MLCC 老化说明
- 格式:pdf
- 大小:54.59 KB
- 文档页数:1
片式多层陶瓷电容器(MLCC)老化特性高介电常数型陶瓷电容器 (标准的主要材料为BaTiO3,温度特性为X5R,X7R,Y5V等) 的电容量随时间而减小。
这一特性称之为电容老化。
电容老化是具有自发性极化现象的铁电陶瓷独有的现象。
当陶瓷电容器加热到居里点以上的温度时 (在该温度晶体结构发生改变,自发性极化消失 (大约为150°C) ),并使之处于无载荷状态,直到它冷却到居里点以下,随着时间的流逝,逆转自发性极化变得越来越困难,结果,所测的电容值会随着时间而减小。
上述现象不仅在三星的产品中,在所有高介电常数 (BaTiO3) 的一般性陶瓷电容器都可以观察到。
附录是一些有关电容老化的公用标准 (陶瓷电容器:IEC60384-22附录B等)。
当电容值由于老化而不断减小的电容器重新加热到居里点以上温度并让其冷却时,电容值会得到恢复。
这种现象称之为去老化现象,发生去老化后,正常的老化过程重新开始。
质陶瓷的自发极化与铁电现象BaTiO3质陶瓷的自发极化与铁电现象如图1所示,BaTiO3质陶瓷具有钙钛矿晶体结构。
在居里点 (约130°C) 温度以上呈立方体,且钡 (Ba) 的位置位于最高点,氧 (O)位于晶面的中心,钛 (Ti) 位于晶体的中心。
图1: BaTiO3质陶瓷的晶体结构当在居里点以下正常温度范围内,一条晶轴 (C轴) 伸长约1%而其他晶轴缩短,晶体变成四方晶格 (如下页图2所示)。
在这种情况下,Ti4+离子将占据附近O2-的位置而后者从晶体中心沿晶轴伸展的方向偏移0.12Å。
这种偏移导致正、负电荷的生点发生偏差,造成极化现象。
极化现象是由于晶体结构的不对称造成的,在不施加外电场或压力的情况下,这种极化现象从一开始就存在。
这种类型的极化称为自发性极化现象。
图2: 温度变化时的晶体结构和相关介电常数的变化 (纯BaTiO3)BaTiO3质陶瓷自发极化的方向 (Ti4+离子的位置) 在施加外部电场的情况下可以轻易逆转。
贴片铝电解电容的老化测试则不严格意义上来讲,老化(Burn in)是指采用高温方法对产品施加环境应力,而环境应力筛选(ESS:Environment Stress Screen )仅包括高温应力,还包括其他很多应力,例如温度循环、随机振动等,所以,老化是属于环境应力筛选的一种。
但现在很多公司已经把“老化”这个词的意义扩展了,老化就等同环境应力筛选,环境应力筛选俗称为老化,在本文中就沿用“老化”这个词。
在电子产品在加工过程中,由于经历了复杂的加工和元器件物料的大量使用,将引入各缺陷(即便设计再好的产品亦如此)。
无论是加工缺陷还是元器件缺陷,都可分为明显缺陷和潜在缺陷,明显缺陷指那些导致产品不能正常工作的缺陷,例如短路/断路。
而潜在缺陷导致产品暂时可以使用,但在使用中缺陷会很快暴露出来,产品不能正常工作,例如贴片铝电解电容容量不足,产品虽然可以用,但在使用的过程中就会寿命的问题。
明显缺陷可通过常规检验手段加以发现。
潜在缺陷则无法用常规检验手段发现,而是运用老化的方法来剔除。
如果老化方法效果不好,则未被剔除的潜在缺陷将最终在产品运行期间以早期失效(或故障)的形式表现出来,从而导致产品返修率上升,维修成本增加。
其实,老化还有一个更重要的目的(和测试一样):通过老化使产品加工工艺不断改进,使元器件品质不断改进,改进到不需要老化为止。
单板在老化以后一定要经过测试,在测试中发现某个元器件经常损坏,则说明该器件有潜在缺陷,需要供应商改进品质。
老化的原理老化的理论基础是电子产品的故障率曲线(简称浴盆曲线),老化是通过对电子产品施加加速环境应力,如温度应力、电应力、潮热应力、机械应力等,促使潜在缺陷加速暴露成故障,达到发现和剔除潜在缺陷的目的。
老化不能损坏好的部分或引入新的缺陷,老化应力不能超出设计极限。
老化的效果一般和施加的环境应力及老化时间有关系。
MLCC 失效分析及对策失效的原因•裝配过程中<工艺应用上>失效的原因;•热应力与热冲击;•金属的溶解;•基板和元件过热;•超声波清洗的损坏;•机械负载;•运输的振动;•机械冲击;•应力与热冲击;•老化<腐蚀、基板材料老化、蠕变斷裂、焊接疲劳>电容器的失效模式与常见故障•钽电解电容器—电压过载击穿烧毁;浪涌电压冲击漏电流增大;极性反向短路;高温降额不足失效;•铝电解电容器—漏电流增大击穿;极性反向短路;高温降额不足失效;•有机薄膜电容器—热冲击失效;寄生电感过大影响高频电路功能实现;•MLCC(2类)—SMT工艺不当导致断裂或绝缘失效;Y5V温度特性不佳导致电路故障;•MLCC(1类)—RF设计选型匹配。
