工件定位装夹
- 格式:doc
- 大小:41.50 KB
- 文档页数:6
1 序言有过机械加工经历的人,一定会知道工件的定位与装夹对于加工的重要性。
毫不夸张的说,随着现代科学技术的不断进步,各种先进的数控机床、高智能化CAM软件及高品质刀具不断涌现,各种形状、结构及精度的工件特征很容易被加工出来,反而是加工过程中的一些辅助工作,解决起来,往往会让工艺人员与设备操作人员感觉十分头痛棘手。
安排加工一款工件,如何解决好对工件的定位与装夹,是工艺人员与操作人员动刀前首先需要考虑的两大技术问题,加工一款工件,工件的定位与装夹的选择和安排的合理与否,对于产品的加工质量与加工效率以及对操作人员的可操作性,都具有很大的影响。
对于一些规则结构的工件,加工过程中的定位与装夹自然很容易选择,但对于一些不规则复杂结构、铸件及薄壁等工件,要想合理解决好工件的定位与装夹,还是很需要费一番周折、动一番脑筋的,笔者就职于一家航天加工制造企业,在生产一线从事工艺设计与数控编程工作已有近30年的经验,对于不同结构工件的加工,司空见惯,对于解决工件加工定位与装夹积累了相当多的经验,现对怎样解决工件定位与装夹的共性经验总结如下,希望对同行们解决此类问题有所启示与帮助。
2 工件的定位选择好工件的定位的基准,是动刀加工前的关键一环,工件定位基准选择的合理与否,对于确保加工工件的尺寸,有着十分重要的影响。
一般工件,都会有长、宽、高3个方向的尺寸,所以,标注尺寸的基准就会有3个方向的基准,选择定位基准,在通常情况下,会优先选择设计基准作为定位基准,如果设计基准不便作为加工的定位基准,那就应选择其他的点、线或面进行基准的合适转化。
加工的定位基准,通常用得比较多的方式有:相互垂直的相邻垂直角三面定位、两销一面定位。
对于规则形状的工件来说,定位基准很容易选择;而对于不规则形状的工件,工件本体上几乎没有用得着的作为定位用的基准的定位平面或孔,这就要求工艺设计人员,在进行工艺设计时预留出工件加工的定位基准,以方便工件定位,至于怎样预留定位,下文会选择几种典型零件加以说明,在此不再赘述。
工件的装夹与定位一、工件的装夹在机床上加工工件时,为使工件在该工序所加工表面能达到规定的尺寸与形位公差要求,在开动机床进行加工之前,必需使工件在夹紧之前就相对于机床占有某一正确的位置,此过程称为定位。
工件在定位之后还不肯定能承受外力的作用,为了使工件在加工过程中总能保持其正确位置,还必需把它压紧,此过程称为夹紧。
工件的装夹过程是定位过程和夹紧过程的综合。
定位的任务是使工件相对于机床占有某一正确的位置,夹紧的任务则是保持工件的定位位置不变。
定位过程与夹紧过程都可能使工件偏离所要求的正确位置而产生定位误差与夹紧误差。
定位误差与夹紧误差之和称为装夹误差。
工件装夹有找正装夹和夹具装夹两种方式。
找正装夹又可分为直接找正装夹和划线找正装夹。
1.直接找正装夹用划针、千分表直接按工件表面找正工件的位置并夹紧,称为直接找正装夹。
直接找正装夹效率低,对操作工人技术水平要求高,但如用精密检具细心找正,可以获得很高的定位精度(0.010~0.005mm),多用于单件小批生产或装夹精度要求特殊高的场合。
2.画线找正装夹依据零件图要求在工件上划出中心线、对称线和待加工面的轮廓线、找正线,然后按找正线找正工件在机床上的位置并夹紧,这种装夹方法称为划线找正装夹。
