七年级上册数学第一章有理数的乘除法练习题
- 格式:doc
- 大小:79.00 KB
- 文档页数:3
七年级数学上册《第一章 有理数的乘除法》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、单选题1.计算()42-÷的结果是( )A .2-B .2C .6-D .8-2.计算下列各式,值最大的是( )A .()12--B .()12+-C .()12⨯-D .()12÷-3.下列运算中,结果小于0的是( )A .()()820-⨯-B .()()8200-⨯-⨯C .()820-+-D .()()820---4.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.小红在该快递公司寄一件8千克的物品,需要付费( )A .19元B .20元C .21元D .23元5.从-5,-8,-1,2,7,3这六个数中取其中3个不同的数作为因数,则积的最大值为( ) A .42 B .80 C .280 D .560 6.对于下面两个等式①()()a b c a b c ++=++,①()()ab c ac b =,下列说法正确的是( )A .①表示加法交换律B .①表示乘法结合律C .①表示加法结合律D .①表示乘法交换律7.下列各式中,计算结果为负数的是( ) A .()()34 6.2-⨯-⨯B .()()34 5.53-⨯-⨯-⨯-C .()()()134099.8-⨯-⨯-D .()15870-⨯-⨯ 8.有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中不正确的是( )A .0a b -<B .||||a b <C .0a b +>D .0.ab >二、填空题9.实数a ,b 在数轴上的对应点的位置如图所示, 用“<”或“>”填空:a b ,ab 0;三、解答题19.小明的爸爸购买了8筐板枣出售,若以每筐10kg 为基准,把超过10kg 的千克数记为正数,不足10kg 的千克数记为负数,记录如下:①3+:① 1.4-;①2+;①4-:①5+;① 3.5-;①1+;①0.5-.(1)这8筐板枣中,最重的一筐是_____kg ,比最轻的一筐重了______kg .(2)这8筐板枣的总重量是多少kg ?20.学习了有理数的乘法后,老师给同学们出了这样一道题目:“计算:()1939520⨯-,看谁算的又快又对.”有两位同学的解法如下:小文:原式79939953519920204=-⨯=-=-; 小丽:原式()()1919339539(5)519920204⎛⎫=+⨯-=⨯-+⨯-=- ⎪⎝⎭. (1)对于以上两种解法,__________的解法较好(填“小文”或“小丽”);(2)受上面解法对你的启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:1599816⎛⎫-⨯ ⎪⎝⎭. 参考答案:1.A2.A3.C4.A5.C6.C7.C8.D9. < <。
七年级数学上册有理数的乘除练习题【例1】下列说法正确的是( )A .5个有理数相乘,当负因数为3个时,积为负B .﹣1乘以任何有理数等于这个数的相反数C .3个有理数的积为负数,则这3个有理数都为负数D .绝对值大于1的两个数相乘,积比这两个数都大 【变式1-1】在下列各题中,结论正确的是( ) A .若a >0,b <0,则ba >0B .若a >b ,则a ﹣b >0C .若 a <0,b <0,则ab <0D .若a >b ,a <0,则ba <0【变式1-2】已知a +b >0且a (b ﹣1)<0,则下列说法一定错误的是( ) A .a >0,b >1B .a <﹣1,b >1C .﹣1≤a <0,b >1D .a <0,b >0【变式1-3】下列说法:①若a 、b 互为相反数,则a b=−1;②若b <0<a ,且|a |<|b |,则|a +b |=﹣|a |+|b |;③几个有理数相乘,如果负因数的个数为奇数个,则积为负;④当x =1时,|x ﹣4|+|x +2|有最小值为5;⑤若ab =c d,则c a=d b;其中错误的有( )【例2】若3a ﹣12没有倒数,则a = ;已知m ﹣11的倒数为−17,则m +1的相反数是 . 【变式2-1】(2022•杨浦区校级期中)如果a +3的相反数是﹣513,那么a 的倒数是 . 【变式2-2】(2022秋•贵港期末)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2. (1)直接写出a +b ,cd ,m 的值; (2)求m +cd +a+b m的值.【变式2-3】已知a 与2互为相反数,x 与3互为倒数,则代数式a +2+|﹣6x |的值为( ) A .0B .﹣2C .2D .无法确定【例3】下列计算正确的是( ) A .﹣30×37−20×(−37)=1507B .(−23+45)÷(−115)=﹣2C .(12−13)÷(13−14)×(14−15)=310D .−45÷(+45)×(−827)=0【变式3-1】(1)(−35)×(﹣312)÷(﹣114)÷3 (2)[(+17)﹣(−13)﹣(+15)]÷(−1105)【变式3-2】计算: (1)619÷(﹣112)×1924. (2)﹣125×0.42÷(﹣7)【变式3-3】计算:(1)(−35)×(﹣312)÷(﹣114)÷3; (2)(﹣8)÷23×(﹣112)÷(﹣9).【例4】写出下列运算中每一步所依据的运算律或法则: (﹣0.4)×(﹣0.8)×(﹣1.25)×2.5 =﹣(0.4×0.8×1.25×2.5)(第一步) =﹣(0.4×2.5×0.8×1.25)(第二步) =﹣[(0.4×2.5)×(0.8×1.25)](第三步) =﹣(1×1)=﹣1.第一步: ;第二步: ;第三步: . 【变式4-1】计算:(12−34+18)×(﹣24). 【变式4-2】用简便方法计算 (1)991718×(﹣9)(2)(﹣5)×(﹣367)+(﹣7)×(﹣367)+12×(﹣367)【变式4-3】用简便方法计算:(1)﹣13×23−0.34×27+13×(﹣13)−57×0.34(2)(−13−14+15−715)×(﹣60)【例5】(2022•利辛县月考)下面是小明同学的运算过程. 计算:﹣5÷2×12.解:﹣5÷2×12=−5÷(2×12)...第1步 =﹣5÷1...第2步 =﹣5 (3)请问:(1)小明从第 步开始出现错误; (2)请写出正确的解答过程.【变式5-1】计算:(−109)×(−35).解:(−109)×(−35)=−109×35①=−23.②(1)找错:第 步出现错误; (2)纠错:【变式5-2】阅读下面解题过程: 计算:5÷(13−212−2)÷6 解:5÷(13−212−2)×6=5÷(−256)×6…① =5÷(﹣25)…② =−15⋯③回答:(1)上面解题过程中有两处错误,第一处是第 步,错因是 ,第二处是 ,错因是 . (2)正确结果应是 . 