晶体结构分析的历史发展
- 格式:doc
- 大小:36.00 KB
- 文档页数:5
《物质结构的探索无止境》教学设计一、教学目标1、知识与技能目标(1)学生能够了解物质结构研究的历史发展脉络。
(2)理解原子结构、分子结构和晶体结构的基本概念和特点。
(3)掌握常见的物质结构研究方法和实验技术。
2、过程与方法目标(1)通过对历史上物质结构探索的案例分析,培养学生的科学思维和探究能力。
(2)通过小组讨论和实验探究,提高学生的合作学习和实践操作能力。
3、情感态度与价值观目标(1)激发学生对物质结构探索的兴趣和热情,培养学生的科学精神和创新意识。
(2)使学生认识到科学研究的不断进步和发展,增强学生对科学的敬畏和追求。
二、教学重难点1、教学重点(1)原子结构的模型演变。
(2)分子结构的化学键理论。
(3)晶体结构的类型和特点。
2、教学难点(1)量子力学在物质结构研究中的应用。
(2)物质结构与性质的关系。
三、教学方法1、讲授法讲解物质结构的基本概念、理论和研究方法,使学生对物质结构有初步的认识。
2、案例分析法通过分析历史上著名的物质结构研究案例,如卢瑟福的α粒子散射实验、汤姆逊发现电子等,引导学生理解科学研究的过程和方法。
3、小组讨论法组织学生进行小组讨论,探讨物质结构与性质的关系,培养学生的合作学习和交流能力。
4、实验探究法设计简单的实验,让学生亲身体验物质结构研究的方法和过程,如通过X 射线衍射实验探究晶体结构。
四、教学过程1、导入(5 分钟)通过展示一些日常生活中常见的物质,如金属、塑料、晶体等,引发学生对物质性质差异的思考,从而引出物质结构的话题。
2、知识讲解(30 分钟)(1)原子结构从古希腊哲学家的原子论讲起,介绍道尔顿的原子学说,然后重点讲解汤姆逊发现电子和卢瑟福的α粒子散射实验,引出原子的核式结构模型。
接着讲解玻尔的原子模型和量子力学对原子结构的描述,让学生了解原子结构的复杂性和多样性。
(2)分子结构讲解化学键的概念,包括离子键、共价键和金属键,通过实例让学生理解不同化学键的形成和特点。
准晶体摘要:准晶体是一种具有有序但不具备传统晶体完全周期性重复结构的材料。
本文将介绍准晶体的基本概念、发现历史、晶体学特征、结构特点以及其在材料科学领域的应用等方面。
通过对准晶体的深入研究,我们可以更好地了解这种材料的特殊性质,从而为今后的材料设计与合成提供更多可能性。
1. 引言准晶体是一种介于晶体和非晶体之间的特殊材料,其结构既具有一定的有序性,又存在非晶体所特有的无规则局部结构。
准晶体的发现给传统晶体学观念带来了很大的冲击,使得人们重新审视晶体结构的多样性和复杂性。
2. 发现历史准晶体的发现可以追溯到20世纪70年代初。
当时,关于准晶体存在的猜测和研究已经逐渐增多,但直到1975年才有科学家首次成功合成出了一种具有五重旋转对称性的准晶体。
这个发现引起了极大的轰动,并引发了整个科学界对准晶体的深入研究。
3. 晶体学特征准晶体的晶体学特征与传统晶体存在一定的差别。
准晶体的晶胞通常具有五重旋转对称性,而不是晶胞中心对称或其他常见的对称性。
此外,准晶体的点阵常数通常不是整数,这也是准晶体与普通晶体的一个显著区别。
4. 结构特点准晶体的结构特点是其与传统晶体最大的不同之处。
准晶体的结构在宏观上呈现出高度有序的态势,但在微观上却存在着一些局部无规则的结构。
这种具有非晶体特点的局部结构是准晶体与普通晶体的本质区别。
5. 应用与前景准晶体具有独特的结构和性质,将为材料科学领域带来许多新的应用与前景。
准晶体在催化剂、材料增强、信息存储、光学器件等方面都有着广泛的应用。
未来,通过对准晶体的深入研究,我们可以更好地利用准晶体的特性,实现更高效、更可靠的新型材料的开发与制备。
6. 结论准晶体作为一种介于晶体与非晶体之间的特殊材料,其结构和性质的研究具有重要的科学意义和应用价值。
通过对准晶体的深入研究,我们可以更深入地了解准晶体的结构特点,为今后的材料设计与合成提供更多的可能性。
相信在不久的将来,准晶体将在材料科学领域发挥着重要的作用。
