可疑数据的取舍
- 格式:doc
- 大小:25.00 KB
- 文档页数:2
实验结果可疑数据的取舍方法选择[摘要]在实际工作中,常常会遇到一组平行测定中有个别数据的精密度不甚高的情况,该数据与平均值之差是否属于偶然误差是可疑的。
实验结果对可疑数据的取合很重要。
而且对可检验疑数据取合过程中方法的选择也很重要。
[关键词]可疑数据、取合、方法选择中图分类号:u415.1 文献标识码:a 文章编号:1009-914x(2013)05-0310-01前言:在定量分析工作中,通常要对同一试样做几份平行测定,然后求出平均值。
如果数据中出现显著性差异,即有的数据特大或特小(称为可疑值或离群值),是否都能参加平均值的计算呢?这就需要用统计学方法进行检验,不得随意弃去或保留可疑值。
实验结果可疑数据的取合方法很多:包括q值检验法、格鲁布斯检验法、t值检验法、f检验法等等,下面借一组数据只对q检验法、格鲁布斯检验法进行对比。
看哪种方法更适合实验室应用。
1.数据整理首先要把实验数据加以整理,剔除由于明显的原因而与其它测定结果相差甚远的那些数据,对于一些精密度似乎不甚高的可疑数据,则要通过一定的方法决定取合,然后计算数据的平均值、各数据对平均值的偏差、平均偏差与标准偏差,最后按照要求的置信度求出平均值的置信区间。
2.置信度与平均值的置信区间有了平均值和平均值的标准偏差,就能以±s(表示平均值s表示平均值的标准偏差)的形式表示分析结果,从而推算出所要测定的真值所处的范围,这个范围就称为平均值的置信区间,真值落在这个范围内的几率称为置信度。
通常化学分析中要求置信度95%。
测定次数越多,置信区间的范围越窄,即测定平均值与总体平均值(真值)越接近,但是测定结果超过20次以上置信度的几率系数变化不大,再增加测定次数对提高测定结果的准确度已经没有什么意义了,所以只有在一定的测试次数范围内,分析数据的可靠性才随平行测定次数的增加而增加。
3.实验结果可疑数据的取舍方法对比可疑数据的取合是对过失误差的判断,常用方法有q检验法、格鲁布斯检验法主要用于确定检测结果的真实性。
分析结果可疑值的取舍在常量分析实验中,一般对单个试样试液平行测定2~3次,此时测定结果可作如下简单处理:计算出相对平均偏差,假设其相对平均偏差≤%,可认为符合要求,取其平均值报出测定结果,否那么需重做。
对要求非常准确的分析,如标准试样成分的测定,考核新拟定的分析方法,对同一试样,往往由于实验室不同或操作者不同,做出的一系列测定数据会有差异,因此需要用统计的方法进行结果处理。
首先把数据加以整理,剔除由于明显原因而与其它测定结果相差甚远的错误数据,对于一些精密度似乎不甚高的可疑数据,那么按本节所述的Q 检验或根据实验要求,按照其它有关规那么决定取舍,然后计算n 次测定数据的平均值x 与标准偏差S ,有了x 、s 、n 这三个数据,即可表示出测定数据的集中趋势和分散情况,就可进一步对总体平均值可能存在的区间作出估计。
一、数据集中趋势的表示方法根据有限次测定数据来估计真值,通常采用算术平均值或中位数来表示数据分布的集中趋势。
1.算术平均值x对某试样进行规次平行测定,测定数据为1,2,…n 那么x =1/n 12…n =l/n ∑=ni i x 1根据随机误差的分布特性,绝对值相等的正、负误差出现的概率相等,所以算术平均值至是真值的最正确估计值。
当测定次数无限增多时,所得的平均值即为总体平均值μ。
μ=∑=∞→ni i n n x 11)(lim 2.中位数中位数是指一组平行测定值按由小到大的顺序排列时的中间值。
当测定次数规为奇数时,位于序列正中间的那个数值,就是中位数;当测定次数规为偶数时,中位数为正中间相邻的两个测定值的平均值。
中位数不受离群值大小的影响,但用以表示集中趋势不如平均值好,通常只有当平行测定次数较少而又有离群较远的可疑值时,才用中位数来代表分析结果。
