聚合酶链反应
- 格式:ppt
- 大小:1.04 MB
- 文档页数:46
聚合酶链式反应聚合酶链式反应是一种用于放大扩增特定的DNA片段的分子生物学技术,它可看作是生物体外的特殊DNA复制,PCR的最大特点,是能将微量的DNA大幅增加。
PCR(聚合酶链式反应)是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。
基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。
PCR原理DNA的半保留复制是生物进化和传代的重要途径。
双链DNA在多种酶的作用下可以变性解旋成单链,在DNA聚合酶的参与下,根据碱基互补配对原则复制成同样的两分子拷贝。
在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。
因此,通过温度变化控制DNA的变性和复性,加入设计引物,DNA聚合酶、dNTP就可以完成特定基因的体外复制。
但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶耐热DNA聚合酶--Taq酶可以耐受90℃以上的高温而不失活,不需要每个循环加酶PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。
PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在72℃、DNA聚合酶(如TaqDNA聚合酶)的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链,重复循环变性--退火--延伸三过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。
什么是PCR?定义聚合酶链式反应简称PCR(英文全称:Polymerase Chain Reaction),聚合酶链式反应具体内容点击:聚合酶链式反应,简称PCR。
聚合酶链式反应,其英文Polymease Chain Reaction(PCR)是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。
它不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病的诊断或任何有DNA,RNA的地方.聚合酶链式反应(Polymerase Chain Reaction,简称PCR)又称无细胞分子克隆或特异性DNA序列体外引物定向酶促扩增技术。
编辑本段发展简史人类对于核酸的研究已经有100多年的历史。
20世纪60年代末70年代初,人们致力于研究基因的体外分离技术。
但是,由于核酸的含量较少,一定程度上限制了DNA的体外操作。
Khorana于1971年最早提出核酸体外扩增的设想。
但是,当时的基因序列分析方法尚未成熟,对热具有较强稳定性的DNA聚合酶还未发现,寡核苷酸引物的合成仍处在手工、半自动合成阶段,这种想法似乎没有任何实际意义。
1985年,美国科学家Kary Mullis 在高速公路的启发下,经过两年的努力,发明了PCR技术,并在Science杂志上发表了关于PCR技术的第一篇学术论文。
从此,PCR技术得到了生命科学界的普遍认同,Kary Mullis 也因此而获得1993年的诺贝尔化学奖。
但是,最初的PCR技术相当不成熟,在当时是一种操作复杂、成本高昂、“中看不中用”的实验室技术。
1988年初,Keohanog通过对所使用的酶的改进,提高了扩增的真实性。
尔后,Saiki等人又从生活在温泉中的水生嗜热杆菌内提取到一种耐热的DNA聚合酶,使得PCR技术的扩增效率大大提高。
也正是由于此酶的发现使得PCR技术得到了广泛地应用,使该技术成为遗传与分子生物学分析的根本性基石。
