04母线保护整定计算
- 格式:pptx
- 大小:650.43 KB
- 文档页数:33
筑龙网w ww .z hu lo ng .c om供配电微机常用保护整定计算摘 要 本文根据对供配电微机综合保护控制装置的实验摸索和理论研究,结合目前国内外常用微机综合保护控制装置的特点,简化了供配电设备微机常用保护的整定计算方法,给出了实用的计算数据。
关键词 供配电,微机保护,综合保护,整定计算1 引言随着微计算机技术的发展,微机综合保护控制装置(以下简称微机保护)将在供配电系统保护中获得广泛的应用。
如何将微机保护设置的恰到好处是摆在每个微机保护应用人员的重要任务。
微机保护装置的各种保护功能通常具有4~6段,每段保护既可选定时限也可为反时限,如将定时限动作时间设为0即成为速断保护,而且还可以通过编程自定义您所需要的各种保护和控制的新功能组合,再将多种保护和控制功能组成保护控制功能组,多组保护控制功能组之间可根据输入状态自动转换。
考虑经济和安装等问题而不必装设的机电式保护功能在微机保护中已变的非常容易实现。
2 微机保护整定计算基础由于互感器、断路器等测量和执行元件及微机保护自身性能的提高,以及利用微计算机对多个供配电所或大型供配电系统的全部微机保护进行整定计算的需要,用于机电式保护继电器的部分整定计算方法已不能适应其要求,应给予修正。
2.1 互感器变比在微机保护整定计算中,为了适应互感器二次数值的不同,不是采用互感器变比参与计算,用物理量作为整定值,而是用互感器的一次值作为计算参数,采用相对值作为整定数据。
2.2 接线系数由于机电式继电器的电流输入可为单相也可为两相差接,因此在整定计算时必须采用接线系数加以区分,而微机保护装置是同时输入三相数据,如仅有两相输入源也可由这两相输入源之和取反的方式作为第三相输入源,据此,在微机保护整定计算时已不需考虑接线系数。
2.3 返回系数微机保护不必因接点压力问题考虑返回系数,通常过量动作返回系数K re 大于0.95,欠量动作K re 小于1.05,一些微机保护甚至达到0.98或1.02。
继电保护定值整定计算公式大全1、负荷计算(移变选择):cos de Nca wmk P S ϕ∑=(4-1)式中 S ca --一组用电设备的计算负荷,kVA ;∑P N --具有相同需用系数K de 的一组用电设备额定功率之和,kW 。
综采工作面用电设备的需用系数K de 可按下式计算Nde P P k ∑+=max6.04.0 (4-2) 式中 P max --最大一台电动机额定功率,kW ;wm ϕcos --一组用电设备的加权平均功率因数2、高压电缆选择:(1)向一台移动变电站供电时,取变电站一次侧额定电流,即NN N ca U S I I 131310⨯== (4-13)式中 N S —移动变电站额定容量,kV •A ;N U 1—移动变电站一次侧额定电压,V ; N I 1—移动变电站一次侧额定电流,A 。
(2)向两台移动变电站供电时,最大长时负荷电流ca I 为两台移动变电站一次侧额定电流之和,即31112ca N N I I I =+=(4-14)(3)向3台及以上移动变电站供电时,最大长时负荷电流ca I 为3ca I =(4-15)式中 ca I —最大长时负荷电流,A ;N P ∑—由移动变电站供电的各用电设备额定容量总和,kW ;N U —移动变电站一次侧额定电压,V ; sc K —变压器的变比;wm ϕcos 、ηwm —加权平均功率因数和加权平均效率。
(4)对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一个采区供电的电缆,应取采区最大电流;而对并列运行的电缆线路,则应按一路故障情况加以考虑。
3、 低压电缆主芯线截面的选择1)按长时最大工作电流选择电缆主截面 (1)流过电缆的实际工作电流计算① 支线。
所谓支线是指1条电缆控制1台电动机。
流过电缆的长时最大工作电流即为电动机的额定电流。