1、XRD(X-ray diffraction ) ——X 射线衍射XRD 简介XRD (即X 射线衍射)是人类用来研究物质微观结构的第一种方法。
自Debye-Sherrer 发明粉末衍射以来,已有90多年的历史。
在这漫长的岁月中,它在晶体结构分析,特别是多晶聚集态的结构(相结构、晶粒大小、择优取向和点阵畸变等)方面作出了巨大的贡献。
成为当今材料研究中不可缺少的工具。
粉末衍射法常用于晶体结构分析,测定晶胞参数,甚至点阵类型,晶胞中原子数和原子位置。
如测定晶胞参数在研究固态相变、确定固溶体类型、测定固溶体溶解度曲线、测定热膨胀系数等方面,都得到了很大的应用。
晶胞参数测定是通过X 射线衍射线位置(θ)的测定而获得的,通过测定衍射图谱中每一条衍射线的位置均可得出一个晶胞参数值。
通过对材料进行X 射线衍射,分析其衍射图谱获得材料的成分、材料内部原子或分子的结构、形态等信息。
XRD 可以进行物相的定性和定量分析、晶格参数的精确测定、晶粒大小、微观应力分析、单晶定向以及晶体缺陷等方面研究。
一 X 射线1.发现1895年伦琴发现用高速电子冲击固体时,有一种新射线从固体上发出来。
X射线的本质是电磁波,波长在10-8cm 左右,波动性为0.01~100 Å,同时也具有粒子性。
2.X 射线的性质1)物理作用,使某些物质发出荧光—可见光,用于荧光摄影:如X-射线透视。
2)可穿透物体。
穿透力与物质的原子序数有关。
同一波长的X-射线,对原子序数低的物质穿透力强,对原子序数高的物质穿透力弱。
3)可引起化学反应,使照相胶片感光,用于X-射线摄影。
4)可在生命组织中诱发生物效应,用作治疗。
5)使物质的原子电离和激发,使气体导电。
3.X 射线的产生及X 射线管X 射线产生的需要以下3个基本条件:(1)产生自由电子;(2)使电子作定向高速运动;阴级 阳级+ -(3)在电子运动的路径上设置使其突然减速的障碍物;以上就是X射线产生原理,据此生产的X射线产生装置就叫:X光管,或X射线发生器。
半导体材料的历史现状及研究进展(精)半导体材料的研究进展摘要:随着全球科技的快速发展,当今世界已经进入了信息时代,作为信息领域的命脉,光电子技术和微电子技术无疑成为了科技发展的焦点。
半导体材料凭借着自身的性能特点也在迅速地扩大着它的使用领域。
本文重点对半导体材料的发展历程、性能、种类和主要的半导体材料进行了讨论,并对半导体硅材料应用概况及其发展趋势作了概述。
关键词:半导体材料、性能、种类、应用概况、发展趋势一、半导体材料的发展历程半导体材料从发现到发展,从使用到创新,拥有这一段长久的历史。
宰二十世纪初,就曾出现过点接触矿石检波器。
1930年,氧化亚铜整流器制造成功并得到广泛应用,是半导体材料开始受到重视。
1947年锗点接触三极管制成,成为半导体的研究成果的重大突破。
50年代末,薄膜生长激素的开发和集成电路的发明,是的微电子技术得到进一步发展。
60年代,砷化镓材料制成半导体激光器,固溶体半导体此阿里奥在红外线方面的研究发展,半导体材料的应用得到扩展。
1969年超晶格概念的提出和超晶格量子阱的研制成功,是的半导体器件的设计与制造从杂志工程发展到能带工程,将半导体材料的研究和应用推向了一个新的领域。
90年代以来随着移动通信技术的飞速发展,砷化镓和磷化烟等半导体材料成为焦点,用于制作高速高频大功率激发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出超强优越性,被称为IT产业的新发动机。
新型半导体材料的研究和突破,常常导致新的技术革命和新兴产业的发展.以氮化镓为代表的第三代半导体材料,是继第一代半导体材料(以硅基半导体为代表和第二代半导体材料(以砷化镓和磷化铟为代表之后,在近10年发展起来的新型宽带半导体材料.作为第一代半导体材料,硅基半导体材料及其集成电路的发展导致了微型计算机的出现和整个计算机产业的飞跃,并广泛应用于信息处理、自动控制等领域,对人类社会的发展起了极大的促进作用.硅基半导体材料虽然在微电子领域得到广泛应用,但硅材料本身间接能带结构的特点限制了其在光电子领域的应用.随着以光通状态所需的能量。