第五章聚合酶链反应及其相关技术PCR技术从Mullis最初建立到现在共约20多年时间,因为此技术具有高特异性、高敏感性和简便快捷等特点而备受人们广泛应用,许多新型的PCR技术或由PCR衍生的新技术正不断出现,使PCR技术由最初的单一技术体系逐步发展成为一系列的技术综合。
PCR技术在体外快速特异地复制目的DNA序列,理论上能将极其微量的(pg DNA)目的基因在较短的时间内(通常1-3h)扩增达到纳克、微克甚至毫克级水平,使产物极易被检测。
因此PCR技术目前已经成为人们获取目标基因的最常用的方法之一,Mullis因其杰出的贡献,于1993年获得了诺贝尔化学奖。
聚合酶链式反应(polymerase chain reaction,PCR) 是体外酶促扩增DNA或RNA序列的一种方法,它是一种不需要借助于分子克隆而可以在体外快速繁殖、扩增DNA的技术,它与分子克隆(molecular cloning)、DNA测序(DNA sequencing)一起构成了分子生物学的三大主流技术。
在这三项技术中,PCR技术自1983年由美国Cetus公司Kary.Mullis提出并于两年后建立以来,得到了快速的发展,成为最常用的分子生物学技术之一。
这项技术使人们能够在数小时内通过试管中的酶促反应将特定的DNA片断扩增数百万倍,给生命科学领域的研究手段带来了革命性的变化。
由于PCR技术的实用性和极强的生命力,PCR技术成为生物科学研究的一种重要方法,极大地推动了分子生物学以及生物技术产业的发展。
目前,一系列的PCR方法被设计开发出来,并广泛应用于基因扩增与分离、医疗诊断、基因突变与检测、分子进化研究、环境检测、法医鉴定等诸多领域。
5.1 PCR技术原理聚合酶链式反应(PCR)是利用DNA片段旁侧两个短的单链引物,在体外快速扩增特异DNA片段的技术。
它应用热稳定的聚合酶,通过双链DNA模板的热变性、引物退火和引物延伸的重复循环,DNA片段以指数方式增加了百万倍。
聚合酶链式反应实验报告《聚合酶链式反应实验报告》摘要:本实验旨在利用聚合酶链式反应(PCR)技术,对特定DNA片段进行扩增,以验证PCR技术在分子生物学研究中的应用。
实验结果表明,PCR技术能够快速、准确地扩增特定DNA片段,为分子生物学研究提供了重要的技术支持。
引言:PCR技术是一种能够在体外扩增特定DNA片段的技术,它的应用领域非常广泛,包括基因克隆、基因检测、DNA指纹分析等。
PCR技术的核心是聚合酶链式反应,通过该反应可以在短时间内扩增目标DNA片段,为分子生物学研究提供了重要的技术手段。
材料与方法:1. 实验材料:PCR试剂盒、目标DNA模板、引物、Taq聚合酶等。
2. PCR反应条件:预变性步骤(95°C,5分钟),30个循环(95°C,30秒;55°C,30秒;72°C,1分钟),最终延伸步骤(72°C,10分钟)。
3. PCR产物分析:利用琼脂糖凝胶电泳对PCR产物进行分析。
结果:经过PCR反应,我们成功地扩增出了目标DNA片段。
琼脂糖凝胶电泳结果显示,在PCR反应后,出现了明显的目标DNA条带,证明了PCR技术的有效性和准确性。
讨论:本实验结果表明,PCR技术能够快速、准确地扩增特定DNA片段,为分子生物学研究提供了重要的技术支持。
通过PCR技术,我们可以在短时间内获得大量目标DNA片段,为基因克隆、基因检测等研究提供了便利。
同时,PCR技术还可以用于DNA指纹分析、疾病诊断等领域,具有广阔的应用前景。
结论:本实验验证了PCR技术在分子生物学研究中的重要应用,为进一步深入研究基因克隆、基因检测等领域提供了重要的技术支持。
PCR技术的快速、准确和高效特点,使其成为分子生物学研究中不可或缺的技术手段。
希望通过本实验的结果,能够更好地推动PCR技术在生物学领域的应用和发展。
定义(英文全称:Polymerase Chain Reaction),性的分析方法发展到定量测定;从原先只能扩增几个kb的基因到目前已能扩增长达几十个kb的DNA片段。
到目前为止,PCR技术已有十几种之多,例如,将PCR与反转录酶结合,成为反转录PCR,将PCR与抗体等相结合就成为免疫PCR等。
编辑本段技术原理复制成同样的两分子挎贝。