NN N N N ca U P I I ηϕcos 3103⨯== (4-19)式中 ca I —长时最大工作电流,A ;N I —电动机的额定电流,A ; N U —电动机的额定电压,V ; N P —电动机的额定功率,kW ; N ϕcos —电动机功率因数;N η—电动机的额定效率。
华北电力大学成人高等教育毕业设计(论文)任务书学生姓名:裴丽君年级专业层次:14电力专学号:14301394 函授站:张家口名人新能源学校一、毕业设计(论文)题目:110kV电网继电保护及自动装置整定计算二、毕业设计(论文)工作起止时间:2015.12.14-2016.2.22三、毕业设计(论文)的内容要求:1.根据给定系统的接线和参数,合理制定继电保护和自动装置的配置方案并完成装置选型;2.计算各元件的序参数,绘制各序网图,完成短路电流计算;3.完成各线路继电保护及自动装置的整定计算;4.绘制保护及自动装置配置图,对所选方案做出评价;5.总结所做工作,撰写毕业论文。
指导教师签名:前言电力系统中的发电机、变压器、输电线路、母线以及用电设备,一旦发生故障,继电保护及安全自动装置能够快速、可靠、有选择地将故障元件从系统中切除,使故障元件免于继续遭受损坏,既能保证其它无故障部分迅速恢复正常,又能提高电力系统运行的稳定性,是保证电力系统安全运行的最有效方法之一。
而课程设计是学生在校期间的综合性实践教学环节,是学生全面运用所学基础理论、专业知识和基本技能,对实际问题进行设计(或研究)的综合性训练。
通过课程设计,可以培养学生运用所学知识解决实际问题的能力和创新精神,增强工程观念,以便更好地适应工作的需求。
本次课程设计为给110kV电网继电保护配置与线路保护整定计算,学习规程确定系统运行方式,变压器运行方式。
选择各元件保护方式,计算发电机、变压器、线路的参数,确定保护方式及互感器变比。
对于线路和变压器故障,根据相间和接地故障的情况,选择相应的保护方式并作整定和校验。
第一章概述1.1 电力系统继电保护的作用电力是当今世界使用最为广泛、地位最为重要的能源,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。
电力系统由各种电气元件组成。
这里电气元件是一个常用术语,它泛指电力系统中的各种在电气上的独立看待的电气设备、线路、器具等。
母联保护测控装置使用说明书本装置适用于66kV及以下电压等级的非直接接地或不接地系统中的母线联络保护及测控。
可集中组屏,也可在开关柜就地安装,全面支持变配电所综合自动化系统。
1.保护功能◆三相/两相三段式电流保护(速断、限时速断、过流)◆零序电压闭锁方向零序过流保护(可选择跳闸/告警)2.辅助功能◆备用电源自动投入◆PT断线告警◆控制回路断线告警◆装置故障告警◆故障录波◆保护定值和时限的独立整定◆自检和自诊断3.测控功能◆电量测量(遥测量):两路母线电压、电流、电网频率等◆遥信量:装置共有14路开入量,其中:12路为采集外部遥信,2路为内部开关量信号◆遥控量:完成1台断路器就地或遥控分合闸操作4.闭锁功能◆断路器就地和遥控操作互为闭锁且具有防跳功能◆电源断路器保护跳闸闭锁备自投5.通讯功能◆CAN总线,以及标准的RS485多机通讯接口6.特点◆采用分层分布式设计,可组屏安装或直接安装于开关柜上◆封闭、加强型单元机箱,抗强干扰设计,适用于恶劣环境,可靠性高、抗干扰能力强,符合IEC电磁兼容标准◆与两路进线断路器配合,在不改变硬件及软件的情况下,可以实现两路进线电源备自投和母联自投两种运行方式◆可以实现远方定值整定与修改◆事件顺序记录并上传SOE事件◆汉字液晶显示,键盘操作◆设有独立的起动元件用来开放继电器电源,提高装置的安全性二、基本原理针对A、C(或A、B、C)相电流基波最大值,当任一相达到整定值,则定时器启动,若持续到整定时限,且相应保护的投退控制字处于投入状态,装置则发出跳闸控制信号,并记录和上传相应的SOE事件。
若在整定时限内电流返回则复位计时器。
当电流达到速断定值时,且速断保护投退控制字处于投入状态,则立即跳闸,同时给出保护动作、事故音响信号,并记录和上传相应的SOE事件。