《物质结构的探索无止境》导学案一、学习目标1、了解人类对物质结构探索的历史进程,认识物质结构研究的重要性。
2、理解物质结构的基本概念,如原子、分子、化学键等。
3、掌握现代物质结构研究的主要方法和技术。
4、培养科学思维和探索精神,激发对物质结构领域的兴趣。
二、学习重难点1、重点(1)原子结构模型的演变。
(2)化学键的类型和本质。
2、难点(1)量子力学对物质结构的描述。
(2)晶体结构的分析。
三、知识梳理(一)物质结构探索的历史1、古代朴素的物质观古代哲学家们对物质的本质提出了各种猜测和设想。
例如,中国古代的“五行说”认为世界是由金、木、水、火、土五种基本元素组成的;古希腊哲学家德谟克利特提出了“原子论”,认为物质是由不可分割的原子构成的。
2、近代化学的发展(1)道尔顿的原子学说19 世纪初,英国科学家道尔顿提出了近代原子学说,认为原子是不可再分的实心球体,同种元素的原子性质和质量都相同。
(2)汤姆生的“葡萄干布丁”模型19 世纪末,英国物理学家汤姆生发现了电子,提出了原子的“葡萄干布丁”模型,认为原子是一个带正电的球,电子像葡萄干一样镶嵌在其中。
(3)卢瑟福的核式结构模型1911 年,卢瑟福通过α粒子散射实验,提出了原子的核式结构模型,认为原子的中心有一个很小的原子核,电子在原子核外绕核运动。
(二)原子结构1、原子的构成原子由原子核和核外电子构成,原子核由质子和中子组成。
质子数决定了元素的种类,质子数和中子数共同决定了原子的质量数。
2、核外电子的排布核外电子按照一定的规律分层排布,遵循能量最低原理、泡利不相容原理和洪特规则。
(三)化学键1、离子键阴阳离子之间通过静电作用形成的化学键称为离子键。
离子键通常存在于活泼金属与活泼非金属形成的化合物中。
2、共价键原子之间通过共用电子对形成的化学键称为共价键。
共价键分为极性共价键和非极性共价键。
(四)分子的空间结构1、价层电子对互斥理论用来预测分子的空间结构。
1物理化学物理化学是以物理的原理和实验技术为基础,研究化学体系的性质和行为,发现并建立化学体系中特殊规律的学科.随着科学的迅速发展和各门学科之间的相互渗透,物理化学与物理学、无机化学、有机化学在内容上存在着难以准确划分的界限,从而不断地产生新的分支学科,例如物理有机化学、生物物理化学、化学物理等.物理化学还与许多非化学的学科有着密切的联系,例如冶金学中的物理冶金实际上就是金属物理化学。
物理化学的发展历史一般认为,物理化学作为一门学科的正式形成,是从1877年德国化学家奥斯特瓦尔德和荷兰化学家范托夫创刊的《物理化学杂志》开始的。
从这一时期到20世纪初,物理化学以化学热力学的蓬勃发展为其特征。
热力学第一定律和热力学第二定律被广泛应用于各种化学体系,特别是溶液体系的研究。
吉布斯对多相平衡体系的研究和范托夫对化学平衡的研究,阿伦尼乌斯提出电离学说,能斯脱发现热定理都是对化学热力学的重要贡献.当1906年路易斯提出处理非理想体系的逸度和活度概念,以及它们的测定方法之后,化学热力学的全部基础已经具备.劳厄和布喇格对 X射线晶体结构分析的创造性研究,为经典的晶体学向近代结晶化学的发展奠定了基础。
阿伦尼乌斯关于化学反应活化能的概念,以及博登施坦和能斯脱关于链反应的概念,对后来化学动力学的发展也都作出了重要贡献.20世纪20~40年代是结构化学领先发展的时期,这时的物理化学研究已深入到微观的原子和分子世界,改变了对分子内部结构的复杂性茫然无知的状况。
1926年,量子力学研究的兴起,不但在物理学中掀起了高潮,对物理化学研究也给以很大的冲击。
尤其是在1927年,海特勒和伦敦对氢分子问题的量子力学处理,为1916年路易斯提出的共享电子对的共价键概念提供了理论基础。
1931年鲍林和斯莱特把这种处理方法推广到其他双原子分子和多原子分子,形成了化学键的价键方法。
1932年,马利肯和洪德在处理氢分子的问题时根据不同的物理模型,采用不同的试探波函数,从而发展了分子轨道方法。