在 简便、快速 PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应。
扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广。
对标本的纯度要求低 不需要分离病毒或细菌及培养细胞,DNA 粗制品及RNA均可作为扩增模板。
可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等DNA扩增检测。
编辑本段反应五要素 4种dNTP混合物各200umol/L 引物各10~100pmol 模板DNA0.1~2ug TaqDNA聚合酶2.5u Mg2+1.5mmol/L 加双或三蒸水至100ul PCR反应五要素:参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和缓冲液(其中需要Mg2+)编辑本段PCR反应条件的选择 70~80℃ 150核苷酸/S/酶分子 70℃ 60核苷酸/S/酶分子 55℃ 24核苷酸/S/酶分子 高于90℃时, DNA合成几乎不能进行。
PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合。
PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够 的。
3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min。
延伸进间过长会导致非特异性扩增带的出现。
对低浓度模板的扩增,延伸时间要稍长些。
编辑本段酶及其浓度2.0mmol/L为宜。
Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少。
聚合酶链式反应pcr
1 聚合酶链式反应PCR
聚合酶链式反应(PCR)是一种允许大量翻倍指定的DNA序列的分
子生物技术。
通过利用特殊的酶(聚合酶)将两个DNA片段分别相互“拉伸”,重复地迭代扩增,合成更长的片段。
1.1 PCR的原理
PCR主要利用DNA聚合酶的功能来调控DNA片段的重复扩增与合成。
扩增过程分为三个步骤,即引物扩增、双螺旋扩增、保守分裂。
引物
扩增过程中,首先将扩增片段与反转录引物结合起来,DNA聚合酶将其复制到双螺旋结构;双螺旋扩增过程中,DNA聚合酶会主动分裂双螺旋,然后重复复制双螺旋,产生DNA序列的复制品;最后,保守分裂过程中,会继续分裂DNA双螺旋,直到完成指定的扩增任务。
1.2 PCR的应用
PCR技术有着广泛的应用,主要包括临床诊断应用、筛检、疾病分子检测等。
其中,PCR已经被广泛应用在心脑血管疾病、肿瘤、感染性疾病以及遗传病的检测上,准确可靠地检测出各种疾病的抗原。
另外,PCR技术在基因组学研究中也有广泛应用,可以用来进行基因鉴定、基因表达研究、比较基因组研究等。
在微生物学研究中,PCR技术也可以用来识别和遗传分类各种细菌和病毒,可以研究它们的源头和传播路径。
由此可见,聚合酶链式反应PCR技术无疑是一种重要而有用的分子生物技术,它已经得到广泛的应用,在诊断、疾病研究以及基因组学研究中发挥着重要作用。
聚合酶链式反应简介聚合酶链式反应(PCR)是一种重要的分子生物学技术,被广泛应用于基因分析、基因工程、医学诊断等领域。
PCR 能够快速、高效地扩增特定DNA片段,使得原本数量有限的DNA样本得以增加,从而便于进行后续实验。
PCR的核心原理是利用DNA聚合酶酶活性,通过不断重复三个步骤(变性、退火、延伸),在适宜的反应条件下,将目标DNA序列扩增至数百万份的数量。
依靠PCR技术,无需使用传统的细菌培养方法,仅需少量DNA样本和简单的实验设备,即可实现高效扩增目标DNA。
PCR反应步骤反应体系构建PCR反应所需的关键成分包括目标DNA模板、DNA聚合酶、引物(primer)、核苷酸和反应缓冲液。
引物是一对短的DNA片段,其序列与目标DNA序列上的起始和终止部分的互补序列匹配。