图1 三段保护逻辑框图零序过流保护逻辑图如下图。
注:3Uo为采样值;3Io为采样值;3Io’为计算值(Ia+Ib+Ic)。
母线差动保护的整定计算计算母差保护的主要工作量在于以下几个值的计算,计算方法如下:1 比率差动元件的比率差动门坎按包括检修方式的各种运行方式下,母线发生各种类型短路的最小总短路电流(相电流)有足够灵敏度计算,灵敏度≥4,并尽可能躲过母线出线最大负荷电流。
比率差动门坎要整定得躲过母线出线最大负荷电流是为了防止CT断线时母线差动保护误动。
2低电压闭锁元件以电流判据为主的差动元件,可以用电压闭锁元件来配合,提高保护整体的可靠性。
复合电压闭锁包括母线线电压(相间电压),母线三倍零序电压,和母线负序电压。
其动作表达式为:以上三个判据中的任何一个被满足,则该段母线的电压闭锁元件动作。
U set按母线对称故障有足够灵敏度整定,灵敏度≥1.5。
且应在母线最低运行电压下不动作,而在故障切除后能可靠返回。
一般取65%至70%U e。
U0set按母线不对称故障有足够灵敏度整定,灵敏度≥4。
且应躲过母线正常运行时最大不平衡电压的零序分量。
一般取6至10V。
U2set按母线不对称故障有足够灵敏度整定,灵敏度≥4。
且应躲过母线正常运行时最大不平衡电压的负序分量。
一般取4至8V。
1. 电流变化量起动值:按躲过正常负荷电流波动最大值整定,一般整定为0.2In,定值范围为0.1In~0.5In。
2. 零序起动电流:按躲过最大零序不平衡电流整定,定值范围为0.1In~0.5In。
3. 失灵保护零序定值:按躲过最大零序不平衡电流整定, 定值范围为0.1~20A。
4. 低功率因素角定值:整定值范围为45~ 90 ,整定步长为1度。
5. 低功率因素过流定值:表示线路有流,定值范围为0.1~20A 。
6. 负序过流定值:按躲过最大不平衡负序电流整定,定值范围为0.1~20A 。
7. 失灵跳本开关时间:失灵保护动作时,将以该时间定值跳开本开关。
定值范围为0.01~20S,整定步长为0.01S。
8. 失灵动作时间:失灵保护动作时,将以该时间定值跳开相邻开关。
微机保护装置定值整定原则一、线路保护测控装置装置适用于10/35kV的线路保护,对馈电线,一般设置三段式电流保护、低周减载、三相一次重合闸和后加速保护以及过负荷保护,每个保护通过控制字可投入和退出。
为了增大电流速断保护区,可引入电压元件,构成电流电压连锁速断保护.在双电源线路上,为提高保护性能,电流保护中引入方向元件控制,构成方向电流保护。
其中各段电流保护的电压元件和方向元件通过控制字可投入和退出.(一)电流速断保护(Ⅰ段)作为电流速断保护,电流整定值I dzⅠ按躲过线路末端短路故障时流过保护的最大短路电流整定,时限一般取0~0。
1秒,写成表达式为:I dzⅠ=KI maxI max =E P/(Z P min+Z1L)式中:K为可靠系数,一般取1.2~1。
3;I max为线路末端故障时的最大短路电流;E P 为系统电压;Z P min为最大运行方式下的系统等效阻抗;Z1为线路单位长度的正序阻抗;L为线路长度(二)带时限电流速断保护(Ⅱ段)带时限电流速断保护的电流定值I dzⅡ应对本线路末端故障时有不小于1.3~1。
5的灵敏度整定,并与相邻线路的电流速断保护配合,时限一般取0。
5秒,写成表达式为:I dz.Ⅱ=KI dzⅠ.2式中:K为可靠系数,一般取1。
1~1。
2;I dzⅠ.2为相邻线路速断保护的电流定值(三)过电流保护(Ⅲ段)过电流保护定值应与相邻线路的延时段保护或过电流保护配合整定,其电流定值还应躲过最大负荷电流,动作时限按阶梯形时限特性整定,写成表达式为:I dz。
Ⅲ=K max{I dzⅡ。
2 ,I L}式中:K为可靠系数,一般取1。
1~1。
2;I dzⅡ.2为相邻线路延时段保护的电流定值;I L 为最大负荷电流(四)反时限过流保护由于定时限过流保护(Ⅲ段)愈靠近电源,保护动作时限愈长,对切除故障是不利的。