【变式5-3】阅读下列材料: 计算:124÷(13−14+112).解法一:原式=124÷13−124÷14+124112=124×3−124×4+124×12=1124. 解法二:原式=124÷(412−312+112)=124÷212=124×6=14.解法三:原式的倒数=(13−14+112)÷124=(13−14+112)×24=13×24−14×24+112×24=4.所以,原式=14.(1)上述得到的结果不同,你认为解法 是错误的; (2)请你选择合适的解法计算:(−142)÷(16−314+23−27).【例6】(1)三个有理数a ,b ,c 满足abc >0,求|a|a +|b|b +|c|c的值.(2)三个有理数a ,b ,c 满足abc <0,求|a|a+|b|b+|c|c的值;(3)若a ,b ,c 为三个不为0的有理数,且|a|a +|b|b+|c|c=−1,求abc|abc|的值.【变式6-1】已知非零有理数a ,b ,c 满足ab >0,bc >0. (1)求|ab|ab +ac|ac|+|bc|bc的值;(2)若a+b+c<0,求|a|a +b|b|+|c|c+|abc|abc的值.【变式6-2】已知|x|=3,|y|=7(1)若x<y,求x﹣y的值;(2)若xy>0,求x+y的值;(3)求x2y﹣xy2+21的值.【变式6-3】若a+b+c<0,abc>0,则ab|ab|+2•|−bc|bc−3•ac|ac|+4•|abc|abc的最大值为()A.6B.8C.10D.7【例7】考察下列每一道算式,回答问题:算式:63×67=4221 72×78=5616561×569=3192009 1814×1816=3294224(1)两个因数个位上的数字之和是多少?其余各位上的数字有何特征?(2)根据四个式子的计算,请你猜想符合上述特征的两个数相乘的运算规律.(3)再举两道符合上述特征的计算题,并用你猜想的规律进行计算.【变式7-1】已知C32=3×21×2=3,C53=5×4×31×2×3=10,C64=6×5×4×31×2×3×4=15,…观察以上规律计算C85=,C10a=45,则a=.【变式7-2】有一列数a1,a2,a3,…a n,若a1=12,从第二个数开始,每一个数都等于1与它前面那个数的差的倒数.(1)试计算a2,a3,a4;(2)根据以上计算结果,试猜测a2016、a2017的值.【变式7-3】已知一些两位数相乘的算式:62×11,78×69,34×11,63×67,18×22,15×55,12×34,54×11利用这些算式探究两位数乘法中可以简化运算的特殊情形:(1)观察已知算式,选出具有共同特征的3个算式,并用文字描述它们的共同特征;(2)分别计算你选出的算式.观察计算的结果,你能发现不经过乘法运算就可以快速、直接地写出积的规律吗?请用文字描述这个规律;(3)证明你发现的规律;(4)在已知算式中,找出所有可以应用(或经过转化可以应用)上述规律的算式,并将它们写在横线上:.【例8】(2022•江宁区校级月考)天龙顶国家山地公园,位于岑溪市南渡镇吉太附近,距岑溪市35公里,天龙顶是桂东最高峰,史上早已成名,被誉为“土主龙楼”天龙顶形成于远古冰川,由整块红色砂岩劈凿而成,拔地而起,是极限攀岩、野外露营及登山爱好者的天堂.某年寒假,小昌与小勇一起去游天龙顶,他们想知道山的高度.小昌说可以利用温度计测量山峰的高度,小昌在山顶测得温度约是﹣1℃,小勇此时在山脚测得温度约是8.6℃,已知该地区每年增加100米,气温大约下降0.8℃,小昌很快算出了答案,你知道天龙顶的高度约是多少米吗?【变式8-1】妈妈身高多少厘米?【变式8-2】某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):﹣34﹣12﹣5进出数量(单位:吨)进出次数21332(1)这天仓库的原料比原来增加或减少了多少吨?(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案较合适?请说明理由.【例9】若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【变式9-1】定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的n倍(n为正整数),我们就说这个自然数是一个“n 喜数”.例如:24就是一个“4喜数”,因为24=4×(2+4);25就不是一个“n喜数”,因为25≠n(2+5).(1)判断44和72是否是“n喜数”?请说明理由;(2)请求出所有的“7喜数”之和.【变式9-2】“格子乘法”作为两个数相乘的一种计算方法,最早在15世纪由意大利数学家帕乔利提出,在明代数学家程大位著的《算法统宗》一书中被称为“铺地锦”.例如:如图1,计算46×71,将乘数46写在方格上边,乘数71写在方格右边,然后用乘数46的每位数字乘以乘数71的每位数字,将结果计入相应的方格中,最后沿斜线方向相加得3266.(1)如图2,用“格子乘法”计算两个两位数相乘,则x=,y=;(2)如图3,用“格子乘法”计算两个两位数相乘,得2176,则m=,n=;(3)如图4,用“格子乘法”计算两个两位数相乘,则k=.【变式9-3】小聪是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识,脑洞大开地定义出“有理数的除方”概念.于是规定:若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小聪把5÷5÷5记作f(3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f(4,﹣2).(1)直接写出计算结果,f(4,1)=,f(5,3)=;2(2)关于“有理数的除方”下列说法正确的是.(填序号)①f(6,3)=f(3,6);②f(2,a)=1(a≠0);③对于任何正整数n,都有f(n,﹣1)=1;④对于任何正整数n,都有f(2n,a)<0(a<0).(3)小明深入思考后发现:“除方”运算能够转化成乘方运算,且结果可以写成幂的形式,请推导出“除方”的运算公式f(n,a)(n为正整数,a≠0,n≥2),要求写出推导过程将结果写成幂的形式;(结果用含a,n的式子表示)(4)请利用(3)问的推导公式计算:f(5,3)×f(4,13)×f(5,﹣2)×f(6,12).。