反应缓冲液是维持PCR反应过程中所需酶活性的化学平衡和适宜pH的缓冲物质。
变性PCR反应开始时,反应体系中的DNA样本被放置在高温环境中(通常为94-98摄氏度),使其双链DNA解离为两条单链DNA。
这个步骤可以通过加热反应体系来实现,高温会断裂氢键,使DNA的双链解开。
退火在反应体系降温至适宜的温度范围时(通常为50-65摄氏度),引物与目标DNA序列上的互补区域结合形成稳定的双链结构。
引物的选择非常重要,其应与目标DNA序列完全匹配,以确保选择性扩增。
延伸DNA聚合酶将新的核苷酸从反应缓冲液中获得,并在目标DNA的3’末端上依次加入。
这个过程被称为延伸,其速率与延伸温度和所用聚合酶的酶活性相关。
通常延伸温度为60-72摄氏度。
经过以上三个步骤的循环反复进行,每一轮都会使目标DNA序列数量翻倍。
因此,PCR可以在短时间内扩增出大量的目标DNA片段。
PCR应用PCR技术在生物学研究、医学诊断、疾病预防和基因工程等领域有着广泛的应用。
基因分析PCR被广泛用于分析基因的结构和功能。
通过PCR,可以快速扩增出感兴趣的DNA片段,然后进行测序分析、限制性酶切或其他分子生物学实验,以研究目标基因的结构和功能。
聚合酶链式反应名词解释生物化学
聚合酶链式反应(Polymerase Chain Reaction,简称PCR)是一种体外快速扩增特定DNA片段的技术。
它利用DNA聚合酶在适当温度下的体外酶促反应,在较短时间内大量复制目标DNA片段,并使其扩增至可检测水平。
PCR包括三个主要步骤:变性、退火和延伸。
变性步骤使DNA双链解开成两股单链,退火步骤使引物与目标DNA特异性结合,延伸步骤利用DNA聚合酶在合适温度下合成新DNA链。
这三个步骤连续循环进行,每一轮都会产生双倍数量的目标DNA。
PCR具有高度特异性、高灵敏性和高速度的特点,可以从少量的起始DNA样品中扩增出目标DNA片段,常用于分子生物学研究中的DNA定量、基因检测、基因测序、基因工程等多个领域。
聚合酶链式反应(PCR)第一节PCR扩增反应的基本原理一、聚合酶链式反应(PCR)的基本构成PCR是聚合酶链式反应的简称,指在引物指导下由酶催化的对特定模板(克隆或基因组DNA)的扩增反应,是模拟体内DNA复制过程,在体外特异性扩增DNA片段的一种技术,在分子生物学中有广泛的应用,包括用于DNA作图、DNA测序、分子系统遗传学等。
PCR基本原理是以单链DNA为模板,4种dNTP为底物,在模板3’末端有引物存在的情况下,用酶进行互补链的延伸,多次反复的循环能使微量的模板DNA得到极大程度的扩增。
在微量离心管中,加入与待扩增的DNA片段两端已知序列分别互补的两个引物、适量的缓冲液、微量的DNA模板、四种dNTP溶液、耐热Taq DNA聚合酶、Mg2+等。
反应时先将上述溶液加热,使模板DNA在高温下变性,双链解开为单链状态;然后降低溶液温度,使合成引物在低温下与其靶序列配对,形成部分双链,称为退火;再将温度升至合适温度,在Taq DNA聚合酶的催化下,以dNTP为原料,引物沿5’→3’方向延伸,形成新的DNA片段,该片段又可作为下一轮反应的模板,如此重复改变温度,由高温变性、低温复性和适温延伸组成一个周期,反复循环,使目的基因得以迅速扩增。
因此PCR循环过程为三部分构成:模板变性、引物退火、热稳定DNA聚合酶在适当温度下催化DNA链延伸合成(见图)。
1.模板DNA的变性模板DNA加热到90~95℃时,双螺旋结构的氢键断裂,双链解开成为单链,称为DNA的变性,以便它与引物结合为下轮反应作准备。
变性温度与DNA中G-C含量有关,G-C间由三个氢键连接,而A-T间只有两个氢键相连,所以G-C含量较高的模板,其解链温度相对要高些,故PCR中DNA变性需要的温度和时间与模板DNA的二级结构的复杂性、G-C含量高低等均有关。
对于高G-C含量的模板DNA在实验中需添加一定量二甲基亚砜(DMSO),并且在PCR循环中起始阶段热变性温度可以采用97℃,时间适当延长,即所谓的热启动。