为能使Ⅲ段电流保护缩短动作时限,第Ⅲ段可采用反时限特性。
反时限过电流保护的电流定值按躲过线路最大负荷电流条件整定,本线末端短路时有不小于1。
中阻抗及高阻抗母线差动保护原理及整定计算摘要: 依据母线差动保护的特殊要求,本文叙述了中阻抗母线差动保护的原理、特点及整定计算,详细分析了中阻抗母线差动保护区外故障时电流互感器饱和、不饱和的制动原理及区内故障时流入差动继电器的电流,整定计算及提高灵敏度的措施。
分析了高阻抗母线差动保护的原理、电流互感器饱和特性及实用计算方法。
关键词: 中阻抗;高阻抗;母线差动保护0引言随着电力系统的容量越来越大,接线越来越复杂,母线差动保护的短路电流倍数可达到额定电流的十几倍到几十倍,使出线线路的电流互感器严重饱和,差动保护区外短路的不平衡电流远远大于电流互感器的10%误差[1-3]。
区外短路母线差动保护会误动。
为克服母线差动保护区外短路不误动采用了在差动回路中串入2KΩ的电阻,其作用是加速故障出线的电流互感器的饱和,降低饱和电流互感器的二次电阻用以降低差回路中的电压,由于差回路中有高电阻使差回路中的差动继电器不误动。
目前国配网外及我国超高压电网的母线差动保护多有采用高阻抗母线差动保护[4-5]。
由于高阻抗母线差动保护的差回路的电阻为2KΩ,区内短路流过差动保护差回路的动作电流较大,会在高电阻上产生高电压。
为降低区内短路差回路的电压将差回路中的高阻改为600Ω中阻差动保护继电器。
1中阻抗母线差动保护原理及整定计算1.1中阻抗母线差动保护原理图说明反应流进流出母线电流的差,比例制动,零秒动作。
中阻抗母线差动保护原理接线图如图1所示。
以被保护母线只有一回进线,一回出线为例,采用一相进行分析。
采用中间变流器TM是为了使差回路电流变小,便于控制。
各进出线同一相的全波整流器D3、D4、D5、D6为制动电路。
CLJ为启动继电器、CDJ为差动继电器、R为分流电阻、Rs/2为制动电阻。
IT为循环臂中的制动电流;Icd为差动回路中的电流;Idz为流经差动继电器中的电流。
[J]. 继电器,2001,05:59-62.[3]工乡,陈永琳,张连斌. 母线差动保护的计算机整定计算[J]. 继电器,1996,03:26-29+2-3.[4]刘天斌,程利军,陈建文,等. 中阻抗母线保护差动回路过电压误动分析及对策[J]. 电力系统自动化,2000,12:55-57.[5]程利军,杨奇逊. 中阻抗母线保护原理、整定及运行的探讨[J]. 电网技术,2000,06:65-69.[6]邹宁. 数字式母线差动保护中新型抗TA饱和策略的研究[D].东南大学,2004.[7]霍兵兵. 自适应母线差动保护的研究[D].西安科技大学,2008.[8]宋方方,王增平,刘颖. 母线保护的现状及发展趋势[J]. 电力自动化设备,2003,07:66-69.[9]姚斌,徐唐煌. 几种母线保护原理及运行分析[J]. 湖北电力,2003,02:23-25.[10]陆征军,吕航,李力. 输电线路分布电容对快速母线差动保护的影响[J]. 继电器,2005,01:68-72.。
保护的整定计算原则1 纵联保护作为线路的主保护,对保证电网的安全稳定运行,起着举足轻重的作用。
纵联保护的启动元件按躲过最大负荷电流下的不平衡电流整定,并保证在被保护线路末端故障时有足够灵敏度。
高频闭锁保护的方向判别元件和停讯元件按被保护线路末端发生金属性故障时应有足够灵敏度整定,其灵敏度与启动元件相配合,同时正方向元件的灵敏度要和反方向元件的灵敏度相配合。
目前,四川220kV及以上系统除个别终端线路外,所有线路均配备双套纵联保护,正常时至少应保证有一套纵联保护投入跳闸。
旁路开关代线路开关时,也必须要有纵联保护投入运行,如果线路的两套线路纵联保护都退出运行,原则上该线路也应停运。
2 三段式相间和接地距离整定原则1 接地距离I段和相间距离I段分别按线路全长的70~80%整定,以确保定值整定范围不伸入对端母线。
2 全网接地距离II段和相间距离II段阻抗值按确保线路末端发生金属性故障有足够灵敏度整定。