与直接找正装夹方法相比,划线找正方法增加了一道技术水平要求高且费工费事的划线工序,生产效率低;此外,由于所划线条自身就有肯定宽度,故其找正误差大(0.2~0.5mm)。
划线找正装夹方法多用于单件小批生产中难以用直接找正方法装夹的外形较为简单的铸件或锻件。
3. 夹具装夹产量较大时,无论是划线找正装夹,还是直接找正装夹,均不能滿足生产率要求。
这时,一般均须用夹具来装夹工件。
夹具事先按肯定要求安装在机床上,工件按要求装夹在夹具上,不需找正就可进行加工。
使用夹具装夹工件,不仅可以保证装夹精度,而且可以显著提高装夹效率,还可减轻工人的劳动强度,对工人技术水平要求也不高。
成批生产和大量生产中广泛采纳夹具装夹工件。
机械制造技术工件的装夹1、装夹的概念定位:确定工件在机床上或夹具中占有准确加工位置的过程。
夹紧:在工件定位后用外力将其固定,使其在加工过程中保持定位 位置不变的操作。
装夹是定位和夹紧过程的总和。
在机械加工过程中,为了保证的轴线用于定位加工精度,使工件在机床上相对刀具占有正确的位置,并能迅速、 可靠地夹紧工件,以接受加工或卡爪用于夹紧检测的工艺装备称为机床夹具。
2、装夹的方法(1)直接找正装夹用划针、百分表等工具直接找正工件位置并加以夹紧的方法称直接 找正安装法。
此法生产率低,精度取决于工人的技术水平和测量工 具的精度,一般只用于单件小批生产。
图2是用四爪单动卡盘装夹工件,先 用百分表按工件A圆进行找正后,夹 紧工件车削外圆B,从而保证A、B圆 柱面的同轴度要求。
使用工具: 划线盘,百分表或千分表 定位精度:0.1~0.5mm(划线盘); 0.01~0.005mm(千分表) 特点:生产率低,适用于单件、小批 量生产。
对操作工人技术水平要求高。
图2 直接找正安装2、装夹的方法(2)划线找正装夹先在工件上按照零件图划出中心 线、对称线和各待加工表面的加 工线,然后将工件装上机床,按 照划好的线找正工件在机床上的 装夹位置。
划线找正法受划线精度和找正精 度的限制,定位精度不高,定位 精度:0.2~0.5mm。
主要用于批量 小,毛坯精度低及大型零件等不 便于使用夹具进行加工的粗加工。
划线找正法 图32、装夹的方法(3)使用夹具装夹 工件装在夹具上,不再进行找正,便能直接得到准确加工位置的装 夹方式。
图4在机床主轴装夹非轴类零件,利用花盘弯板使加工孔轴心与主轴轴心自动重合夹具的定位夹紧元件能使工件迅速获得正确位置,并使其固定在夹 具和机床上。
因此,工件定位方便,定位精度高(可以达到0.01mm 的定位精度)而且稳定,装夹效率也高。
但专用夹具制造费用高, 周期长,一般用于中、大批和大量生产。
特点:生产率高,一批产品的精度稳定,对工人技术水平要求低。
第一章工件的装夹---本书重点工件的装夹指的是工件的定位和夹紧。
定位的任务是:使同一工序中的一批工件都能在夹具中占据正确的位置。
工件位置的正确与否,用加工要求来衡量夹紧的任务是:使工件在切削力、离心力、惯性力和重力的作用下不离开已经占据的正确位置,以保证机械加工的正常进行。
定位、夹紧装夹在装夹工件----------→夹具-----→机床<------刀具§1.1 工件定位的基本原理一. 六点定则在空间直角坐标系中,工件可以沿X、Y、Z轴有不同的位置,称作工件沿X、Y、Z的位置自由度,用X、Y、Z表示;也可以绕X、Y、Z轴有不同的位置,称作工件绕X、Y和Z轴的角度自由度,用X、Y、Z表示。
用以描述工件位置不确定性的X、Y、Z和X、Y、Z,称为工件的六个自由度。