薄膜晶体管目录简介发展历史现状原理发展前景图书信息简介薄膜晶体管 (英文名称为Thin-film transistor,简称TFT)是场效应晶体管的种类之一,大略的整理方式是在基板上沉积各种不同的薄膜,如半导体主动层、介电层和金属电极层。
薄膜晶体管是液晶显示器的关键器件,对显示器件的工作性能具有十分重要的作用.发展历史及现状人类对TFT的研究工作已经有很长的历史. 早在1925年,Julius Edger Lilienfeld首次提出结型场效应晶体管(FET)的基本定律,开辟了对固态放大器的研究.1933年,Lilienfeld 又将绝缘栅结构引进场效应晶体管(后来被称为 MISFET).1962 年,Weimer用多晶CaS薄膜做成TFT;随后,又涌现了用CdSe,InSb,Ge等半导体材料做成的TFT器件.二十世纪六十年代,基于低费用,大阵列显示的实际需求,TFT的研究广为兴起.1973年,Brody等人136光子技术2006年9月首次研制出有源矩阵液晶显示(AMLCD),并用CdSe TFT作为开关单元.随着多晶硅掺杂工艺的发展,1979年后来许多实验室都进行了将 AMLCD LeComber,Spear和Ghaith 用a-Si:H做有源层,做成TFT 器件.以玻璃为衬底的研究.二十世纪八十年代,硅基TFT在AMLCD 中有着极重要的地位,所做成的产品占据了市场绝大部分份额.1986年Tsumura等人首次用聚噻吩为半导体材料制备了有机薄膜晶体管(OTFT),OTFT技术从此开始得到发展.九十年代,有机半导体材料作为活性层成为新的研究热点.由于在制造工艺和成本上的优势,OTFT被认为将来极可能应用在LCD,OLED的驱动中.近年来,OTFT的研究取得了突破性的进展.1996 年,飞利浦公司采用多层薄膜叠合法整理了一块15微克变成码发生器(PCG);即使当薄膜严重扭曲,仍能正常工作.1998 年,无定型金属氧化物锆酸钡作为并五苯有机薄膜晶体管的栅绝IBM 公司用一种新型的具有更高的介电常数缘层,使该器件的驱动电压降低了4V,迁移率达到0.38cm2V-1s-1.1999年,Bell实验室的Katz和他的研究小组制得了在室温下空气中能稳定存在的噻吩薄膜,并使器件的迁移率达到0.1cm2V-1s-1.Bell实验室用并五苯单晶制得这向有机集成了一种双极型有机薄膜晶体管, 该器件对电子和空穴的迁移率分别达到2.7cm2V-1s-1和1.7cm2V-1s-1,电路的实际应用迈出了重要的一步.最近几年,随着透明氧化物研究的深入,以ZnO,ZIO等半导体材料作为活性层整理薄膜晶体管,因性能改进显着也吸引了越来越多的兴趣.器件制备工艺很广泛,比如:MBE,CVD,PLD等,均有研究.ZnO-TFT 技术也取得了突破性进展.2003 年,Nomura等人使用单晶 InGaO3(ZnO)5获得了迁移率为80 cm2V-1s-1的TFT器件.美国杜邦公司采用真空蒸镀和掩膜挡板技术在聚酰亚铵柔性衬底上开发了ZnO-TFT,这是在聚酰亚铵柔性衬底上首次研制成功了高迁移率的ZnO-TFT,这预示着在氧化物TFT子迁移率为50cm2V-1s-1.2006 年,Cheng领域新竞争的开始.2005年,ChiangHQ等人利用ZIO作为活性层制得开关比10薄膜晶体管.HC等人利用CBD方法制得开关比为105,迁移率为0.248cm2V-1s-1的TFT,这也显示出实际应用的可能.[1]原理薄膜晶体管是一种绝缘栅场效应晶体管.它的工作状态可以利用 Weimer表征的单晶硅MOSFET工作原理来描述.以n沟MOSFE为例. 当栅极施以正电压时,栅压在栅绝缘层中产生电场,电力线由栅电极指向半导体表面,并在表面处产生感应电荷.随着栅电压增加,半导体表面将由耗尽层转变为电子积累层,形成反型层.当达到强反型时(即达到开启电压时),源,漏间加上电压就会有载流子通过沟道.当源漏电压很小时,导电沟道近似为一恒定电阻,漏电流随源漏电压增加而线性增大.当源漏电压很大时,它会对栅电压产生影响,使得栅绝缘层中电场由源端到漏端逐渐减弱,半导体表面反型层中电子由源端到漏端逐渐减小,沟道电阻随着源漏电压增大而增加.漏电流增加变得缓慢,对应线性区向饱和区过渡.