间信息分析,也已经发展出一些重要的理论模型方法。
空间分析的应用领域含盖面极广,包含空间分析、空间数据分析、空间统计、地质统计学等。
在目前众多的GIS 软件中,虽有许多都涉足了空间分析领域,但其中有关地质统计学方面的内容却非常少。
ArcGIS8及以上版本软件中,将地质统计学单独作为一个分析扩展模块(即Geostatistical Analyst ,简称GA )纳入到了整个ArcGIS 软件的框架体系结构中。
ArcGIS教程:地统计一、什么是地统计地统计是统计的一类,用于分析和预测与空间或时空现象相关的值。
它将数据的空间(在某些情况下为时态)坐标纳入分析中。
最初,许多地统计工具作为实用方法进行开发,用于描述空间模式和采样位置的插值。
现在,这些工具和方法已得到了改进,不仅能够提供插值,还可以衡量所插入的值的不确定性。
衡量不确定性对于正确制定决策至关重要,因为其不仅提供插值的信息,还会提供每个位置的可能值(结果)的信息。
地统计分析也已从一元演化为多元,并提供了可融入用于补充(尽可能稀疏)主要感兴趣变量的辅助数据集的机制,从而可以构建更准确的插值和不确定性模型。
地统计在科学和工程的许多领域中广泛应用,例如:∙采矿行业在项目的若干方面应用地统计:最初需量化矿物资源和评估项目的经济可行性,然后需每天使用可用的更新数据确定哪种材料应输送到工厂以及哪种材料是废弃物。
∙在环境科学中,地统计用于评估污染级别以判断是否对环境和人身健康构成威胁,以及能否保证修复。
∙最近在土壤科学领域中的新应用着重绘制土壤营养水平(氮、磷、钾等)和其他指标(例如导电率),以便研究它们与作物产量的关系和规定田间每个位置的精确化肥用量。
∙气象应用包括温度、雨量和相关的变量(例如酸雨)的预测。
∙最近,地统计在公共健康领域也有一些应用,例如,预测环境污染程度及其与癌症发病率的关系。
在所有这些示例中,普遍情形是某些地区中存在的一些感兴趣的现象(某一污染物对土壤、水或者空气的污染情况;要开采地区黄金或者其他金属的含量;等等)。
彻底的考察费用昂贵且耗费时间,所以通常由在不同的位置采样来对现象进行描述。
然后,使用地统计对未采样的位置进行预测(以及生成对预测的不确定性的相关度量值)。
地统计研究的概化工作流在地统计工作流中有详细描述。
二、地统计工作流这一主题将介绍地统计研究的概化工作流以及主要步骤。
正如什么是地统计中所述,地统计是用于分析和预测与空间现象或时空现象相关联的值的统计数据类。
克里金插值法(Kriging Interpolation)是一种用于空间数据插值的地统计学方法,常用于地理信息系统(GIS)软件如ArcGIS中。
它基于统计学原理,根据已知点的空间分布和变量值,预测未知位置的变量值。
以下是克里金插值法的基本原理:
1. 空间自相关性:克里金插值法的核心思想是假设同一地理区域内的点之间存在空间自相关性,即相邻点之间的变量值具有一定的关联性。
这意味着离得越近的点之间的变化趋势可能更相似。
2. 半变异函数:插值过程中使用了半变异函数(Semi-Variogram Function)来描述点之间的变异性。
半变异函数展示了不同距离下变量值之间的相关性或协方差。
这个函数可以帮助确定变量值在不同方向上的变异性和相关性。
3. 权重计算:在插值过程中,为了预测未知点的变量值,需要根据已知点的位置、变量值以及它们之间的空间关系来计算权重。
与离目标点距离近且变异性较小的点会得到较大的权重,而距离远或变异性大的点则得到较小的权重。
4. 插值预测:通过计算权重,将已知点的变量值加权平均,从而预测未知点的变量值。
权重的计算基于半变异函数和点之间的距离。
5. 交叉验证:为了评估插值的精度,通常会采用交叉验证方法。
该方法将已知数据分成训练集和测试集,通过对测试集进行插值并与真实值比较,评估克里金插值法的预测能力。
总之,克里金插值法通过考虑空间自相关性和半变异函数,利用已知点之间的关系来预测未知点的变量值。