因220kV系统的所有线路的接地距离II段和相间距离II段定值只考虑与相邻线路全线速动保护相配合整定,所以其动作时间均取1.0秒。
在某些情况下,运行中某线路配置的全线速动保护均停运而线路又不能同时停运时,可将该线路相间和接地距离II段时限压缩为0.3秒,使其与之有配合关系的相邻线路距离II段能够相配。
500kV系统的相间和接地距离II段时限按与相邻线纵联保护配合整定,或与相邻线路同类保护的II段时限逐级配合。
3 相间距离III段按躲线路最大事故过负荷电流并在本线路末故障有足够灵敏度整定,同时力争能作相邻线路和变压器的后备保护。
接地距离III段阻抗值取与相间距离III段相同值。
距离保护III段时限均与相邻线路距离II段时间及变压器后备保护时限相配整定,所以全网相间和接地距离保护时限按统一时限整定。
由于500kV变压器和220kV出线的保护配置较完善,同时作为500kV系统的后备保护也应以较快的时间切除故障,因此500kV相间和接地距离III段与500kV 主变的后备保护跳本侧段(未考虑与跳三侧的后备保护时间配)及220kV出线后备II段时限相配整定,时限都取3.5秒。
配电网继电保护整定计算原则1.规范性引用文件1)GB/T14285-2006继电保护和安全自动装置技术规程2)DL/T584-20173kV~110kV电网继电保护装置运行整定规程3)Q/GDW766-201210kV~110(66)kV线路保护及辅助装置标准化设计规范4)Q/GDW767-201210kV~110(66)kV元件保护及辅助装置标准化5)Q/GDW442-2010国家电网继电保护整定计算技术规范235〜220kV变电站10kV出线开关整定原则2.1电流速断保护1)按躲过本线路末端最大三相短路电流整定,计算公式如下:I DZ1-K K Xl Dmax⑶式中:K K—可靠系数,取K K>1.3;取可靠系数大于1.3是在考虑各种误差的基础上进行的,一般可根据线路长度、装置误差等因素酌情考虑;I Dmax(3)—系统大方式下,本线路末端三相短路时流过保护的最大短路电流。
2)宜与上一级变压器低压侧限时速断保护配合,可靠系数不小于1.1。
3)对于保护范围伸入下级线路或设备的情况,为避免停电范围扩大,可增加短延时。
4)时间取0〜0.15s。
2.2限时速断电流保护1)按保线路末端故障有灵敏度整定,灵敏系数满足2.4要求。
2)按与下一级线路电流速断保护相配合,时间级差宜取0.3〜0.5s。
计算公式如下:I DZ2>K K XK fmax XI DZ1'式中:K K—可靠系数,取K K>I.I;K fmax—最大分支系数,其分支系数应考虑在下一级线路末端短路时,流过本线路保护的电流为最大的运行方式。
【DZ1'—下一级线电流速断保护电流定值。
3)灵敏度不满足要求时,按与下一级线路限时速断电流保护配合。
4)应与上一级变压器10kV侧限时速断电流保护配合,可靠系数不小于1.1。
若时间无法与上一级变压器10kV侧限时速断电流保护配合,可退出本段保护,只考虑投入电流速断保护。
保护整定计算举例前言珠海万力达电气有限公司自1992年成立以来至今,陆续推出了系列化微机保护产品。
至1999年底,已基本将110KV及以下电压等级的供配电系统中所需的元件保护全部自主开发。
产品推向市场后受到各行业的应用,目前已遍布全国各地、各行业。
由于我们推出的产品采用计算机技术实现其基本原理,既不同于传统的电磁继电器,又不同于采用模拟电子技术的集成电路形式的继电器,因而有些功能的实现方式较以往也有不同,并且增加了一些传统继电器所不具备的功能。
这样一来,使用我公司产品的用户在计算保护定值时遇到许多困惑。
为了使用户更方便地使用我公司产品,我们根据我公司产品原理上的特点,并结合用户实际情况,依照有关保护定值整定计算规则,按每一个系列产品有一个算例的想法,编撰了这本《保护整定计算举例》,供广大用户参考。
由于我们是设备制造厂,不具备计算保护定值的资质,故这本《保护整定计算举例》仅供参考。