二、数据分散程度的表示方法随机误差的存在影响测量的精密度,通常采用平均偏差或标准偏差来表示数据的分散程度。
1.平均偏差d计算平均偏差d 时,先计算各次测定对于平均值的偏差:d x x i -=1 i=1,2,…n然后求其绝对值之和的平均值:d =1/n ()∑∑==-=ni i ni i x x n d 111相对平均偏差那么是:%100⨯xd2.标准偏差标准偏差又称均方根偏差。
可疑数据的取舍方法当我们进行数据分析或研究时,经常会遇到一些可疑数据,这些数据可能是错误的、异常的或者无意义的。
在分析中使用这些可疑数据可能会导致错误的结论或误导。
因此,正确地挑选和处理可疑数据是非常重要的。
以下是一些可疑数据的取舍方法:1. 数据质量检查:首先,我们应该对数据进行质量检查,以确定哪些数据属于可疑数据。
这些检查可以包括查找缺失值、非数字字符、极端值、不合理值等。
通过这些检查,我们可以较快地识别出问题数据。
2. 数据可信度评估:对于可疑数据,我们需要对其可信度进行评估。
在评估可信度时,可以考虑数据来源的可靠性、收集数据的方法和过程、数据记录的一致性等因素。
如果数据来自于一个不可信的来源或者存在一些不一致性,那么这些数据应该被视为可疑数据,并且应该考虑排除它们。
3. 数据分布分析:数据分布的分析可以帮助我们理解数据的特征和模式。
如果可疑数据与其他数据存在显著的差异,那么这些数据可能是异常数据。
通过绘制直方图、箱线图等图表可以更直观地观察数据的分布情况。
4. 上下文分析:在分析可疑数据时,我们应考虑到数据所处的背景和环境。
如果这些数据在特定的背景下无法被解释,那么它们可能是错误的或异常的。
我们可以通过与其他相关数据或可信的指标进行比较来验证数据的合理性。
5. 数据修复:如果可疑数据的原因是显而易见的错误或者缺失值,我们可以尝试进行数据修复。
修复数据的方法包括插值、平均值替代、回归模型等。
但是,在进行数据修复时,我们应该注意修复方法的适用性和局限性。
6. 数据剔除:对于那些无法修复或无法解释的可疑数据,我们应该考虑将其从分析中剔除。
剔除数据的原则是数据的可靠性和代表性。
这种方法适用于可疑数据对分析结果产生较大影响的情况。
7. 敏感性分析:对于那些无法确定是否剔除的可疑数据,我们可以进行敏感性分析。
敏感性分析是在不同情景和假设下对数据进行分析,以了解可疑数据对结果的影响。
通过敏感性分析,我们可以评估可疑数据的影响程度,从而决定该是否保留或剔除。
可疑数据的取舍21.3.3.1 可疑数据的取舍为了使分析结果更符合客观实际,必须剔除明显歪曲试验结果的测定数据。
正常数据总是有一定的分散性,如果人为删去未经检验断定其离群数据(Outliers)的测定值(即可疑数据),由此得到精密度很高的测定结果并不符合客观实际。
因此对可疑数据的取舍必须遵循一定原则。
1. 取舍原则(1)测量中发现明显的系统误差和过失错误,由此而产生的分析数据应随时剔除。
(2)可疑数据的取舍应采用统计学方法判别,即离群数据的统计检验。
2. 大样本离群数据的取舍(三倍标准差法):根据正态分布密度函数,设测定值为Xi,可表示为Xi+3S ³μ³ Xi -3S。
若Xi在Xi±3S范围内,此数据可用;若在Xi±3S范围外,此数据不可用,须舍弃(亦称莱特准则)。
该判断的置信度在99.7%以上,但测定次数增多时,出现可疑值机会就随之增加,应将取舍标准改变如下。
先计算多次测定结果的平均值X和标准差S,再计算Z值:X=X1 + X2+ … +Xn/ n (n 为包括可疑值尾数在内的测定次数)S = [∑X2 -(∑X)2/n] / (n-1)Z= (X - X ) / S (X 为可疑值)然后查正态分布表,得对应于Z值的a值。
如 n a<0.1,则舍弃,>0.1,则不舍弃。
例如:土壤全氮的5次平行测定结果(g·kg-1)为1.52,1.48,1.65,1.85,1.45。