2023-2024学年人教版七年级数学上册《第一章有理数的乘除法》同步练习题附答案学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.2015的倒数是()A.-2015 B.-C.D.20152.2013个数的乘积为0,则()A.均为0 B.最多有一个为0C.至少有一个为0 D.有两个数是相反数3.乘积为﹣1的两个数叫做互为负倒数,则﹣2的负倒数是()A.﹣2 B.C.D.24.计算,运用哪种运算律可以避免通分()A.加法交换律B.加法结合律C.乘法交换律D.乘法分配律5.下列计算正确的是()A.﹣0.15÷3=﹣0.5 B.0.2÷0.1=0.2C.D.6.在-2,3,4,-5这四个数中,任取两个数相乘,所得积最大的是 ( )A.20 B.-20 C.12 D.107.已知a,b在数轴上的位置如图所示,那么下面结论正确的是()A.a﹣b<0 B.ab>0 C.a+b<0 D.|a|>|b| 8.玲玲利用电脑调整两张相同尺寸照片的大小:第一张照片缩小了60%后感觉偏大,第二张照片缩小了80%后正合适,为使第一张照片也合适,则玲玲将这张照片再缩小的百分比是()A.20% B.30% C.40% D.50%二、填空题:(本题共5小题,每小题3分,共15分.)9.计算:×4=10.绝对值大于1而不大于3的整数有,它们的积是.11.-的倒数的绝对值是,比较大小 .12.将2,-7,1,-5这四个数(都用且只能用一次)进行“”运算,可加括号,使其结果等于24,写出其中的一种算法:.13.如果规定符号“﹡”的意义是a﹡b= ,那么﹡4的值为。
三、解答题:(本题共5题,共45分)14.计算: .15.计算.(1);(2);(3).16.某体育用品店用400元购进了8套运动服,准备以一定价格出售如果该店卖出每套运动服的价格以60元为标准,超出部分记做正数,不足部分记做负数,记录如下(单位:元):+2,-3,+2,+1,-1,-2,0,-2则该店卖出这8套运动服后是赢利还是亏损?赢利(亏损)多少?17.“十一”国庆期间出租车司机小李某天下午的营运始终在长安街(自东向西或自西向东)上进行,如果规定向东为正,向西为负,他这天下午从天安门出发,行车里程(单位:千米)如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.(1)小李将最后一名乘客送抵目的地时,小李距天安门有多远?(2)如果汽车耗油量为0.08升/千米,这天下午小李共耗油多少升?18.如图,有5张写着不同的数字的卡片,请你按要求借助卡片上的数字完成下列各题:(1)从中取出2张卡片,使卡片上的2个数的和最小,则和的最小值是多少?(2)从中取出2张卡片,使卡片上的2个数相乘的积最小,则积的最小值是多少?(3)再制作一张写有数字的卡片,使6张卡片上数字之和为0,则新做的卡片上数字应写多少?参考答案:1.C 2.C 3.C 4.D 5.D 6.C 7.C 8.D9.-210.±2,±3;3611.;>12.-[(-7)+(-5)]×2×1=2413.-1214.原式= = = .15.(1)解:原式=(2)解:原式=(3)解:原式=16.解:依题意,得元元答:该店卖出这8套运动服后赢利了,赢利77元.17.(1)解:15-2+5-1+10-3-2+12+4-5+6=15+5+10+12+4+6-2-1-3-2-5=52-13=39(千米)答:小李将最后一名乘客送抵目的地时,小李距天安门有39千米(2)解:15+2+5+1+10+3+2+12+4+5+6=65(千米)∵汽车耗油量为0.08升/千米∴0.08×65=5.2(升).答:这天下午小李共耗油5.2升.18.(1)解:;抽取卡片:-3,-6.5,和的最小值是-9.5(2)解:抽取卡片:4,-6.5,积的最小值是-26(3)解:新制作卡片为4.5。
有理数的乘除法练习题课堂学习检测一、选择题1.下列计算正确的是( ).(A)911)311()311(=-⨯-(B)1172)218(=⨯- (C)766)71()7(-=+⨯-(D)1)31(3-=-⨯2.两个有理数之积是0,那么这两个有理数( ).(A)至少有一个是0 (B)都是0(C)互为倒数 (D)互为相反数3.,04.018)05.041110(54-+-=+-⨯-这个运算应用了( ).(A)加法结合律(B)乘法结合律 (C)乘法交换律 (D)分配律4.比较a 与3a 的大小,正确的是( ).(A)3a >a (B)3a =a(C)3a <a(D)上述情况都可能二、填空题5.式子)66()981()8.3(5.7)6(31-⨯-⨯+⨯⨯-⨯的符号为______.6.若a =4,b =0,c =-3,d =-5,则c -ad =______,(a -b )(c -d )=______. 三、计算题7.直接将答案写在横线上:(1)=-⨯)54(43______;(2)=-⨯-)4()85(______;(3)=⨯-38)1923(______; (4)=+⨯+)2.1()411(______.8.)720()103()32(-⨯-⨯- 9.)2.0()732()312(-⨯+⨯-10.)721()1179154238312(-⨯+- 11.)194(6)194(13)194(7-⨯--⨯+-⨯-综合、运用、诊断一、填空题12.若a <0,b <0,c >0,则(-a )·b ·(-c )______0. 13.若a +b <0,且ab >0,则a______0,b______0. 二、选择题14.已知(-ab )·(-ab )·(-ab )>0,则( ).(A)ab <0(B)ab >0(C)a >0,b <0 (D)a <0,b <015.|x -1|+|y +2|+|z -3|=0,则(x -1)(y -2)(z +3)的值为( ).(A)48 (B)-48 (C)0 (D)xyz三、计算题 16.)36()12765321(-⨯-+-17.)95.1(9)772.3()9(228.3⨯--⨯-+-⨯18.)83()154()52()433()322()211(-⨯-⨯+⨯+⨯-⨯-四、解答题 19.巧算下列各题:(1))200411)(120031()151)(411)(131)(211(--⋯----(2)666663333222299999⨯-⨯拓展、探宄、思考20.先观察下图,再解答下题:小李在街上碰到为救助失学儿童募捐的学生,于是将身上一半的钱捐了出来;接着他又碰到第二个募捐的学生,便又捐出了剩下钱的一半;跟着第三个,第四个,他每次都捐出了剩下钱的一半,身上还剩下一元.请你算一算,最初小李身上有多少元钱?21.用计算器计算下列各式,将结果写在横线上:999×21=______; 999×22=______; 999×23=______; 999×24=______. (1)你发现了什么规律?(2)不用计算器,你能直接写出999×29的结果吗?有理数的除法练习题学习要求理解除法与乘法的逆运算关系,会进行有理数除法运算;巩固倒数的概念,能进行简单有理数的加、减、乘、除混合运算.课堂学习检测一、填空题1.