当源漏电压增到一定程度,漏端反型层厚度减为零,电压在增加,器件进入饱和区.在实际LCD生产中,主要利用a-Si:H TFT的开态(大于开启电压)对像素电容快速充电,利用关态来保持像素电容的电压,从而实现快速响应和良好存储的统一.发展前景未来TFT技术将会以高密度,高分辨率,节能化,轻便化,集成化为发展主流,从本文论述的薄膜晶体管发展历史以及对典型 TFT 器件性能分析来看,虽然新型OTFT,ZnO-TFT的研究已经揭示出优良的特性,甚至有的已经开始使用化,但实现大规模的商业化以及进一步降低成本等方面,还需要很多努力.因此在很长一段时间内将会与硅基材料器件并存.我国大陆的显示技术处于刚开始阶段,对新型TFT器件的研发以及显示技术的应用带来了重大的机遇和挑战.相信在不久的将来,OTFT和ZnO-TFT等新型器件为基础的产品会推动下一代光电子学的突飞猛进.图书信息书名:薄膜晶体管出版社: 电子工业出版社; 第1版 (2008年3月1日)平装: 450页正文语种: 简体中文开本: 16商品尺寸: 23.4 x 18.2 x 2.4 cm品牌: 电子工业出版社发行部TFT是如何工作的?TFT也就是薄膜晶体管,是用来主动控制每一个像素光通过量的元件。
简述有机化学发展史
有机化学是化学中最具代表性的分支之一,它研究的是碳原子化学特性、结构、化学反应等。
有机化学是化学历史上的一个重要发展阶段,下面将分步骤阐述有机化学的发展史。
1. 前有机化学时期
前有机化学时期,人们对于化学反应的了解非常有限,更多的是在实
验中摸索。
其中最著名的两个人是黑尔姆霍兹和弗拉纳哥-拉埃尔。
黑
尔姆霍兹在1857年发表了一篇关于酸碱数的文章,弗拉纳哥-拉埃尔
则提出了结构化学的概念。
这些人的工作为后来有机化学的发展奠定
了基础。
2. 经典有机化学时期
经典有机化学时期主要发生在19世纪,大量的有机反应被发现。
其中
最著名的有机反应当属闵克说法。
这个说法认为碳的原子价仅为4,然而它仍可以与四个不同的官能团发生反应。
闵克的这个说法后来促进
了有机化学反应的研究,最终有机化学的发展从这里开始。
3. 现代有机化学时期
现代有机化学时期从20世纪初开始,它主要发展了有机分子结构分析
和有机催化剂。
这个时期的知名有机化学家有沃尔夫、范特霍夫、勃
拉格等人。
4. 21世纪的有机化学
21世纪的有机化学主要致力于绿色化学和有机电子化学。
这个时期的重要发展包括有机太阳能电池、有机场效应晶体管、液态晶体等等。
这些发展进一步扩展了有机化学的研究领域。
总之,有机化学的发展历程是一个取得了大量成就的历史过程,它让我们更好地了解了碳原子的化学特性,拓展了人类在化学领域的认识和应用。
薄膜晶体管研究进展许洪华1,徐 征2, 黄金昭2,袁广才2,孙小斌2,陈跃宁1(1.辽宁大学 物理系,沈阳 110036 ; 2.北京交通大学 光电子技术研究所,发光与光信息技术教育部重点实验室,北京 100044 )摘 要:薄膜晶体管是液晶显示器的关键器件,对显示器件的工作性能具有十分重要的作用。
本文论述了薄膜晶体管的发展历史,描述了薄膜晶体管的工作原理,分析了非晶硅薄膜晶体管、多晶硅薄膜晶体管、有机薄膜晶体管、ZnO活性层薄膜晶体管的性能结构特点与最新进展,并展望了薄膜晶体管的应用。
关键词:薄膜晶体管;液晶显示;ZnO薄膜中图分类号:TN304;TQ050;TB742 文献标识码:AResearch Progress on Thin Film TransistorXU Hong-hua1, XU Zheng2, HUANG Jin-zhao2, YUAN Guang-cai2, SUN Xiao-bin2, CHEN Yue-ning1(1. Department of Physics, Liao-ninUniversity, Shenyang 110036 ; 2. Key Laboratory of Luminescence and OpticalInformation , Ministry of Education Institute of Optoelectronics