用合理分布的六个支承点限制工件六个自由度的法则,称为六点定则。
XOY面中,1,2,3支撑点:Z,X,YYOZ 面中,4,5点:X,ZZOX面中,6点:Y支承点的分布必须合理:工件底面上的三个支承点应放成三角形,三角形的面积越大,定位越稳。
工件侧面上的两个支承点不能垂直放置.注意:(1).定位就不能脱离,始终保持接触(2).不考虑受力,受力后不脱离定位面---夹紧的任务二. 限制工件自由度与加工要求的关系按照加工要求确定工件必须限制的自由度,在夹具设计中是首先要解决的问题。
加工要求-→工件需要限制的自由度<---→定位元件的选择表1-2 满足加工要求必须限制的自由度1.完全定位:工件的六个自由度都限制了的定位称为完全定位。
2.不完全定位:工件被限制的自由度少于六个,但能保证加工要求的定位。
在工件定位时,以下几种情况允许不完全定位:l)加工通孔或通槽时,沿贯通钢的位置自由度可不限制。
2)毛坯(本工序加工前)是轴对称时,绕对称轴的角度自由度可不限制。
3)加工贯通的平面时,除可不限制沿两个贯通轴的位置自由度外,还可不限制绕垂直加工面的轴的角度自由度。
数控加工中工件的定位与装夹数控加工是一种相对于传统机械加工而言比较新颖和高效的机加工技术,在实际生产中得到了广泛的应用。
而在数控加工过程中,工件的定位和装夹是非常重要的步骤,它直接关系到加工效率和加工质量。
因此,本文将从数控加工中工件的定位和装夹这一关键步骤进行详细的探讨。
一、数控加工中工件定位的意义工件定位是指将工件放置在数控机床上,然后通过一些固定的方式对其进行固定和定位,以便于进行后续的加工操作。
而工件定位的意义在于:(1)确保加工的精度:在数控加工过程中,如果工件的定位不准确,那么加工出来的产品就会存在偏差和误差,从而影响到加工质量和加工效率。
因此,工件的准确定位是确保加工精度的基础。
(2)提高生产效率:在数控加工过程中,确定好工件的定位方式,能够降低装夹时间和加工准备时间,从而大大提高生产效率。
(3)降低人工误差率:在传统机械加工中,工件定位主要是依靠人工精度进行调整,一旦出现误差,就需要重新调整。
而在数控加工中,由于定位方式精确可靠,因此可以大大减少人工误差率,提高加工的精度和效率。
二、工件定位的方法工件定位的方法有多种,不同的工件和加工要求需要采用不同的方式进行定位。
下面将详细介绍几种常见的工件定位方式。
1、平口定位平口定位又称为口型定位,是一种非常常见的工件定位方式。
平口定位的原理是将工件两侧嵌入同样大小的平口夹具中,使其对称放置,这样可以保证工件的中心轴线与机床的中心轴线一致。
平口夹具通常有三爪和四爪两种,具体选用哪种夹具,需要根据工件的形状和尺寸来确定。
2、钩形定位钩形定位是一种常见的平面工件定位方式,它适用于一些长条形的工件。
具体实现方式是使用一根钩子将工件吊起,然后将其嵌入到夹具中进行固定。
这种方法相较于平口定位更容易进行,可以实现快速固定。
3、锥形定位锥形定位是一种针对孔内定位的方法,主要是针对圆锥形孔的工件进行定位。
使用锥形夹具夹住工件,通过锥形“相配”实现工件的定位。
2.1 熟悉工件定位知识2.1.1工件装夹概述1.工件的装夹在机械加工过程中,为了保证加工精度,在加工前,应确定工件在机床上的位置,并固定好,以接受加工或检测。
将工件在机床上或夹具中定位、夹紧的过程”,称为装夹。
工件的安装包含了两个方面的内容:定位确定工件在机床上或夹具中正确位置的过程,称为定位。