若两数之积为1,则这两数互为________;若两数之商为1,则这两数________;若两数之积为-1,则这两数互为________;若两数之商为-1,则这两数互为________. 2.零乘以________都得零,零除以________都得零.3.若ab >0,b <0,则a ________0,且ab________0;若ab <0,a >0,则b ________0,且a b ________0由此可知,ab 与ab的符号________. 一、选择题4.下列计算正确的是( ).(A)20)151(5-=-÷- (B)2)81()8(2-=-⨯-÷-(C)40)152()2(38-=-÷-⨯- (D)25)8()116387(-=-÷++-5.已知a 的倒数是它本身,则a 一定是( ).(A)0(B)1(C)-1(D)±16.一个数与-4的乘积等于531,这个数是( ).(A)52(B)52-(C)25 (D)25-7.填空:(1))21()12(-÷-=_______;(2))2533(2.5-÷=_______; (3)()=-÷⨯-÷-551)51(5 _______;(4))45(545445-⨯÷⨯-=_______;三、计算题 8.)3231(32⨯-÷ 9.)2131(15--÷-10.)434()322(+-÷--综合、运用、诊断一、选择题11.若xy >0,则(x +y )xy 一定( ).(A)小于0(B)等于0(C)大于0(D)不等于012.如果x <y <0,则化简xyxy x x ||||+的结果为( ). (A)0 (B)-2 (C)2 (D)3二、计算题13.)511()73(25.0--⨯-÷-14.)241()245836121(-÷+-+-15.)911(98999-÷16.)]53()32(1[)]53(32[-⨯-+÷-+-三、解答题17.当a =-2,b =0,c =-5时,求下列式子的值:(1)a +bc ;(2)(a -b )(a +c ).18.在10.5与它的倒数之间有a 个整数,在10.5与它的相反数之间有b 个整数,求(a +b )÷(a -b )+2的值.拓展、探究、思考19.式子||||||ab abb b a a ++的所有可能的值有( ). (A)2个 (B)3个 (C)4个 (D)无数个20.如果有理数a ,b ,c ,d 都不为0,且它们的积的绝对值等于它们积的相反数,你能确定a ,b ,c ,d 中最少有几个是负数,最多有几个是负数吗?21.一口枯井深64米,井底之蛙想从井底爬上来.第一天白天,它往上爬到井深一半,晚上又滑落了白天所爬路程的一半;第二天白天,它继续往上爬到剩下路程的一半,晚上又滑落了白天所爬路程的一半;每天这样爬,它需要多少天才能爬到井口?做完题后想一想:“一尺之棰,日取其半,万世不竭”这句话的含义.。
人教版七年级数学上册有理数乘除法试题(含答案)1.有理数乘除法的基本法则如下:1) 乘法交换律:对于有理数a和b,有ab=ba。
2) 乘法结合律:对于有理数a、b和c,有(ab)c=a(bc)。
3) 乘法分配律:对于有理数a、b和c,有a(b+c)=ab+ac。
4) 有理数的乘法法则:对于有理数a和b,同号得正,异号得负,并将绝对值相乘。
5) 倒数的定义:乘积为1的两个数互为倒数。
6) 除以一个数等于乘以这个数的倒数。
2.单选题:1) 答案为C,因为只有①和①互为倒数。
2) 答案为B,因为1的倒数的绝对值是1.3) 答案为C,因为只有选项C是正确的。
4) 答案为B,因为-2×3=-6.5) 答案为C,因为0.24×(1/15)×(-14/61)=-0.016.6) 答案为B,因为a1=-1/2,a2=-3/2,a3=-1/2,a4=-5/2,依此类推,可得a2019=-1008.7) 答案为B,因为12-7×(-4)+8÷(-2)=36.8) 答案为D,因为-2①3=-2+(-2)×3=-8.9) 答案为A,因为取-5和4相乘得到最大积20.10) 答案为丙同学,因为他的计算是正确的。
二、填空题1.272.2019a - 2018b3.(1) 2.(2) -27.(3) -4.(4) -3a4.-145.-1三、解答题16.1) -0.31252) -0.517.1) 6802) -1/5618.1) 正确。
因为(-115)/(-1236) = 115/1236,(-)×(-12) = 12,所以(-115)/(-1236) = 12/1236 = 1/103,1/103 = 0.xxxxxxxx,所以(-)÷(-) = 0.xxxxxxxx。
2) (-1113)/(-) = 1113/,(-)×(-12) = 12,所以(-1113)/(-) = 12/ = 3/6092,3/6092 = 0.xxxxxxxx,所以(-1113)/(-) = 0.xxxxxxxx。
七年级数学上册《第一章 有理数的乘除法》同步练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.0.4的倒数是( )A .14B .4C .52 2.下列几种说法中,正确的是( )A .0是最小的数B .最大的负有理数是-1C .任何有理数的绝对值都是正数D .0没有倒数3.若|a|=5,|b|=3,那么a •b 的值是( )A .15B .-15C .±15D .以上都不对 4.下列运算正确的是( )A .﹣3+2=﹣5B .3×(﹣2)=﹣1C .﹣1﹣1=﹣2D .﹣32=95.若 a , b , c 分别表示 √2 的相反数、绝对值、倒数,则下列结论正确的是( )A .a >bB .b <cC .a >cD .b =2c6.某位打字员每分钟能打200字,如果她每天工作8小时,那么一本书100万字的中篇小说至少要连续打( )A .12天B .11天C .10天D .9天7.已知 (a −1)(1−c)(c −a)>0 ,则 1,a ,c 三点在数轴上的位置一定不是..下图选项中的( ) A .B .C .D .8.将2019减去它的12,再减去余下的13,再减去余下的14,最后减去余下的12019,则最后的差是( )A .12019B .20182019C .(20182019)2D .1二、填空题9.倒数是本身的数有.10.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价万元.11.计算:(38﹣56)×(﹣24)= .12.如果|a|a=﹣1,则a 013.按照如图所示的操作步骤,若输入x的值为1,则输出的值为.三、解答题14.计算:(1)2﹣(﹣6)+7﹣15(2)﹣4÷23﹣(﹣23)×(﹣30)15.已知a,b互为相反数,且a≠0,c,d互为倒数,m的绝对值是最小的正整数求m2-ab +2021(a+b)2022-cd的值.16.将四个数3,-4, 4,-6进行加、减、乘、除四则运算,使其运算结果等于24,请你直接写出至少五个不同的算式.