其中1.85为可疑值,需判断取舍。
计算平均值X=1.59;S=±0.164;Z=(1.85-1.59)/0.164=1.585。
查正态分布表a=0.0565,na=5×0.0565=0.2825,因na>0.1,可疑值1.85g·kg-1不予舍弃。
3. 小样本离群数据取舍(n为有限数):有几个统计检验方法来估测可疑数据,包括Dixon,Grubbs,Cochran和Youden检验法。
可疑数据的取舍,格勒布斯(Grubbs)方法
郑金安
【期刊名称】《上海国土资源》
【年(卷),期】1980(000)002
【摘要】一、引言由试验室提供的土的物理力学性质指标或野外原位测试所提供的测定数据中,有时在同一土层中的一个样本数据中,往往可能有一个或数个过大或过小的数据。
过去地质人员根据主观的判断加以取舍。
结果,数据的取舍因人而异,缺乏统一的准则。
一般讲取自于同一土层的一个样本数据应该都来自同一土层,但是由于试验或测试上的原因,混入了另一个土层的数据;另一种可能是土样取自“过渡层”或二层交界面的情况确实是存在的,对于这种数据的取舍问题过去也往往采用人为的舍弃,这样的数据往往在值上的反映是过小或过大,我们
【总页数】4页(P27-30)
【作者】郑金安
【作者单位】上海勘察院
【正文语种】中文
【中图分类】F27
【相关文献】
1.浅谈可疑数据的取舍方法——格拉布斯法 [J], 雷晓平
2.统计分析中可疑数据的取舍 [J], 闵传新
3.运用数理统计取舍分析中的可疑数据 [J], 高增臣
4.论《隆福寺格斯尔》与木刻本《格斯尔》的双重关系:《隆福寺格斯尔》第十、十二章文本对比分析 [J], 玉兰;
5.PC-1500袖珍计算机在实验数据可疑值取舍中的应用 [J], 李昌世;邹帮仁
因版权原因,仅展示原文概要,查看原文内容请购买。
公共基础试题单选题4、将0.285修约成两位有效数字后,其修约值为。
A、0.28B、0.280C、0.29D、0.29011.不属于表示数据离散程度的统计特征量是。
A.标准偏差B.变异系数C.中位数D.极差A.24,24B.23,24C.23,25D.24,256、可疑数据的取舍方法的基本思想是 A ,即认为有限次重复试验条件下,几乎是不可能的,如果试验中出现,就说明该检测数据不可靠,应该舍弃。
A、小概率事件B、大概率事件C、小数据D、大数据7、将15.45修约成三位有效数字,其修约值为 B 。
A、16.0B、15.4C、15.0D、15.56、将28.15、28.25修约到一位小数,其修约值分别为。
A、28.1、28.2B、28.1、28.3C、28.2、28.2D、28.2、28.37、对于3、3、4、和5这四个数,则中位数为。
A、3B、3.5C、3.75D、4.04、将0.285修约成两位有效数字后,其修约值为 A 。
A、0.28B、0.280C、0.29D、0.2903、285.5、286.5修约到“个”数位,其修约值分别为。
A、285、286B、286、286C、285、287D、286、2879、含有 C 误差的测量数据是不能采用的。
A、系统B、随机C、过失D、偶然8.为表示数据离散程度的统计特征量。
A、变异系数B、中位数C、极差D、标准偏差9、公路工程质量检验中,随机抽样一常采用。
A、单纯随机抽样B、系统抽样C、分层抽样D、密集群抽样6、 D 可能引起随机误差。
A、判断误差B、过失误差C、视读误差D、仪器校准误差16、 D 可能引起系统误差。
A、判断误差B、环境变化C、干扰D、仪器校准误差6.0.23和23.0两个数的有效数字分别为 D 个。
A.2,2B.3,3C.3,2D.2,36.0.23和23.0两个数的有效数字分别为个。
A.2,2B.3,3C.3,2D.2,35.根据数字修约规则,当23.5和24.5修约至“个”数位时,分别为。
可疑值取舍的方法