夹紧工件定位后将其固定,使其在加工中保持定位位置不变的操作,称为夹紧。
2.机床夹具能方便地让工件在机床上定位、夹紧和引导刀具工艺装备,称为夹具。
利用夹具定位、夹紧工件,具有操作迅速方便,定位精度较高、稳定,生产率较高的特点。
夹具预先在机床上已调整好位置,工件通过夹具提供的定位装置定位,可在机床确立正确的位置。
还可通过夹具上的对刀装置,保证了工件加工表面相对于刀具的正确位置。
在使用夹具的情况下,工件与机床、刀具之间的相互位置精度由夹具保证。
机床、夹具、刀具和工件所构成的工艺系统在加工中保持正确的位置,从而保证工序的加工精度。
夹具一般由夹具体、定位元件、夹紧装置、对刀或导向装置、连接元件等组成。
夹具体是机床夹具的基础;定位元件保证工件在夹具中处于正确的位置;夹紧装置的作用是将工件压紧夹牢;工件对刀或导向装置用于确定刀具相对于定位元件的正确位置;连接元件是确定夹具在机床上正确位置的元件。
2.1.2工件的定位基本原理1.工件六点定位原理一个尚未定位的工件,其空间位置是不确定的,均有六个自由度,如图2-1-1a所示,即沿空间坐标轴X、Y、Z三个方向的移动和绕这三个坐标轴的转动分别以、、;和、、表示。
定位,就是限制自由度。
如图2-1-1b所示的长方体工件,欲使其完全定位,可以设置六个固定点,工件的三个面分别与这些点保持接触,在其底面设置三个不共线的点1、2、3(构成一个面),限制工件的三个自由度:、、;侧面设置两个点4、5(成一条线),限制了、两个自由度;端面设置一个点6,限制自由度。
于是工件的六个自由度便都被限制了。
这些用来限制工件自由度的固定点,称为定位支承点,简称支承点。
用合理分布的六个支承点限制工件六个自由度的法则,称为六点定位原理。
在应用“六点定位原理”分析工件的定位时,应注意:定位支承点与工件定位基准面接触,才能起到限制工件自由度的作用。
一个定位支承点仅限制一个自由度。
2.工件定位中的几种情况⑴完全定位工件的六个自由度全部被限制的定位,称为完全定位。
当工件在x、y、z三个坐标方向上均有尺寸要求或位置精度要求时,一般采用这种定位方式。
如图2-1-2所示的工件,要求铣削工件上表面和铣削槽宽为40mm的槽。
为了保证上表面与底面的平行度,必须限制、、三个自由度;为了保证槽侧面相对前后对称面的对称度要求,必须限制、两个自由度;由于所铣的槽不是通槽,在X方向上,槽有位置要求,所以必须限制移动的自由度。
为此,应对工件采用完全定位的方式,可参考图2-1-1进行六点定位。
⑵不完全定位根据工件的加工要求,并不需要限制工件的全部自由度,这样的定位,称为不完全定位。
工件采用部分定位时,必须限制按加工要求需要限制的自由度;对于不影响加工要求的自由度,则可以不予限制。
这样,可以简化夹具的结构。
如图2-1-3 a所示,加工通槽,由于槽是贯通的,在Y轴方向上前后的位置并不影响通槽的加工质量。
因此,沿Y轴方向可以不设定位支撑点,仅需要限制工件除的其余五个自由度。
图(b)为平板工件磨平面,工件只有厚度和平行度要求,故只需限制、、三个自由度,在磨床上采用电磁工作台即可实现三点定位。
⑶欠定位定位元件所能限制的自由度数,少于按加工工艺要求所需限制的自由度数的定位情况。
这种情况下,工件不能正确定位,称为欠定位。
显然,欠定位不能保证加工要求,往往会产生废品,因此是绝对不允许的。