补充说明:每个算式中,每个数仅用一次.......,同一运算符号可用多次或不用,可用括号. 17.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.18.一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?19.阅读下列材料:计算:124÷(13−14+112)解法一:原式= 124÷13−124÷14+124÷112=124×3−124×4+124×12=1124解法二:原式= 124÷(13−14+112)=124÷212=124×6=14解法三:原式的倒数= (13−14+112)÷124=(13−14+112)×24=13×24−14×24+112×24=4 所以,原式= 14.(1)上述得到的结果不同,你认为解法 是错误的;(2)请你选择合适的解法计算:(−142)÷(16−314−23+27)参考答案1.C2.D3.C4.C5.D6.B7.B8.D9.1和-l10.9.911.1112.<13.1114.(1)解:2﹣(﹣6)+7﹣15 =8+7﹣15=0(2)解:﹣4÷23﹣(﹣23)×(﹣30)=﹣6﹣20=﹣2615.解:∵a,b互为相反数,且a≠0,c,d互为倒数,m的绝对值是最小的正整数∴a+b=0,ab=-1,cd=1,m=±1∴原式=1-(-1)+0-1=1.16.解:①3×(−4)×(−6+4)=−12×(−2)=24;②3×4×[−4−(−6)]=12×2=24;③(−4−4)×(−6+3)=−8×(−3)=24;④−4×(−6)×(4−3)=24×1=24;⑤4×(−6)×(−4+3)=−24×(−1)=24 .17.解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣45※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a ※(b+c )=a (b+c )+1=ab+ac+1,a ※b+a ※c=ab+1+ac+1=ab+ac+2. ∴a ※(b+c )+1=a ※b+a ※c .18.(1)解:60+5.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=65.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=59.4(吨)则下午运完货物后存货59.4吨(2)解:(5.5+4.6+5.3+5.4+3.4+4.8+3)×10=32×10=320(元)则下午货车共得运费320元19.(1)一(2)解:方法一:原式=(−142)÷(16−46−314+414)=(−142)÷(−12+114) =(−142)÷(−37) =118方法二:原式的倒数= =(16−314−23+27)÷(−142)=(16−314−23+27)×(−42) =16×(−42)−314×(−42)−23×(−42)+27×(−42) =−7+9+28−12=18∴原式=118。
七年级数学上册《第一章 有理数的乘除法》同步练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.2的倒数是( )A .12 B .﹣ 12 C .2 D .﹣22.绝对值大于2且小于5的所有整数的积是( )A .﹣144B .144C .0D .73.下列计算正确的是( )A .()1103033⎛⎫÷-=⨯-=- ⎪⎝⎭ B .()()22224-÷-=-⨯=-C .()111999⎛⎫÷-=⨯-=- ⎪⎝⎭ D .()()3693694-÷-=-÷=-4.已知|x|=3,|y|=2,且xy <0,则x ﹣y 的值等于( )A .5B .5或﹣5C .﹣5D .﹣5或15.在简便运算时,把47249948⎛⎫⨯- ⎪⎝⎭变形成最合适的形式是( )A .12410048⎛⎫⨯-+ ⎪⎝⎭B .12410048⎛⎫⨯-- ⎪⎝⎭C .47249948⎛⎫⨯-- ⎪⎝⎭D .47249948⎛⎫⨯-+ ⎪⎝⎭6.有两根铁丝,第一根用去 25 米,第二根用去 25 ,剩下的一样长,两根铁丝原来相比() A .第一根长 B .第二根长 C .一样长 D .无法确定7.从-8,-6,-4,0,3,5,7中任取三个不同数做乘积,则最小的乘积是( )A .-336B .-280C .-210D .-1928.如图,数轴上的点A 、B 分别对应数a 、b ,下列结论正确的是( )A .<0a b +B .>0a b -C .>0abD .>0ab -9.吴与伦比设计了一个计算程序,如图,如果输入的数是1,那么输出的结果是( )A .1B .-1C .3D .-3 二、填空题10.a 的相反数是 710,则a 的倒数是 。
11.计算: 1()303-⨯+= .12.在6,﹣5,﹣4,3四个数中任取两数相乘,积记为A ,任取两数相除,商记为B ,则A ﹣B 的最大值为 .13.已知 230a b ++-= ,则 ab = .14.有理数a 、b ,规定运算“★”如下:a ★b =a ×b-a-b-2,则(-3)★2= .三、计算题15.()528522514⎛⎫-+÷-⨯- ⎪⎝⎭16.计算(1)()()251236--+⨯-;(2)13212243⎛⎫-+-⨯ ⎪⎝⎭.17.计算:(1)(32)(4)(25)4-÷---⨯;(2)523(5)(7)()(12)1234-⨯-++-⨯-.18.一只蚂蚁从某点A 出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+2,-3,+12,-8,-7,+16,-12(1)通过计算说明蚂蚁是否回到起点A ;(2)如果蚂蚁爬行的速度为0.5厘米/秒,那么蚂蚁共爬行了多长时间.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入,下表是某周的生产情况(超产记为正,减产记为负)((2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)赶进度期间该厂实行计件工资加浮动工资制度,即:每生产一个工艺品的工资为30元,超过计划完成任务部分的每个工艺品则在原来30元工资上再奖励5元;比计划每少生产一个则在应得的总工资上扣发3元(工资按日统计,每周汇总一次),求该厂工人这一周的工资总额是多少?参考答案:1.A 2.B 3.C 4.B 5.A 6.D 7.B 8.D 9.A10.107- 11.-112.65313.-614.-715.解: ()528522514⎛⎫-+÷-⨯- ⎪⎝⎭ 5281525214⎛⎫⎛⎫=-+⨯-⨯- ⎪ ⎪⎝⎭⎝⎭, 5281525214=-+⨯⨯, 512=-+, 32=- 16.