MLCC异常汇总分类一、裂纹(微裂、断裂、开裂和击穿)二、端头脱落三、电性能异常(C、DF、IR和TC)四、抛料(国标GB≤0.3%,具体依设备定)五、上锡不良(假焊)六、其它(Q、ESR等)开裂一、MLCC本身制造方面的因素:1、MLCC排烧时温控失调,有机物挥发速率不均衡,严重时会出现微裂纹;2、内电极金属层与陶瓷介质烧结时因热膨胀系数不同,收缩不一致导致瓷体内部产生了微裂。
(MLCC质量隐患);3、编织线裂纹二、MLCC应用生产工艺方面因素:1、热冲击(结构本身不能吸收短时间内温度剧烈变化产生的机械应力所导致的机械性破坏,该力由于不同的热膨胀系数、导热性及温度变化率产生) 2、贴装应力(主要是真空吸放头或对中夹具引起的损伤<目前都使用视觉对中或激光对中取代机械对中>)3、上电扩展的裂纹(贴装时表面产生了缺陷,后经多次通电扩展的微裂纹)4、翘曲裂纹(在印制板裁剪、测试、元器件安装、插头座安装、印制版焊接、产品最终组装时引起的弯曲或焊接后有翘曲的印制板主要是印制板的翘曲)5、印制板剪裁(手工分开拼接印制板、剪刀剪切、滚动刀片剪切、冲压或冲模剪切、组合锯切割和水力喷射切割都有可能导致印制板弯曲)6、焊接后变形的印制版(过度的基材弯曲和元器件的应力)MLCC微裂实例MLCC外观图MLCC DPA图MLCC外观图MLCC DPA图MLCC外观图MLCC DPA图击穿产生的原因:1、MLCC本身耐压不够大(介质厚度偏薄、内部有短路缺陷);2、PCB板模块电路设计不合理,存在漏电短路的缺陷;3、SMT生产工艺中造成的锡渣、锡珠、锡桥等短路现象;4、上电测试时电压过高、或产生的瞬间脉冲电压过大等不良操作。
深圳市宇阳科技发展有限公司Ⅱ类陶瓷介质电容器容量衰减特性Ⅱ类陶瓷介质(包括X7R、X5R及Y5V特性类)的电容器使用的是铁电体材料。
当温度低于居里温度时,介质的立方晶体结构转为四方相,其对称性降低,晶体点阵中的离子会连续移动到势能较小的位置,引起电容量按对数规律随时间不断地减小,这一现象称为Ⅱ类陶瓷介质材料的老化现象,一般引用老化常数来表示,X7R/X5R材质的老化常数约-1%~-2%, Y5V材质的老化常数约-3%~-4%。
MLCC老化特性如下图所示:
上述现象是可逆的,在经过去老化(去老化条件:150℃、1h)后容量就可以恢复到初始值。
因此焊接时的高温对产品有去老化的作用,焊接后产品的容量会恢复到初始值。
深圳市宇阳科技发展有限公司。
多层陶瓷电容(MLCC)应用注意事项一、 储存为了保持MLCC的性能,防止对MLCC的不良影响,储存时请注意以下事项:1、室内温度5~40℃,湿度:20%~70%RH;2、无损害气体:含硫酸、氨、氢硫化合物或氢氯化合物的气体;3、如果MLCC不使用,请不要拆开包装。
如果包装已经打开,请尽可能地重新封上。
编带装产品请避免太阳光直射,因为太阳光直射会使MLCC老化并造成其性能的下降。
请尽量在6个月内使用,使用之前请注意检查其可焊性。
二、 手工操作MLCC是高密度、硬质、易碎和研磨的材质,使用过程中,它易被机械损伤,比如开裂和碎裂(内部开裂需要超声设备检测)。
MLCC在手持过程中,请注意避免污染和损伤。
手工操作时,建议使用真空挑拣或使用塑料镊子挑拣。
三、 预热焊接过程中,为了减小对器件的热冲击,精确控制的预热是很有必要的。
温度的上升率请不要超过4℃/秒,设预热好的温度与焊接最高温度的温度差为ΔT,则对于0603、0805、1206等尺寸的MLCC, 最好ΔT≤100℃,对于1210、1808、1812、2220、2225等大尺寸的MLCC,最好ΔT≤50℃。
四、 焊接手焊时,请使用功率不超过30W且温度可调控的烙铁,烙铁头尖的直径不要超过1.2毫米。
焊接过程中,请不要用烙铁头直接接触陶瓷体,烙铁的温度不要超过260℃。
对于大尺寸的MLCC,比如1210、1808、1812、2220、2225等,不推荐使用波峰焊和手焊。
五、 冷却焊接后,慢慢冷却MLCC和基板至室温,推荐使用空气自然冷却,以减小焊接处的应力。
当进行强制冷却时,温度下降率请不要超过4℃/秒。
六、 清洁所有焊接残留物都必须使用合适的电子级别的蒸发清洁解决方案清除,因为污物会造成电解表面的腐蚀。