这使得它在GIS等领域中广泛用于空间数据插值和预测。
1/ 1。
ArcGIS地统计克⾥⾦插值评论(25)ArcGIS 地统计学习指南(⼆)huangyustar2007-8-1 09:14ArcGIS 地统计学习指南(三)(4)Voronoi 图⽤来发现离群值。
Voronoi 图的⽣成⽅法:每个多边形内有⼀个样点,多变形内任⼀点到该点的距离都⼩于其他多边形到该点的距离,⽣成多边形后。
某个样点的相邻样点便会与该样点的多边形有相邻边。
⾄于多边形值的计算有多种⽅法,可以⽤⽣成多边形的样点值作为多边形的值(Simple ⽅法),也可以以相邻样点的平均值为多边形的值(Mean ⽅法),具体计算⽅法可以在Type 下拉菜单中选择。
huangyustar2007-8-1 09:14ArcGIS 地统计学习指南(四)最后的两个图表是针对两个数据集⽽⾔的。
(6)普通Qqplot 分布图评估两个数据集分布的相似程度。
利⽤两个数据集中具有相同累积分布值的数据值来作图。
huangyustar2007-8-1 09:14ArcGIS 地统计学习指南(五)第四步:半变异函数/协⽅差模型⾯板(Semivariogram/covariance Modeling )此步的主要功能为半变异函数建模,是预测过程中的实质性阶段。
在此⾯板中需要社定许多与拟合半变异函数相关的选项以及半变异函数的参数。
是克⾥格预测中⼗分关键的部分。
Semivariogram/covariance 部分显⽰的是拟和的模型,黄线即半变异函数曲线。
Models 部分:model1,model2,model3表⽰可以⽤多个通⽤函数来拟和半变异函数模型。
如果数据为各向异性,则需要选中Anisotropy (其实⼤多数空间数据是各向异性的,各向同性只是相对的),当选中此选项时,黄线变为多条,表⽰多个⽅向的拟合函数。
Show Search Direction 选项选中后,表⽰只搜索某个⽅向的半变异函数。
Nugget :块⾦值,函数参数之⼀,即函数与y 轴相交的y 值。
GIS空间插值(局部插值方法)实习记录一、空间插值的概念和原理当我们需要做一幅某个区域的专题地图,或是对该区域进行详细研究的时候,必须具备研究区任一点的属性值,也就是连续的属性值。
但是,由于各种属性数据(如降水量、气温等)很难实施地面无缝观测,所以,我们能获取的往往是离散的属性数据。
例如本例,我们现有一幅山东省等降雨量图,但是最终目标是得到山东省降水量专题图(覆盖全省,统计完成后,各地均具有自己的降雨量属性)。
空间插值是指利用研究区已知数据来估算未知数据的过程,即将离散点的测量数据转换为连续的数据曲面。
利用空间插值,我们就可以通过离散的等降雨量线,来推算出山东省各地的降雨量了。
二、空间插值的几种方法及本次实习采用的原理和方法–整体插值方法»边界内插方法»趋势面分析»变换函数插值–局部分块插值方法»自然邻域法»移动平均插值方法:反距离权重插值»样条函数插值法(薄板样条和张力样条法)»空间自协方差最佳插值方法:克里金插值■局部插值方法的控制点个数与控制点选择问题局部插值方法用一组已知数据点(我们将其称为控制点)样本来估算待插值点(未知点)的值,因此控制点对该方法十分重要。
为此,第一要注意的是控制点的个数。
控制点的个数与估算结果精确程度的关系取决于控制点的分布与待插值点的关系以及控制点的空间自相关程度。
为了获取更精确的插值结果,我们需要着重考虑上述两点因素(横线所示)。
第二需要注意的是怎样选择控制点。
一种方法是用离估算点最近的点作为控制点;另一种方法是通过半径来选择控制点,半径的大小必须根据控制点的分布来调整。
S6、按照不同方法进行空间插值,并比较各自优劣打开ArcToolbox——Spatial Analyst 工具——插值,打开插值方法列表,如下图:A、采用反距离权重法(IDW)对降水量数据进行插值:反距离权重法的特点是按照距离待插值点的远近核定已知数据点的权重,从而对待插值点进行插值的过程。