(1)解:()()251236--+⨯-()25+1218=+-19=;(2)解:13212243⎛⎫-+-⨯ ⎪⎝⎭ 132121212243=-⨯+⨯-⨯ 698=-+-=5-.17.(1)解:原式8(100)=--8100=+108=;(2)解:原式52335(12)(12)(12)1234=+⨯-+⨯--⨯- 35589=--+31=.18.(1)解:根据题意得:+2−3+12−8−7+16−12=0答:蚂蚁能回到起点A(2)解:(2+3+12+8+7+16+12)÷0.5=60÷0.5=120(秒)答:蚂蚁共爬行了120秒.19.(1)解:周一的产量为: ()3002298+-= 个;(2)解:由表格可知:星期六产量最高,为 300(16)316++= (个) 星期五产量最低,为 300(10)290+-=(个)则产量最多的一天比产量最少的一天多生产 31629026-= (个) ;(3)解: (5)(2)(5)(15)(10)(16)(9)10++-+-+++-+++-= 个 根据题意得该厂工人一周的工资总额为:()2100103055235315510316593+⨯+⨯-⨯-⨯+⨯-⨯+⨯-⨯ 633002561575308027=+--+-+-63402= (元)。
初中数学人教版七年级上学期第一章 1.4有理数的乘除法一、单选题(共7题;共14分)1.计算的值是()A. -12B. -2C. 35D. -352.计算下列各式,值最小的是()A. B. C. D.3.在算式3-|-1 “” 2 |中的“”里,选择一个运算符号,使得算式的值最大( ).A. +B. -C. ×D. ÷4.有理数a,b在数轴上的对应点如图,下列式子:①a>0>b;②|b|>|a|;③ab<0;④a-b>a+b,其中正确个数是()A. 1B. 2C. 3D. 45.若,,则与的乘积不可能是()A. B. C. 0 D.6.若ab≠0,则的取值不可能是()A. 0B. 1C. 2D. -27.若ac<0,,则有()A. B. b>0 C. D. b<0二、填空题(共8题;共12分)8.下面是一个简单的数值运算程序,当输入x的值为2时,输出的数值是________ .9.下列几种说法中,错误的有________(只填序号)①几个有理数相乘,若负因数为奇数个,则积为负数,②如果两个数互为相反数,则它们的商为﹣1,③一个数的绝对值一定不小于这个数,④﹣a的绝对值等于a.10.计算(-6)÷ =________。
11.计算:________.12.已知a,b,c为互不相等的整数,且abc=-4,则a+b+c=________。
13.在-1,2,-3,0,5这五个数中,任取三个数相乘,其中所得的积最小的是__.14.如图,将下列9个数:、、1、2、4、8、16、32、64填入方格中,使得所有行、列及对角线上各数的积相等,那么y-x的值为________.15.一个自然数和它倒数的和是5.2,这个自然数是________。
三、计算题(共2题;共20分)16.计算:(1).(2)17.计算(1);(2)四、解答题(共4题;共20分)18.小玲看一本300页的小说,前4天共看80页。
2023-2024学年七年级数学上册《第一章有理数的乘除法》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.﹣8的相反数的倒数是()A.B.﹣8 C.8 D.﹣2.在有理数1,- 与,-3中,倒数最小的是()A.1 B.- C.D.-33.在算式-27×24+16×24-79×24=(-27+16-79)×24中运用了()A.加法交换律B.加法结合律C.乘法结合律D.乘法分配律4.若|a|=5,|b|=3,那么a•b的值是()A.15 B.-15 C.±15 D.以上都不对5.如图是制作果冻的食谱,傅妈妈想根据此食谱内容制作六份果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加糖浆()A.15匙B.18匙C.21匙D.24匙6.下列说法中,正确的有()①任何数乘以0,其积为0;②任何数乘以1,积等于这个数本身;③0除以任何一个数,商为0;④任何一个数除以﹣1,商为这个数的相反数.A.2个B.3个C.4个D.1个7.七(1)班学雷锋小组整理校实验室,已知6个人共要做4小时完成,则每人每小时的工作效率是()A.B.C.D.8.对于有理数a、b,如果ab<0,a+b<0.则下列各式成立的是()A.a<0,b<0 B.a>0,b<0且|b|<aC.a<0,b>0且|a|<b D.a>0,b<0且|b|>a二、填空题:(本题共5小题,每小题3分,共15分.)9.直接写出计算结果:.10.绝对值小于4的所有整数的积为.11. 2003个-3与2004个-5相乘的结果的符号是号.12.在如右图所示的运算流程中,若输出的数y=7,则输入的数n= .13.三味书屋推出售书优惠方案:(1)一次性购书不超过100元,不享受优惠;(2)一次性购书超过100元但不超过200元一律打九折;(3)一次性购书超过200元及以上一律打八折。
2023-2024学年人教版七年级数学上册《第一章有理数的乘除法》同步练习题附答案学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法错误的是()A.任何有理数都有倒数B.互为倒数的两个数的积为1C.互为倒数的两个数同号D.1和-1互为负倒数2.计算的结果是()A.-4 B.-2 C.2 D.43.已知一个数的倒数的相反数为,则这个数为()A.B.C.D.4.四个互不相等的整数的积为49,则它们的和为()A.0 B.8 C.16 D.8或15.在促销活动中,商场将标价500元的商品在打八折的基础上再打八折销售,则该商品现在的售价是()A.400元B.320元C.256元D.8元6.若,则的值可表示为().A.B.C.D.7.吴与伦比设计了一个计算程序,如图,如果输入的数是1,那么输出的结果是()A.1 B.-1 C.3 D.-38.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.﹣的相反数的倒数是.10.计算(﹣2)×3×(﹣1)的结果是.11.在-1,0,-2,3中,两个数的积的最大值是。