使用超声波清除的解决方法最好,适当的清洁系统的选择要考虑很多因素,包括器件、焊剂以及焊头粘贴和组装方法等,清洁系统清除器件底部焊剂和污物的能力很重要。
MLCC產品容值偏低現象针对经常有客户问及容值偏低的问题,本文从仪器差异、测试环境、测试条件、材料老化等方面对此作出完整之说明及解释,以期对MLCC产品容值偏低现象有进一步的认识。
1、量测仪器差异对量测结果之影响.高容量的电容量测时更易有容值偏低现象,主要原因是电容两端之实际施于电压无法达到测试条件需求所致,也就是说加在电容两端的电压由于仪器本身内部阻抗分压的原因与仪器显示的设定电压不同。
为使量测结果误差降至最低,建议客戶将仪器調校並將儀器的设定电压与实际在产品两端所测之电压尽量调整,使实际于待测物上之輸出电压一致.2、测试条件对量测结果之影响首先考虑量测条件的问题。
对于不同容值的电容会采用不同的条件来量测其容值。
主要在电压设定和测试频率设定上有差異,不同容值的量测条件如下表所示:电容AC 电压频率C>10μF 1.0± 0.2Vrms 120Hz1000pF<C≦10μF 1.0± 0.2Vrms 1kHzC≦ 1000pF 1.0± 0.2Vrms 1MHz注:表中所列之电压是指实际加在电容两端的有效电压。
因仪器的原因,电容两端实际的輸出电压与设定的量测电压实际上可能会有所偏差。
3、影响高容量测之因素3.1 仪器內部阻抗之大小因素.由于不同测试仪器之间的內部阻抗不相同,造成仪器将总电压分压而使到达测试物的实际电压变小。
在实际的测试动作中,我们可以使用万用表等测试夹具两端的实际电压,以验证实际施于测试物的輸出电压。
3.2不同阻抗的测试仪器对比仪器内阻100Ω压降1V*[100Ω/(100Ω+16Ω)]=0.86V10uF测试电容两端电压:1V*[16Ω/(100Ω+16Ω)]=0.14V平均电容值读数: 6-7μF仪器内阻1.5Ω压降:1V*[1.5Ω/(1.5Ω+16Ω)]=0.086V10uF测试电容两端电压:1V*[16Ω/(1.5Ω+16Ω)]=0.914V平均电容值读数: 9-10μF综合以上实验,可以得到有效电压与电容量的关系如下:→當AC Voltage 較小,则量测出之电容值偏小→當AC Voltage 較大,则量测出之电容值偏大下圖為量測電壓與量測容值的對照圖3.3 电容大小因素电容量大小会影响电容之阻抗.Z(Ω)=R+j(-1/ωc)where ω=2π f∵电容之R很小∴Z(Ω)≒1/ωcEx:10μF Z ≒ 1/(2 π *1k*(10*10-6)≒16 (Ω)22μF Z ≒ 1/(2 π *1k*(22*10-6)≒7.2 (Ω)22μF Z ≒ 1/(2 π *120*(22*10-6)≒60.3 (Ω)Z(Ω)≒1/ωcEx:10μF Z ≒ 1/(2 π *1k*(10*10-6)≒16 (Ω)因此待测电容两端之AC Voltage要保持在1Vrms则仪器之输出电流I(rms)=V(rms)/Z=1/16=62.5 mA所以若仪器之最大输出电流小于62.5 mA,则待测电容两端之AC Voltage会小于1Vrms,所测得之容值就会变小。
MLCC—搜狗百科MLCC是片式多层陶瓷电容器英文缩写.(Multi-layer ceramic capacitors)一、瓷介的分类陶瓷电容一般是以其温度系数作为主要分类。
Class I - 一类陶瓷(超稳定)EIA称之为COG或NPO。
工作温度范围 -55℃~+125℃,容量变化不超过±30ppm/℃。
电容温度变化时,容值很稳定,被称作具有温度补偿功能,适用于要求容值在温度变化范围内稳定和高Q值的线路以及各种谐振线路。
Class II/III - 二/三类陶瓷(稳定)EIA标称的X7R表示温度下限为-55℃;上限温度为+125℃的工作温度范围内,容量最大的变化为±15%,Z5U、Y5V分别表示工作温度10~+85℃和-30~+85℃;容量最大变化为+22~-56%和30~82%,同属于二类陶瓷。
优点是体积利用率高,即在外型尺寸相同时能提供更高的容值,适用于高容值和稳定性能要求不太高的线路。
二、瓷介代号陶瓷介质的代号是按其陶瓷材料的温度特性来命名的。
目前国际上通用美国EIA标准的叫法,用字母来表示。