用户在计算定值时,若发现此书给出的计算公式不符合自己的实际情况或有关规程,则均以规程和用户的实际情况为准。
编撰此书的目的在于让用户更加深入地了解公司产品在实现某些保护功能时所采用的数学模型或有关参数设定的含义及数值,能使用户举一反三,更加准确、方便地计算保护定值。
由于水平有限,书中不免有些不当之处,欢迎用户对其中的错误和不当之处提出批评指正意见,以便我们不断的完善。
2006.11- 1 -目录线路保护整定实例 (4)厂用变压器保护整定实例 (7)电容器保护整定实例 (10)电动机保护整定计算实例 (13)电动机差动保护整定计算实例 (16)变压器差动保护的整定与计算 (17)变压器后备保护的整定与计算 (18)发电机差动保护的整定与计算 (22)发电机后备保护的整定与计算 (24)发电机接地保护的整定与计算 (26)- 2 -2- 3 - 3线路保护整定实例降压变电所引出10KV 电缆线路,线路接线如下图所示:已知条件:最大运行方式下,降压变电所母线三相短路电流)3(max .1d I 为5500A,配电所母线三相短路电流)3(max .2d I 为5130A ,配电变压器低压侧三相短路时流过高压侧的电流)3(max .3d I 为820A 。
1、负荷计算(移变选择):cos de Nca wmk P S ϕ∑=g (4-1)式中 S ca --一组用电设备的计算负荷,kVA ;∑P N --具有相同需用系数K de 的一组用电设备额定功率之和,kW 。
综采工作面用电设备的需用系数K de 可按下式计算Nde P P k ∑+=max6.04.0 (4-2) 式中 P max --最大一台电动机额定功率,kW ;wm ϕcos --一组用电设备的加权平均功率因数2、高压电缆选择:(1)向一台移动变电站供电时,取变电站一次侧额定电流,即NN N ca U S I I 131310⨯== (4-13)式中 N S —移动变电站额定容量,kV •A ;N U 1—移动变电站一次侧额定电压,V ; N I 1—移动变电站一次侧额定电流,A 。
(2)向两台移动变电站供电时,最大长时负荷电流ca I 为两台移动变电站一次侧额定电流之和,即31112ca N N I I I =+=(4-14)(3)向3台及以上移动变电站供电时,最大长时负荷电流ca I 为3ca I =(4-15)式中 ca I —最大长时负荷电流,A ;N P ∑—由移动变电站供电的各用电设备额定容量总和,kW ;N U —移动变电站一次侧额定电压,V ; sc K —变压器的变比;wm ϕcos 、ηwm —加权平均功率因数和加权平均效率。
(4)对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一个采区供电的电缆,应取采区最大电流;而对并列运行的电缆线路,则应按一路故障情况加以考虑。
3、 低压电缆主芯线截面的选择 1)按长时最大工作电流选择电缆主截面 (1)流过电缆的实际工作电流计算① 支线。
所谓支线是指1条电缆控制1台电动机。
流过电缆的长时最大工作电流即为电动机的额定电流。
NN N N N ca U P I I ηϕcos 3103⨯== (4-19)式中 ca I —长时最大工作电流,A ;N I —电动机的额定电流,A ; N U —电动机的额定电压,V ; N P —电动机的额定功率,kW ; N ϕcos —电动机功率因数;N η—电动机的额定效率。
保护参考整定计算说明注意:本说明仅供参考,所有电流、电压元件定值非特别说明均为二次值!1.MMP-5012D 电动机保护测控装置整定参考● 额定电流整定:按电动机额定电流整定:nLHIe =In ● 启动速断定值:按电动机最大启动电流整定: nLH KknqIe =Idzj KK :取1.5;Nq :为电动机启动倍数取4~7;Ie :为电动机额定电流。
● 运行速断定值:同启动速断定值整定,可靠系数Kk 取0.8。