12.某件商品进价为100元,实际售价为110元,那么该件商品的利润率为.13.一架直升机从高度为450m的位置开始,先以20m/s的速度上升60s,然后以12m/s的速度下降120s,这时,直升机的高度是.三、解答题:(本题共5题,共45分)14.计算:.15.计算(1);(2).16.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.17.司机小陈在一条南北向的马路上开出租车.如果规定向南为正,向北为负,记录小陈上午连续接送7位乘客的行程(单位:千米)如下:+9,-3,-5,+2,-10,+6,-3(1)小陈上午接送7位乘客到达目的地,行程一共是多少千米?(2)若规定租车起步价为10元,起步行程为3千米(包括3千米),超过3公里部分每公里收费2元,请问小陈司机上午一共收入多少车费?18.小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是;(3)从中取出4张卡片,用学过的运算方法,使结果为24.写出运算式子:参考答案:1.A 2.C 3.D 4.A 5.B 6.B 7.A 8.B9.201610.611.212.10%13.210m14.解:15.(1)解:;(2)解:.16.解:由题意可得星斗山顶峰的海拔高度是:1020+(14﹣2)÷0.6×100=1020+12÷0.6×100=1020+2000=3020(米) 即星斗山顶峰的海拔高度是3020米.17.(1)解:由题意得:9+3+5+2+10+6+3=38(千米)答:行程一共是38千米;(2)解:由题意可得:第一位乘客的车费为:(元);第二位乘客的车费为:10元;第三位乘客的车费为:(元);第四位乘客的车费为:10元;第五位乘客的车费为:(元);第六位乘客的车费为:(元);第七位乘客的车费为:10元;∴一共收入为22+10+14+10+24+16+10=106(元)答:小陈司机上午一共收入106元.18.(1)15(2)(3)方法不唯一。
1.4 有理数的乘除法操练题之袁州冬雪创作一、选择1.如果两个有理数在数轴上的对应点在原点的同侧,那末这两个有理数的积( )为正,也能够为负2.若干个不等于0的有理数相乘,积的符号( )3.下列运算成果为负值的是( )A.(-7)×(-6)B.(-6)+(-4);C.0×(-2)(-3)D.(-7)-(-15)4.下列运算错误的是( )A.(-2)×(-3)=6B.1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-245.若两个有理数的和与它们的积都是正数,则这两个数( )6.下列说法正确的是( )7.关于0,下列说法不正确的是( )8.下列运算成果纷歧定为负数的是( )9.下列运算有错误的是( )A.13÷(-3)=3×(-3) B.1(5)5(2)2⎛⎫-÷-=-⨯-⎪⎝⎭C.8-(-2)=8+2D.2-7=(+2)+(-7)10.下列运算正确的是( )A.113422⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭; B.0-2=-2; C.34143⎛⎫⨯-=⎪⎝⎭; D.(-2)÷(-4)=2二、填空1.如果两个有理数的积是正的,那末这两个因数的符号一定______.2.如果两个有理数的积是负的,那末这两个因数的符号一定_______.3.奇数个负数相乘,成果的符号是_______.4.偶数个负数相乘,成果的符号是_______.410,0a b >>,那末a b _____0.6.如果5a>0,0.3b<0,0.7c<0,那末b ac ____0.7.-0.125的相反数的倒数是________.8.若a>0,则a a =_____;若a<0,则a a =____.三、解答1.计算: (1)384⎛⎫-⨯ ⎪⎝⎭; (2)12(6)3⎛⎫-⨯- ⎪⎝⎭ ; (3)(-7.6)×0.5; (4)113223⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭.2.计算. (1)38(4)24⎛⎫⨯-⨯-- ⎪⎝⎭; (2) 38(4)(2)4-⨯-⨯-; (3)38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭. (1)111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; (2)111111111111223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.(1)(+48)÷(+6); (2)213532⎛⎫⎛⎫-÷ ⎪ ⎪⎝⎭⎝⎭; (3)4÷(-2);(4)0÷(-1000).答案一、ACBBA,DCCAB 二、1.相同; 2互异; 3负; 4正的; 5.>; 6.>; 7.8;8.1,-1三、1.(1)-6;(2)14;(3)-3.8;(4)1862.(1)22;(2)2;(3)-48;3.(1)213;(2)584.(1)8;(2)23;(3)-2;(4)05.(1)-7;(2)375;(3)4 6.(1)14;(2)-240。
七年级数学上册《第一章 有理数的乘除法》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.2.7-2.1÷3+3.2的计算结果正确的是( ) A .5 B .1.6 C .5.2 D .7 2.下列说法正确的是( )A .同号两数相乘,取原来的符合B .两个数相乘,积大于任何一个乘数C .一个数与0相乘仍得这个数D .一个数与-1相乘,积为该数的相反数 3.下列计算正确的是( ) A .()48- × 11168⎛⎫--⎪⎝⎭ =-8+6+1=-1 B .()24- × 11123⎛⎫-+- ⎪⎝⎭ =12+8+24=44 C .()18- × 12⎡⎤⎛⎫--⎪⎢⎥⎝⎭⎣⎦ =9D .-5×2× 2- =-204.按如图所示的运算程序,若输入m 的值是﹣2,则输出的结果是( )A .﹣1B .3C .﹣5D .75.在一张比例为1∶1000000的地图上,量得人民广场与淀山湖两地的距离为5.5厘米,那么人民广场到淀山湖的实际距离为( ) A .0.55千米 B .5.5千米 C .55千米 D .550千米 6.五个有理数的积为负数,则五个数中负数的个数是( ) A .1 B .3 C .5 D .1或3或5 7.网上一些推广“成功学”的主播,常引用下面这个被称为竹子定律的段子:“竹子前4年都用在扎根,竹芽只能长3cm ,而且这3cm 还是深埋于土下到了第五年,竹子终于能破土而出,会以每天30cm 的速度疯狂生长.此后,仅需要6周的时间,就能长到15米,惊艳所有人!”。