常用的几种陶瓷材料的含义如下:Y5V:温度特性Y代表-25℃; 5代表+85℃;温度系数V代表-80%~+30%Z5U:温度特性Z代表+10℃; 5代表+85℃;温度系数U代表-56%~+22%X7R:温度特性X代表-55℃; 7代表+125℃温度系数R代表± 15%NP0:温度系数是30ppm/℃(-55℃~+125℃)三、一般电性能1、介电常数不同介质的类别有不同的表现效果。
环境因素,包括温度、电压、频率和时间(老化),对不同介质的电容有不同的影响。
介质常数(K 值)越高,稳定性能、可靠性能和耐用性能便越差。
现代多层陶瓷电容器介质最常用有以下三类。
· COG或NPO(超稳定) K值10~100· X7R(稳定)K值2000~4000· Y5V或Z5U(一般用途)K值5000~250002、绝缘电阻(IR)即介质直流电阻,通常测量方法是以额定电压将电容充电一分钟,电容充电以后测量其漏电电流。
MLCC电容的老化5. Capacitance measuring5.1 Capacitance ageingMost class 2 ceramic dielectrics used for ceramic capacitors have ferroelectric properties and exhibit a Curie temperature. Above this temperature, the dielectric has the highly symmetric cubic crystal structure, whereas below the Curie temperature the crystal structure is less symmetrical. Although in single crystals this phase transition is ver y sharp, in practical ceramics it is often spread over a finite temperature range. In all cases, however, it is associated with a peak in the capacitance/temperature curve.Under the influence of thermal vibration, the ions in the crystal lattice continue to move to positions of lower potential energy for a long time after the dielectric has cooled through the Curie temperature. This gives rise to the phenomenon of capacitance ageing characterized by a continual decrease in capacitance. However, if the capacitor is heated above the Curie temperature, de-ageing occurs, i.e . the capacitance lost through ageing is regained, and ageing re commences from the time when the capacitor re-cools.Ref. The above description is based on IEC 384-9,Appendix A, page 59.5。
mlcc电容绝缘下降原因及现象MLCC电容在使用过程中,有时会出现绝缘下降的现象。
绝缘下降是指电容器的绝缘性能下降,导致电容器不能正常工作或者工作不稳定。
那么,MLCC电容绝缘下降的原因是什么?这种现象又会表现出怎样的特点呢?我们来看一下MLCC电容的结构。
MLCC电容是一种多层陶瓷电容器,由多个陶瓷层和金属电极交替叠压而成。
它具有体积小、容量大、频率响应好等特点,在电子产品中被广泛应用。
然而,由于其特殊的结构和材料,MLCC电容在使用过程中容易出现绝缘下降的问题。
MLCC电容绝缘下降的主要原因之一是陶瓷材料的内部缺陷。
陶瓷材料在制造过程中,由于各种因素的影响,可能会产生一些内部缺陷,如气孔、裂纹等。
这些缺陷会导致电容器的绝缘性能下降,从而影响其正常工作。
MLCC电容的绝缘下降还与外界环境条件有关。