图2-1-3 a所示工件加工通槽时,若单纯以底面A定位,而不用侧面B作导向定位面,则这时工件在机床上相对于刀具的位置,就可能会偏置成图2-1-4中所示情况,按欠定位铣出的槽,显然是不符合图样要求的。
⑷过定位夹具上的两个或两个以上的定位元件,重复限制工件的同一个或几个自由度的现象,称为过定位。
如图2-1-5所示两种过定位的例子。
图(a)为孔与端面联合定位情况,由于大端面限制、、三个自由度,长销限制、和、四个自由度,可见、被两个定位元件重复限制,出现过定位。
图(b)为平面与两个短圆柱销联合定位情况,平面限制、、三个自由度,两个短圆柱销分别限制、和、共4个自由度,则自由度被重复限制,出现过定位。
造成重复定位的原因是:夹具上的定位元件,同时重复限制了工件的一个或几个自由度,造成的后果是使定位重复而不确定或稳定,破坏预定的正确位置,使工件或定位元件产生变形,从而降低加工精度,甚至使工件无法装夹以致不能加工。
可通过改变定位元件的结构,使定位元件重复限制自由度的部分不起定位作用的方法消除过定位。
例如将图2-1-5(b)右边的圆柱销改为削边销。
对图2-1-5(a)的改进措施见图2-1-6,其中图(a)是在工件与大端面之间加球面垫圈,图(b)将大端面改为小端面,从而避免过定位。
实际生产应用中,应尽量避免重复定位,但过定位并不是必须完全避免的,在工件的定位基准、夹具上的定位元件精度很高的情况下,可以允许重复定位,这时它对提高工件的刚性和稳定性有一定的好处。
2.1.3 定位方法及定位元件工件上的定位基准面与相应的定位元件合称为定位副。
定位副的选择及其制造精度直接影响工件的定位精度和夹具的工作效率以及制造使用性能等。
下面按不同的定位基准面分别介绍其所用定位元件的结构形式。
1.工件以平面定位(1) 支承钉如图2-1-7所示。
当工件以粗糙不平的毛坯面定位时,采用球头支承钉(B型),使其与毛坯良好接触。
齿纹头支承钉(C型)用在工件的侧面,能增大摩擦系数,防止工件滑动。
当工件以加工过的平面定位时,可采用平头支承钉(A型)。
在支承钉的高度需要调整时,应采用可调支承。
可调支承在一批工件加工前调整一次,调整后需要锁紧,其作用与固定支承相同。
(2) 支承板工件以精基准面定位时,除采用上述平头支承钉外,还常用图2-1-8所示的支承板作定位元件。
A型支承板结构简单,便于制造,但不利于清除切屑,故适用于顶面和侧面定位;B型支承板则易保证工作表面清洁,故适用于底面定位。
夹具装配时,为使几个支承钉或支承板严格共面,装配后,需将其工作表面一次磨平,从而保证各定位表面的等高性。
2.工件以圆柱孔定位各类套筒、盘类、杠杆、拨叉等零件, 常以圆柱孔定位。
所采用的定位元件有圆柱销和各种心轴。
这种定位方式的基本特点是:定位孔与定位元件之间处于配合状态,并要求确保孔中心线与夹具规定的轴线相重合。
孔定位还经常与平面定位联合使用。
工件以圆孔定位工件时,常用的定位元件有定位销、圆柱心轴和圆锥销。
如图2-1-9 ,为典型孔定位示例,(a) 为圆柱定位销,(b)为间隙配合心轴,(c)为圆锥销定位。
①定位销,定位削分为短销和长销。
短销只能限制两个移动自由度,而长销除限制两个移动自由度外,还可限制两个转动自由度。
②圆柱心轴,圆柱心轴定位有间隙配合和过盈配合两种。
间隙配合拆卸方便,但定心精度不高;过盈配合定心精度高,不用另设夹紧装置,但装拆工件不方便。
③圆锥销,采用圆锥销定位时,圆锥销与工件圆孔的接触线为一个圆,限制工件的三个移动自由度。