● 启动时间:根据电动机带的负荷性质决定电动机启动时间长短,以实际为准,据运行经验提供参数:水泵启动时间为4~5s ;空压机启动时间为4~5s ;抽风机启动时间为10~16s :轧机启动时间为10s 左右。
● 过流保护定值:按电动机额定电流1.8倍整定,nLHKkIe =Idzj Kk 取1.8;Ie 电动机的额定电流。
● 过流时间定值:定时限时间定值一般取0.5s ,反时限时间一般取4~16s 。
● 正序过流定值:按电动机额定电流的1.2倍整定:nLH KkIe =Idzj Kk 取1.2;Ie 电动机的额定电流。
● 正序时间整定:一般取1s 。
● 负序过流定值:按电动机额定电流的0.25倍整定。
nLHKkIe =Idzj Kk 取0.25倍,Ie 电动机的额定电流。
●负序时间定值:一般整定为1s 。
●零序过流定值:按电动机的接地电容电流的1.5倍整定,一般整定Ic0≥5A 。
●零序过流时间定值:一般整定为0.5~1s 跳闸。
●过电压定值:按电动机的额定电压1.3倍整定。
●过电压时间整定:一般整定30s 。
● 低电压保护定值:对于不重要的电动机,电源有备自投时不允许自启动的电动机,电压定值一般按额定电压的60~70%,延时为0.5s 作用跳闸。
对于重要的电动机又要保证自启动时,电压定值按额定电压的0.45~0.55%,延时为6~10s 作用于跳闸。
对于根据安全需要保证电动机切除时间长且失压后又不允许自启动的则电压定值按额定电压的0.25~0.4倍整定,时间定值一般整定6~10s 。
桂林变电站35kV及400V设备继电保护定值整定计算书批准:审核:校核:计算:超高压输电公司柳州局二〇一三年十一月六日计算依据: 一、 规程依据DL/T 584-2007 3~110kV 电网继电保护装置运行整定规程 Q/CSG-EHV431002-2013 超高压输电公司继电保护整定业务指导书2013年广西电网继电保护整定方案二、 短路阻抗广西中调所提供2013年桂林站35kV 母线最大短路容量、短路电流:三相短路 2165MVA/33783A ;由此计算35kV 母线短路阻抗 正序阻抗 Z1=()()63.03378332165322=⨯=A MVAI SΩ第一部分 #1站用变保护一、参数计算已知容量:S T1=800kVA,电压:35/0.4kV,接线:D/Y11,短路阻抗:U K=6.72%计算如下表:注:高压侧额定电流:Ie= S T1/( 3Ue)= 800/( 3×35)=13.2A 高压侧额定电流二次值:Ie2=13.2/40=0.33 A低压侧额定电流:Ie’=S T1/( 3Ue)= 800/( 3×0.4)=1154.7A 低压侧额定电流二次值:Ie2’=1154.7/300=3.85A短路阻抗:Xk=(Ue2×U K)/ S T1=(35k2×0.0672)/800k=103Ω保护装置为南瑞继保RCS-9621C型站用电保护装置,安装在35kV保护小室。
二、定值计算1、过流I段(速断段)1)按躲过站用变低压侧故障整定: 计算站用变低压侧出口三相短路的一次电流I k(3).max= Ue /(3×Xk )=37000/(3×103)=207.4A计算站用变低压侧出口三相短路的二次电流Ik= I k(3).max /Nct=207.4/40=5.19A计算按躲过站用变低压侧故障整定的过流I 段整定值Izd=k K ×Ik k K 为可靠系数,按照整定规程取k K =1.5 =1.5×5.19=7.8A2)校验最小方式时低压侧出口两相短路时灵敏系数lm K ≥1.5 计算站用变低压侧出口两相短路的一次电流 min).2(Ik = Ue /〔2×(Z1 +Xk )〕 =37000/〔2×(0.63 +103)〕=178.52A式中:Z1为35kV 母线短路的短路阻抗。
第一章1. 继电保护装置的基本任务是什么?自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行。