在面对可疑值时,可以采用以下方法进行取舍:
1. 反复测量:如果存在可疑值,可以进行多次测量,比较各次结果,找出重复性较好的数据。
2. 查看可疑值的来源:检查实验或观察过程中是否存在可能导致异常结果的误操作或异常情况,如仪器故障、操作失误等。
3. 使用统计方法:将可疑值与其他测量值进行比较,如果可疑值与其他数据差异显著,可以考虑将其排除。
4. 验证测量结果与预期结果之间的一致性:根据实验或观察的目的,对结果进行合理性判断,例如与已有理论或经验知识进行对比。
5. 参考相关文献或领域专家的建议:查阅相关文献或咨询领域专家,以获得更多关于可疑值的解释和建议。
6. 其他辅助方法:如使用误差棒图、回归分析、再测量等方法来评估可疑值的影响和重要性。
最终,取舍可疑值时需要全面考虑以上因素,并结合具体情况进行综合判断,以
确保得到尽可能准确和可靠的结果。
可疑数据的取舍21.3.3.1 可疑数据的取舍为了使分析结果更符合客观实际,必须剔除明显歪曲试验结果的测定数据。
正常数据总是有一定的分散性,如果人为删去未经检验断定其离群数据(Outliers)的测定值(即可疑数据),由此得到精密度很高的测定结果并不符合客观实际。
因此对可疑数据的取舍必须遵循一定原则。
1. 取舍原则(1)测量中发现明显的系统误差和过失错误,由此而产生的分析数据应随时剔除。
(2)可疑数据的取舍应采用统计学方法判别,即离群数据的统计检验。
2. 大样本离群数据的取舍(三倍标准差法):根据正态分布密度函数,设测定值为Xi,可表示为Xi+3S ³μ³ Xi -3S。
若Xi在Xi±3S范围内,此数据可用;若在Xi±3S范围外,此数据不可用,须舍弃(亦称莱特准则)。
该判断的置信度在%以上,但测定次数增多时,出现可疑值机会就随之增加,应将取舍标准改变如下。
先计算多次测定结果的平均值X和标准差S,再计算Z值:X=X1 + X2+ … +Xn/ n (n 为包括可疑值尾数在内的测定次数)S = [∑X2 -(∑X)2/n] / (n-1)Z= (X - X ) / S (X 为可疑值)然后查正态分布表,得对应于Z值的a值。
如 n a<,则舍弃,>,则不舍弃。
例如:土壤全氮的5次平行测定结果(g·kg-1)为,,,,。
其中为可疑值,需判断取舍。
计算平均值X=;S=±;Z=-/=。
查正态分布表a=,na=5×=,因na>,可疑值1.85g·kg-1不予舍弃。
3. 小样本离群数据取舍(n为有限数):有几个统计检验方法来估测可疑数据,包括Dixon,Grubbs,Cochran和Youden检验法。
可以对一个样品,一批样品,一台仪器或一组数据中可疑数据的检验。
现介绍最常用的两种方法。
(1)狄克逊(Dixon)检验法:此法适用于一组测量值的一致性检验和剔除离群值,本法中对最小可疑值和最大可疑值进行检验的公式因样本的容量n的不同而异,检验方法如下:将一组测量数据从小到大顺序排列为X1、X2…X3,X1和X n分别为最小可疑值和最大可疑值,按表计算公式求Q值。
可疑值取舍的方法在数据分析和统计学中,可疑值是指与其余观测值相比较起来具有异常特征的数据点。
当进行数据处理和分析时,我们常常需要决定如何对可疑值进行处理。
1. 检查数据的完整性在处理可疑值之前,首先要确保数据的完整性。
这包括检查数据是否有缺失值、异常值或错误值。
如果发现了不完整的数据,应该先进行数据清洗,修正或删除这些数据。
2. 确定可疑值的原因在决定如何处理可疑值之前,需要进一步分析探究造成可疑值的原因。
可能的原因包括测量误差、人为错误、系统故障等。
了解可疑值的原因可以帮助我们选择合适的处理方法。
3. 选择合适的取舍方法针对可疑值,有多种取舍方法可供选择:•删除法:直接删除可疑值。
这种方法适用于可疑值对数据分析结果影响较小且不重要的情况。
•替换法:将可疑值替换为其他合理的数值,如均值、中位数或者使用回归分析等方法来预测该值。