Technology, Beijing Jiaotong University , Beijing 100044 ) Abstract: Thin film transistor(TFT)which is of great importance in the properties of display devices is the key device of liquid crystal display. In this paper, the research history and the operating principles of TFT are described, meanwhile, the outstanding properties and recent research progress on thin film transistor such as amorphous silicon TFT, polycrystalline silicon TFT, organic TFT and ZnO-Based TFT are analyzed. At last, the development trends of thin film transistor are forecasted.Key Words: thin film transistor; liquid crystal display; zinc oxide thin film1 引言纵观信息时代迅猛发展的各项技术,不论网络技术与软件,还是通信技术、计算机技术,如果没有TFT-LCD 为代表的平板显示技术做人机交互界面,就构不成现在的信息社会。
晶体结构分析的历史发展(一)X射线晶体学的诞生1895年11月8日德国维尔茨堡大学物理研究所所长伦琴发现了X射线。
自X射线发现后,物理学家对X射线进行了一系列重要的实验,探明了它的许多性能。
根据狭缝的衍射实验,索末菲(Som-merfeld)教授指出,X射线如是一种电磁波的话,它的波长应当在1埃上下。
在发现X射线的同时,经典结晶学有了很大的进展,230个空间群的推引工作使晶体构造的几何理论全部完成。
当时虽没有办法测定晶胞的形状和大小以及原子在晶胞中的分布,但对晶体结构已可臆测。
根据当时已知的原子量、分子量、阿伏伽德罗常数和晶体的密度,可以估计晶体中一个原子或一个分子所占的容积,晶体中原子间距离约1—2埃。
1912年,劳厄(Laue)是索末菲手下的一个讲师,他对光的干涉现象很感兴趣。
刚巧厄瓦耳(P.Ewald)正随索末菲进行结晶光学方面的论文,科学的交流使劳厄产生了一种极为重要的科学思想:晶体可以用作X射线的立体衍射光栅,而X射线又可用作量度晶体中原子位置的工具。
刚从伦琴那里取得博士学位的弗里德里克(W.Friedrich)和尼平(P.Knipping)亦在索末菲教授处工作,他们自告奋勇地进行劳厄推测的衍射实验。
他们使用了伦琴提供的X射线管和范克罗斯(Von.Groth)提供的晶体,最先对五水合硫酸铜晶体进行了实验,费了很多周折得到了衍射点,初步证实了劳厄的预见。
后来他们对辉锌矿、铜、氯化钠、黄铁矿、沸石和氯化亚铜等立方晶体进行实验,都得到了正面的结果,为了解释这些衍射结果,劳厄提出了著名的劳厄方程。
劳厄的发现导致了X射线晶体学和X射线光谱学这二门新学科的诞生。
劳厄设计的实验虽取得了正面的结果,但X射线晶体学和X射线光谱学成为新学科是一些得力科学家共同努力的结果。
布拉格父子(W.H.Bragg,W.L.Bragg)、莫塞莱(Moseley)、达尔文(Darwin)完成了主要的工作,通过他们的工作认识到X射线具有波粒二重性;X射线中除了连续光谱外,还有波长取决于阴极材料的特征光谱,发现了X射线特征光谱频率和元素在周期表中序数之间的规律;提出了镶嵌和完整晶体的强度公式,热运动使衍射线变弱的效应,发展了X射线衍射理论。
W·L·布拉格在衍射实验中发现,晶体中显得有一系列原子面在反射X射线。
他从劳厄方程引出了布拉格方程,并从KCl和NaCl的劳厄衍射图引出了晶体中的原子排列方式,W·L·布拉格在劳厄发现的基础上开创了X射线晶体结构分析工作。