反应电气元件的不正常运行状态,而动作于发出信号、减负荷或跳闸2. 试述对继电保护的四个基本要求的内容;选择性:保护装置动作时,仅将故障元件从电力系统中切除,使停电范围昼缩小,以保证系统中的无故障部分仍能继续安全运行。
速动性:力求保护装置能够迅速动作切除故障。
灵敏性:对于其保护范围内发生故障或不正常运行状态的反应能力。
可靠性:可靠性主要指保护装置本省的质量和运行维护水平。
第二章1. 试对保护1进行电流Ⅰ、Ⅱ、Ⅲ段的整定计算(线路阻抗0.4Ω/km ,电流Ⅰ、Ⅱ、Ⅲ段的可靠系数分别是1.3、1.1、1.2,返回系数0.85,自起动系数1。
(参考答案:34.1,92.3,2,776.073.1,5.0,78.10%,3.41,93.4''min =========I I Isen act sen act act K s t KA I K s t KA I st l KA I )2. 试整定保护1的电流速断保护,并进行灵敏性校核。
图示电压为线电压(计算短路电流时取平均额定电压),线路电抗为km X /4.01Ω=,可靠系数3.1='relK 。
如线路长度减小到50km 、25km ,重复以上计算,分析计算结果,可以得出什么结论?参考答案:75km 时:.1 2.03actI kA '=m in.131.8%α= 50km 时:.1 2.65actI kA '=m in.114.5%α= 25km 时:.1 3.82actI kA '=m in.10α< 3. 三段电流保护的整定计算:(1)AB 和BC 线路最大负荷电流分别为120A 、100A(2)电源A :Ω=Ω=20,15max .min .S S X X ;电源B :Ω=Ω=25,20max .min .S S X X(3)8.1,85.0,2.1,15.1,25.1==='''=''='MS re rel rel relK K K K K试整定线路AB (A 侧)各端保护的动作电流,并校验灵敏度。
第六章母线保护第一节概述一、母线保护的概述母线是发电厂和变电站的重要组成局部。
在母线上连接着电厂和变电所的发动机、变压器、输电线路和调相设备,母线的作用是聚集和分配电能。
如果母线的短路故障不能迅速地被切除,将会引起事故扩大,破坏电力系统的稳定运行,造成电力系统的瓦解事故。
二、母线的主接线形式单母线;单母分段〔专设分段、分段兼旁路、旁路兼分段〕;单母多分段;双母线〔专设母联、母联兼旁路、旁路兼母联〕;双母单分段〔专设母联、母联兼旁路〕;双母双分段〔按两面屏配置〕;3/2接线〔按两套单母线配置〕。
1、单母线图6-1-1 单母线2、单母分段〔专设母联〕图6-1-2 单母分段〔专设母联〕3、单母分段〔母联兼旁路〕图6-1-3 单母分段〔母联兼旁路〕4、单母分段〔旁路兼母联〕图6-1-4 单母分段〔旁路兼母联〕5、单母三分段图6-1-5 单母三分段6、双母线〔专设母联〕图6-1-6 双母线〔专设母联〕7、双母线〔母联兼旁路〕图6-1-7 双母线〔母联兼旁路〕8、双母线〔旁路兼母联〕图6-1-8 双母线〔旁路兼母联〕9、双母线单分段〔专设母联〕图6-1-3 双母单分段〔专设母联〕10、双母线单分段〔母联兼旁路〕图6-1-10 双母单分段〔母联兼旁路〕11、双母双分段图6-1-11 双母双分段三、母线保护的硬件组成1、标准配置1.1 保护箱图6-1-12 保护箱〔一〕插件布置图〔后视图〕1.1.1交流变换插件〔NJL-801/NJL-818〕:将系统电压互感器、电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用。
该插件共有8 路电流通道、6 路电压通道。
1.1.2交流变换插件〔NJL-817/NJL-819〕:将系统电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用。
该插件共有15 路电流通道。
1.1.3 CPU 插件〔NPU-804〕:在单块PCB 板上完成数据采集、I/O、保护与控制功能等。