•分组取舍法:根据数据特征将可疑值划分到不同的组别,并对每个组别进行单独处理。
•异常标记法:将可疑值标记为异常,以便在后续分析中进行更详细的研究。
4. 注意取舍带来的影响在选择取舍方法时,需要考虑其对数据集和分析结果的影响:•数据偏差:某些取舍方法可能导致数据整体偏离真实情况。
•信息丢失:删除或替换可疑值可能会导致相关的信息丢失。
•结果误差:取舍方法可能会对数据分析结果产生误差。
因此,在选择取舍方法时需要权衡利弊,并根据具体情况进行决策。
5. 记录处理过程在进行可疑值取舍时,应该记录下所有的处理步骤、方法和结果。
这有助于保持数据处理的透明性和可追溯性。
6. 数据分析报告最后,将处理完可疑值的数据用于进一步的数据分析。
在报告中应该明确提及可疑值的处理方法和原因,以及其对结果的可能影响。
注意:在进行数据处理和可疑值取舍时,请始终遵循相关的统计学和数据分析原则,并在有需要时咨询专业人士。
离群数据的筛选可以使用下列方法一、拉依达法又称3倍标准偏差法,简称3S法。
当某一测量数据与其测量结果的算术平均值之差大于3倍标准偏差时,用公式表示为:则该测量数据应舍弃。
二、肖维纳特法以概率1/2n设定一判定范围(-KnS,KnS),当偏差超出该范围时,就应该舍去。
判别范围由下式确定:Kn:肖维纳特系数与试验次数n有关。
如下表:肖维特系数表2-0-1n Kn n Kn n Kn n Kn n Kn n Kn3 1.388 1.8613 2.0718 2.2023 2.3050 2.584 1.539 1.9214 2.1219 2.2224 2.3175 2.715 1.6510 1.9615 2.1320 2.2425 2.33100 2.816 1.7311 2.0016 2.1521 2.2630 2.39200 3.027 1.8012 2.0317 2.1722 2.2840 2.49500 3.20因此肖维特法可疑数据舍弃的标准为:三、格拉布斯法将Xi 按值从小到大排列如下:给出标准化顺序统计量g :最小值X1可疑,最大值Xn 可疑,为:格拉布斯法的判别标准为:g > g[n][p]格拉布斯表——临界值GP (n )Pn0.95 0.99 Pn0.95 0.99 3 1.135 1.155 17 2.475 2.785 4 1.463 1.492 18 2.504 2.821 5 1.672 1.749 19 2.532 2.854 61.8221.944202.5572.8847 1.938 2.097 21 2.580 2.9128 2.032 2.231 22 2.603 2.9399 2.110 2.323 23 2.624 2.96310 2.176 2.410 24 2.644 2.98711 2.234 2.485 25 2.663 3.00912 2.285 2.550 30 2.745 3.10313 2.331 2.607 35 2.811 3.17814 2.371 2.659 40 2.866 3.24015 2.409 2.705 45 2.914 3.29216 2.443 2.747 50 2.956 3.336。
为什么统计检验的正确顺序是先进行可疑数据的取舍,再进行F检验,在F检验通过后,才能进行t检验
答案:
方法一,把means±SD范围外的数据剔除。
方法二,把数据进行转换后进行多重比较,如转为log10。
选择适当的转换形式,直到齐性检验变为不显著。
你做的是T检验,为什么会有F值呢?
就是因为要评估两个总体的方差(Variances)是否相等,要做Levene's Test for Equality of Variances,要检验方差,故所以就有F值。
Levene方差齐性检验也称为Levene检验(Levene's Test).