伦琴在1901年由于发现X射线成为世界上第一个诺贝尔物理奖获得者,而劳厄由于发现X射线的晶体衍射效应也在1914年获得了诺贝尔物理奖。
(二)X射线晶体结构分析促进了化学发展W·L·布拉格开创的X射线晶体结构分析工作把X射线衍射效应和化学联系在一起。
当NaCl等晶体结构被测定后,使化学家恍然大悟,NaCl的晶体结构中没有用NaCl表示的分子集团,而是等量的Na+离子和Cl-离子棋盘交叉地成为三维结构。
当时X射线结构分析中的位相问题是通过强度数据和强度公式用试差法来解决的,只能测定含二三十个参数的结构,这些结构虽简单,但使无机物的结构化学有了真正的开始。
从1934年起,帕特孙(Patterson)法和其他应用付里叶级数的方法相继提出,位相问题可通过帕特孙函数找出重原子的位置来解决,使X射线晶体结构分析摆脱了试差法。
1940年后计算机的使用,使X射线晶体结构分析能测定含重原子的复杂的化合物的结构。
X射线晶体结构分析不但印证了有机物的经典结构化学,也为有机物积累了丰富的立体化学数据,使有机物的结构化学有了很大提高,以下通过几位诺贝尔奖获得者的工作来说明X射线晶体结构分析在化学进展中所起的作用。
1954年诺贝尔化学奖获得者鲍林(L.C.Pauling)以研究物质结构和化学键理论而闻名于世,他长期从事晶体结构的研究,X射线晶体结构分析的逐渐广泛使用,提供了许多分子内部的结构信息,鲍林把量子力学和近代化学理论结合起来,建立和发展了现代结构化学。
他提出的电负性计算方法和概念、原子杂化轨道理论和价键学说以及关于离子化合物结构的规则是阐明各种复杂物质分子构造及性质的有力武器。
他根据晶体结构测定得到的数据提出的α—螺旋体二级结构模型,为研究生物大分子的奥秘打开了通道。
1964年诺贝尔化学奖获得者霍奇金(D.M.C.Hodgkin)是世界上获得这项荣誉为数极少几个女科学家之一,是擅长X射线晶体结构分析的女化学家。
她用X射线晶体结构分析测定了盘尼西林的晶体结构,在1949年又成功地测定出维生素B12的更为复杂的空间构型和构象,从而为合成维生素B12和其它复杂的化合物开辟了道路,她还测定了胰岛素生物大分子的晶体结构。
维生素B12的晶体结构的测定使帕特孙函数重原子法到了里程碑的水平。
1962年诺贝尔化学奖授予佩鲁茨(M.F.Perutz)和肯德鲁(Sr.J.C.Kendrew)二位生物、结晶学家。
他们发展了X射线晶体结构分析技术,通过浸泡把重原子引入到蛋白质中,然后用同晶置换法解决位相问题,测定了鲸肌红蛋白和马血红蛋白的空间精细结构。
从发现蛋白质具有肽链结构到完全搞清楚蛋白质分子的精细的空间结构,前后差不多经过了半个世纪。
在生物学对蛋白和核酸这两类大分子的三维结构研究无法前进的时候,X射线晶体结构分析为生物化学研究带来了突破。
当今X射线晶体结构分析已成为生物大分子研究中的有力工具。
(三)晶体结构分析的发展晶体结构分析的发展,是一个不断完善自身和扩大应用的过程。
诺贝尔奖的年谱记录了晶体结构分析历史上的重大事件并展示了它与其他学科相互作用所产生的丰硕成果。
晶体结构分析的方法主要有两大类。
这就是以X射线衍射分析为代表的衍射分析方法和以电子显微术为代表的显微成像方法。
电子显微成像也可以认为是两个相继的电子衍射过程。
因此可以说衍射分析是晶体结构分析的核心。
用衍射分析方法测定晶体结构的理论依据,在于晶体结构同它的衍射效应之间互为Fourier变换的关系。
这里说的衍射效应,是指从晶体向各个方向发出的衍射波的振幅和相位。
从衍射实验可以记录下各个方向上衍射波的振幅。
但是在目前以及可见的将来,还不能找到有普遍意义的实用方法来记录由晶体发出的衍射波的相位。
因此,要想从衍射的Fourier变换解出晶体结构,必须先设法找回“丢失了的”相位。
这就是晶体学中的“相位问题”,它一直是研究晶体结构分析方法的关键问题。
紧接着Laue发现X射线衍射,Bragg父子(W. H.Bragg和W.L.Bragg)就迅速建立了用X射线衍射方法测定晶体结构的实验手段和理论基础。