3.工件以圆锥孔定位(1) 圆锥形心轴圆锥心轴限制了工件除绕轴线转动自由度以外的其它五个自由度。
图2-1-10 (a)所示,刀具锥柄在主轴孔中的定位,限制了除绕轴旋转的其它五个自由度。
(2) 顶尖在加工轴类或某些要求准确定心的工件时,在工件上专为定位加工出工艺定位面——中心孔。
中心孔与顶尖配合,即为锥孔与锥销配合。
两个中心孔是定位基面,所体现的定位基准是由两个中心孔确定的中心线。
图2-1-10 (b)所示,左中心孔用轴向固定的前顶尖定位,限制了、、三个自由度;右中心孔用活动后顶尖定位,与左中心孔一起联合限制了、两个自由度。
中心孔定位的优点是定心精度高,还可实现定位基准统一,并能加工出所有的外圆表面。
这是轴类零件加工普遍采用的定位方式。
4.工件以外圆柱表面定位工件以外圆定位时,最常用的定位元件有V形架、定位套等装置。
(1) 在V形架上定位V形架是应用很广泛的定位元件,应用于粗基准或精基准的定位,使用方便,其结构如图2-1-11a所示。
工件在长V形架上定位(图2-1-11b),限制了,,,四个自由度。
V形架定位的突出特点是对中性好,当工件外圆直径变化时,可以保证圆柱体轴线在X轴方向的误差为零,但是在Z轴方向有定位误差。
(2) 在定位套上定位定位套常用于小型形状简单的轴类零件的精基准定位。
图2-1-12所示为几种常用的定位套。
通常,其定位元件常做成淬硬钢件装于夹具体中,要求定位套的轴线与工件外圆柱面的轴线重合。
常常用定位套的圆柱面与端面组合定位,以保证轴向位置精度,防止轴线的径向位移和倾斜。
5.定位方法的组合:上述几种定位方法,可以单独应用,也可以将几种方法组合应用,特别是平面与定位销组合、平面与短V形块组合等。
(1) 一面两销组合这是一种应用很广的组合定位方式,特别适用箱体形工件(图2-1-13)。
其中大平面限制三个自由度,短圆柱销限制两个自由度,短削边销限制一个自由度。
采用这种定位方法时,一定要注意,应将销的削边部分位于两销的连线方向上,而且应尽可能增大两销间的距离,以提高工件的转角定位精度。
(2) 两面一销组合两面—销组合晴况如图2-1-14所示,工件底面作三点定位,右侧作两点定位,削边销仅用来限制向的自由度,故应在X方向削边。
采用一面两销或两面一销时,削边销的尺寸应经过精心设计算获得,以保证定位精度。
⑶平面、短V形块和削边销应用情况如图2-1-15所示。
平面限制工件三个自由度,V形块限制工件两个自由度,削边销限制工件的旋转自由度。
2.1.4 基准及其分类工件结构的定位,必须要有一个参照物来衡量。
确定工件上几何要素(点、线、面)间的位置关系,所依据的另一些点、线、面称为基准。
基准就是“依据”。
按其功用不同,基准可分为设计基准和工艺基准两大类。
1.设计基准设计基准是零件图上设计尺寸标注的起点。
如图2-1-16 (a)所示的零件,平面2、3的设计基准是平面1,平面5、6的设计基准是平面4,孔7的设计基准是平面l和平面4,而孔8的设计基准是孔7的中心和平面4。
在零件图上不仅标注的尺寸有设计基准,而且标注的位置精度同样具有设计基准,如图2-1-16 (b)所示的钻套零件,轴心线O—O是各外圆和内孔的设计基准,也是两项跳动误差的设计基准,端面A是端面B、C的设计基准。
2.工艺基准工艺基准是零件在加工、测量和装配时所使用的基准。
工艺基准往往通过工件具体的表面来体现,用以体现基准的表面称为基准面。