由H.Levene在1960年提出[1].M.B.Brown和A.B.Forsythe 在1974年对Levene检验进行了扩展[2],使对原始数据的数据转换不但可以使用数据与算术平均数的绝对差,也可以使用数据与中位数和调整均数 (trimmed mean)的绝对差.这就使得Levene检验的用途更加广泛.Levene检验主要用于检验两个或两个以上样本间的方差是否齐性.要求样本为随机样本且相互独立.国内常见的Bartlett多样本方差齐性检验主要用于正态分布的资料,对于非正态分布的数据,检验效果不理想.Levene检验既可以用于正态分布的资料,也可以用于非正态分布的资料或分布不明的资料,其检验效果比较理想.。
可疑数据的取舍
同一样品同一组分的多个数据中,在相同条件下进行多次重复分析测试得到的数据,或在不完全相同条件下进行再现分析测试得到的数据,或在标准物质进行分析定值中得到的多个实验室多个分析方法的数据,也有在分析方法精密度试验中得到的多个实验室的数据。
在这些不同类型的各组数据中都表现出数据的集中性,也表现出数据的离散性,但有时也出现极少数数据有偏离得较大的现象。
一般对这些偏离较大的数据称为可疑数据或可疑值,对可疑数据的取舍的方法有技术性的和统计性的。
(一)技术性的取舍
从采用的分析方法、分析人员在操作过程中发现异常现象、分析仪器运转是否正常、计算差错、记录差错,环境影响等查找原因,如果确实证明该可疑数据确系上述原因引起的,则认为可疑值为离群数值,并可以作技术性剔除,否则应保留。
(二) 统计检验的取舍
在无确切的技术性的原因将可疑数据剔除时,则需进一步用统计性的法则进行检验和取舍。
对测定值或测量值进行统计检验的目的是为了判断所测数据是否来自同一总体,是否存在应剔除的离群值。
统计性检验可疑数据的法则有“4d”检验法、拉依达检验法、“Q”检验法、格拉布斯(Grubbs)检验法、狄克逊(Dixon)检验法和科克伦( Cochran)检验法等,其中最常用的是后三种。
在GB6379-86《测试方法的精密度通过检验室间试验确定标准测试方法的重复性和再现性》中指出,格拉布斯检验和狄克逊检验,都必须分别独立进行。
格拉布斯检验只进行一次。
两种检验结果分别记录在册。
如只发现一个异常值,则取格拉布斯所得的结果;如发现多个异常值,则取狄克逊检验所得的结果。
在中华人民共和国国家计量技术规范(试行)JJG1006-86《一级标准物质》中,在数据服从正态分布的情况下,将每一个实验室的每种测量方法所测数据的平均值视为单次测量值,构成一组新的测量数据,从技术上判断可疑值并予剔除后,用格拉布斯或狄克逊等法则从统计检验剔除可疑值。
在ISO发布的几个文本(IS0-5725-1981、4259-1979、5168-1978)均推荐用狄克逊法则剔除异常值。
在标准物质数据处理工作中,已经多次发现几种异常值剔除法则对同一组数据的
异常值的取舍不完全一致的现象。
还发现离散度极小的一组数据,有时剔除过多;离散度大的一组数据,有时不被剔除。
在一般情况下,将可剔除可不剔除的数据剔除,对定值数据(μ或X 0)无明显变化,仅会提高精密度,即S 变小。
因此,有一部分人的意见是尽可能地多保留一些信息,也就是尽量少地剔除分析数据。
对小样本的异常值检验,有人认为只需要用格拉布斯检验就可以了。
由于格拉布斯函数的计算使用方法简便,本实验室采用格拉布斯法进行异常值的剔除。
格拉布斯( Grubbs)检验法
对一组数据中偏高或偏低的可疑值进行检验,程序如下:
(1)将一组分析测试数据由小到大顺序排列,x 1,x 2,…x n-1
(2)计算此组数据的平均值
X=∑X i /n (3-14)
(3)计算标准偏差
S=
12)(--∑n x xi ( 3-15) (4)计算统计量G 1或G n
G 1 =S
X X +-min ( 3-16) G n =
S X X -max ( 3-17) (5)给定显著性水平a
(6)将计算值G 1或G n 与表列临界值G(a ,n)比较,若G
或Gn )>G(a ,n),则判断该可疑值应作为离群值剔除,否则保留。
例如。
测定某铁矿石中Fe20。
(%)得到六个分析数据,按其大小排列为30.02、30.12、30.16、30.18、30.18和30.20,第一个数据可疑,试判断是否应合去?
按上列各计算式分别为:
计算得平均值为30.14(%)I 标准偏差为0.066(%);统计量为1.8,给定显著性水平为a= 0.05。
查附表2,在n=6、a =0.05时,临界值G(a ,n)为1.89。
计算值1.80小于临界值1.89,判断30.02(%)的可疑值不是离群值,可以保留。