这使人类得以定量观测原子在晶体中的位置。
为此他们两人同获1915年的诺贝尔物理学奖。
晶体结构分析最初用于一些简单的无机化合物。
对碱金属卤化物结构的研究导致W.L.Bragg提出原子半径的概念。
不久Bragg又将晶体结构分析应用于研究硅酸盐以及金属和合金。
硅酸盐晶体结构分析的工作为硅酸盐结构化学提供了最早的实验基础,而有关金属和合金的工作则把物理冶金、金属物理以及相平衡图的研究推上一个新的台阶,使有关工作深入到原子层次。
晶体结构分析在研究无机化合物上取得成功,引起人们对有机物尤其是生命物质内部结构的兴趣。
英国从20年代中期就开始研究有机物晶体结构。
但是过了10多年仍未见有重大的突破。
原因是当时的分析技术和方法还很原始。
于是迎来了三四十年代晶体结构分析方法和技术大发展的时期。
如前所述,晶体结构分析中有所谓“相位问题”。
早期的晶体结构分析用以解决相位问题的方法是所谓试差法。
其要点是:先根据已掌握的线索猜出一个结构模型,再从这个模型计算出相应的一组理论衍射强度,然后同实验所得的衍射强度作比较并据此对模型进行修改。
上述步骤须经多次反复,直至理论和实验的衍射强度得以吻合。
用这样的“方法”来测定晶体结构,说是科学试验却更像艺术创作。
它显然适应不了测定复杂的晶体结构的需要。
早在20年代中期,英国的W.L.Bragg和J.M.Cork为解决相位问题分别提出了所谓重原子法和同晶型置换法。
重原子法的大意是:假定晶体中含有少数原子序数较大的原子,即所谓重原子,而且它们的位置是已知的,这时就可以计算出重原子对相位的贡献并以此代替由全体原子贡献的相位。
用这样的相位配以由实验测得衍射振幅就可以近似地计算出一幅代表晶体结构的电子密度图。
同晶型置换法的要点则是:如果能够制备出待测晶体的重原子衍生物,而且衍生物的晶体与母体晶体是“同晶型”。
这时如果已知重原子位置,就可以根据母体和衍生物两者在衍射强度上的差异来推算相应的衍射相位。
这两种方法后来在一系列有机物以及蛋白质的晶体结构分析中作出了关键的贡献。
但是它们在诞生后相当一段时间里并未发挥很大的作用。
原因是它们都依赖于已知的重原子位置而当时还没有便于确定重原子位置的方法。
1934年,美国的A.L.Patterson提出用衍射振辐平方为系数以计算Fourier级数,从而绕开相位问题。
Patterson指出,这样一个级数是晶体中电子密度的自卷积,在一定的条件下可以从中提取出有关晶体中原子位置,首先是重原子位置的信息。
这个用衍射振辐平方计算的Fourier级数后来被称作Patterson函数,相应的分析方法被称为Patterson法。
此法发表几年之后,Patterson法和以它为基础的重原子法、同晶型置换法等就成为X射线单晶体结构分析中用以处理相位问题最有效的手段。
再加上实验技术和结构精修技术的改进,晶体结构分析达到了一个新的水平并终于打开了有机物质和生命物质的大宝藏。
美国L.Pauling领导的小组花了十几年时间,测定了一系列氨基酸和肽的晶体结构,从中总结出形成多肽链构型的基本原则并于1951年推断多肽链将形成α—螺旋构型或折叠层构型。
这是通过总结小分子结构规律预言生物大分子结构特征的非常成功的范例。
为此Pauling获得1954年诺贝尔化学奖。
英国D.Hodgkin领导的小组测定了一系列的生物化学物质的晶体结构,其中包括青霉素和维生素B12。
她因此获得了1964年诺贝尔化学奖。
美国W.N.Lipscomb研究硼烷结构化学工作获得1975年诺贝尔化学奖。
所有这些获奖工作都是以晶体结构分析为研究手段。
可以说,没有晶体结构分析本身在理论和技术上的长期积累,就不会有上面几个诺贝尔奖。
英国的J.D.Bernal早在30年代中期就开始用X射线研究蛋白质的结构。
但是真正取得进展是在W.L.Bragg主持Cavendish实验室之后。
分子生物学发展史上具有划时代意义的发现中,有两项出自Cavendish实验室。
第一项是1953年J.D.Watson和F.H.C.Crick根据X 射线衍射实验建立了脱氧核糖核酸(DNA)的双螺旋结构。