例如,高温、高湿度、强电场等环境条件会加速电容器的绝缘老化,使其绝缘性能下降。
此外,如果电容器长时间处于高温环境中,会导致陶瓷材料的热膨胀系数与金属电极不匹配,从而产生应力,进一步导致绝缘性能下降。
绝缘下降的现象通常表现为电容器的绝缘电阻下降。
在正常情况下,电容器的绝缘电阻应该很大,以保证电容器能够正常工作。
然而,当绝缘下降发生时,电容器的绝缘电阻会显著下降,甚至降到一个很低的水平。
这会导致电容器在工作过程中出现电流泄漏现象,影响电路的正常运行。
绝缘下降还可能导致电容器的介质击穿。
当电容器的绝缘性能下降到一定程度时,电场强度可能会超过介质的击穿电场强度,导致介质击穿。
介质击穿会引起电容器发生短路,甚至引发火灾和爆炸等严重后果。
为了避免MLCC电容绝缘下降的问题,我们可以采取一些措施。
首先,选择质量可靠的电容器供应商,确保电容器的制造工艺和质量控制能够达到要求。
其次,合理设计电路,避免电容器长时间处于高温、高湿度和强电场等恶劣环境中。
此外,定期检测和维护电容器,及时发现并处理绝缘下降的问题,也是非常重要的。
一、外观质量检查拿到一个电子元器件之后,应看其外观有无明显损坏。
比如变压器,要看其所有引线有否折断,外表有无锈蚀,线包、骨架有无破损等。
又如三极管,要看其外表有无破损,引脚有无折断或锈蚀,还要检查一下器件上的型号是否清晰可辨。
对于电位器、可变电容器之类的可调元件,还要检查在调节范围内,其活动是否平滑、灵活,松紧是否合适,无机械噪声,手感好,并保证各触点接触良好。
各种不同的电子元器件都有自身的特点和要求,爱好者平时应多了解一些有关各元件的性能和参数、特点,积累经验。
二、电气性能的筛选要保证试制的电子装置能够长期稳定地通电工作,并且经得起应用环境和其他可能因素的考验,这是对电子元器件的筛选必不可少的一道工序。
所谓筛选,就是对电子元器件施加一种应力或多种应力试验,暴露元器件的固有缺陷而不破坏它的完整性。
筛选的理论是:如果试验及应力等级选择适当,劣质品会失效,而优良品则会通过。
人们在长期的生产实践中发现新制造出来的电子元器件,在刚投入使用的时候,一般失效率较高,叫做早期失效,经过早期失效后,电子元器件便进入了正常的使用期阶段,一般来说,在这一阶段中,电子元器件的失效率会大大降低。
过了正常使用阶段,电子元器件便进入了耗损老化期阶段,那将意味着寿终正寝。
这个规律,恰似一条浴盆曲线,人们称它为电子元器件的效能曲线。
电子元器件失效,是由于在设计和生产时所选用的原材料或工艺措施不当而引起的。
元器件的早期失效十分有害,但又不可避免。
因此,人们只能人为地创造早期工作条件,从而在制成产品前就将劣质品剔除,让用于产品制作的元器件一开始就进入正常使用阶段,减少失效,增加其可靠性。
在正规的电子工厂里,采用的老化筛选项目一般有:高温存储老化;高低温循环老化;高低温冲击老化和高温功率老化等。
其中高温功率老化是给试验的电子元器件通电,模拟实际工作条件,再加上+80℃~+180℃的高温经历几个小时,它是一种对元器件多种潜在故障都有检验作用的有效措施,也是目前采用得最多的一种方法。
何谓MLCC 产品材料老化现象? 1.老化是指EIA Class Ⅱ类电容容值随时间降低的现象,它在所有以铁电系材料做介电质的材料均有发生,是一种自然,不可避免的现象。
发生的根因是内部晶体结构随温度和时间产生变化导致了老化,属可逆现象。
老化速率呈典型对数曲线如下,也即在10 n 小时到10 n+1小时的时间内,下降的容值量相等:
2.以钛酸钡为电介质的电容为何 会老化?怎样老化?
随着时间变化, 钛酸钡其分子结构将逐渐变为电偶数组,该数组式分子结构较杂乱无章的分子结构存储电荷的能力要差。
3.什么是de-aging?如何实现de-aging ?
老化是一种可逆的现象,当对老化的材料加以高于居里温度的高温,材料的分子结构将会回到杂乱无章的原始状态。
材料将由此开始老化的又一个循环。
Yageo 建议进行de-aging 所使用之条件为155℃/1hour 。
同时,在诸如SMT-Reflow 、Wave soldering 等高温情况下,即可以将产品回到原始之容值。
建议验证实验如下:将测试容量偏低的产品浸至锡炉或过Reflow ,再行测试,容值将恢复到正常规格之内。
4.是否只有Yageo 材料有老化现象? 回答是否定的。
老化现象发生在任何一家厂商的Class Ⅱ类陶瓷电容器。
它是普遍现象,只是老化率会因厂商不同而有所差异。