这段话的确很励志,须不知,要符合算理的话,需将上文“6周”中的整数“6”改为整数( ) A .5 B .7 C .8 D .9 8.有理数 ,a b 在数轴上的位置如图所示,则下列说法错误的是( )A .0a b +>B .0b a ->C .0ab <D .a b >二、填空题: 9.计算: 11112643⎛⎫-⨯+-=⎪⎝⎭. 10.乘积是10的两个负整数之和是 .11.一件标价为250元的商品,若该商品按八折销售,则该商品的实际售价是 元.12.已知: ()()1210,210,210a b c ⎛⎫=-+-=---=-⨯- ⎪⎝⎭,请把a 、b 、c 按从大到小顺序排列为 .13.小强有10张写有不同的数的卡片,分别为+1,﹣1,﹣8,0,﹣3.5,+4,+7,﹣9,﹣2.+3从中抽取5张卡片,使得这5张卡片的积最小,请问最小的积为 . 三、解答题:14.简便运算: ()()1115777127333⎛⎫⎛⎫⎛⎫-⨯++⨯--+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.15.计算(1)24(16)(25)15--+--;(2)111311123124244⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++----+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(3)412(63)7921⎛⎫-+⨯- ⎪⎝⎭;(4)111(5)323(6)3333-⨯+⨯+-⨯16.(1)两数的积是1,已知一个数是327-,求另一个数; (2)两数的商是132-,已知被除数是142,求除数.17.随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“﹣”,刚好50km 的记为“0”.(1)请求出这7天中平均每天行驶多少千米?(2)若每行驶100km 需用汽油6升,汽油每升5.5元,试估计小明家一个月(按30天计)的汽油费用是多少元?18.小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是;(3)从中取出4张卡片,用学过的运算方法,使结果为24.写出运算式子:参考答案:1.C 2.D 3.D 4.D 5.C 6.D 7.C 8.A 9.-110.-11或-711.20012.b c a>>13.﹣705614.解:原式=()111-5777127333⨯-⨯+⨯=()1571273 --+⨯=1 073⨯=0.15.(1)解:原式= 24(16)(25)15--+-- =24+16-25-15=40-(25+15)=40-40=0;(2)解:原式=-1 12+114-212+334-114=-1 12-212+114-114+334=-4+3 3 4=1 4 -(3)解:原式=4126363637921-⨯+⨯-⨯ =-36+7-6=-42+7=-35(4)解:111(5)323(6)3333-⨯+⨯+-⨯ = []10(5)(6)3-+-⨯ =10(9)3-⨯ =-3016.(1)717-;(2)97-17.(1)解:总路程为:(50﹣8)+(50﹣11)+(50﹣14)+50+(50﹣16)+(50+41)+(50+8)=350(km)平均每天路程为:350÷7=50(km)答:这七天中平均每天行驶50千米.(2)解:估计小明家一个月的汽油费用是(50×30÷100×6)×5.5=495(元)答:估计小明家一个月的汽油费用是495元.18.(1)15(2)5 3 -(3)方法不唯一。
人教版七年级数学上册第一章《有理数的乘除法》课时练习题(含答案)一、单选题1.与1134⎛⎫-- ⎪⎝⎭互为倒数的是( ) A .143-⨯ B .34⨯C .143⨯ D .34-⨯ 2.已知有理数a ,b ,c 满足0abc ≠,则||||||a b c b a c ++的值不可能为( ) A .3 B .3- C .1 D .23.计算()162⎛⎫-⨯- ⎪⎝⎭的结果是( ) A .-3 B .3 C .-12 D .124.计算1(6)3⎛⎫-÷- ⎪⎝⎭的结果是( ) A .18- B .2 C .18 D .2-5.计算(﹣1)÷3×(﹣13)的结果是( ) A .﹣1 B .1 C .19 D .9 6.如果0abcd <,0a b +=,0cd >,那么这四个数中负数有( )A .4个B .3个C .2个D .1个或3个 二、填空题7.23的倒数是________.8.体育用品商店出售一种排球,按八折处理,每个36元,这种排球原价__元. 9.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是___. 10.在-5,-3,-2,1,2,7这五个数中任取两数相乘,所得乘积中的最小数与最大数之差的绝对值为________.三、解答题11.阅读材料:求1+2+22+23+24+……+22019的值.解:设S =1+2+22+23+24+ (22019)将等式两边同时乘以2,得2S =2+22+23+24+…+22019+22020,将下式减去上式得2S-S=22020-1,请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34……+3n(其中n为正整数).12.下面是佳佳同学的一道题的解题过程:2÷(-1314+)×(-3)=[2÷(-13)+214÷]×(-3),①=2×(-3)×(-3)+2×4×(-3),②=18-24,③=6,④(1)佳佳同学开始出现错误的步骤是;(2)请给出正确的解题过程.13.已知有理数-16,-10,c在数轴上对应的点分别是A,B,C三点,BC-AB=4.(1)请在数轴上画出点A,B,并求B,C两点间的距离;(2)求AC中点表示的数参考答案1.D2.D3.B4.C5.C6.D7.3 28.459.90.10.5011.(1)211-1;(2)12(3n+1-1) 12.(1)①;13. 10(2)AC中点表示的数为-8或-18。
七年级数学上册《第一章有理数乘除混合运算》练习题附答案-人教版一、选择题1.与﹣2的乘积为1的数是( )A.2B.﹣2C.12D.﹣122.下列说法错误的是( )A.一个数同0相乘,仍得0B.一个数同1相乘,仍得原数C.一个数同﹣1相乘得原数的相反数D.互为相反数的两个数的积是13.如果mn>0,且m+n<0,则下列选项正确的是()A.m<0,n<0B.m>0,n<0C.m,n异号,且负数的绝对值大D.m,n异号,且正数的绝对值大4.两个有理数的和为正数,积为负数,则这两个有理数是( )A.两个正数B.两个负数C.一正一负且正数的绝对值较大D.一正一负且负数的绝对值较大5.﹣4÷49×(﹣94)的值为( )A.4B.﹣4C.814D.﹣8146.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是( )[A.a+b<0B.a>|﹣2|C.b>πD.7.计算﹣6÷12×2﹣18÷(﹣6)的结果是( )A.﹣ 21B.﹣ 3C.4D.78.计算﹣4÷49×94的结果是( )A.4B.﹣ 4C.2014 D.﹣ 20149.如图,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是( )A.ab>0B.a+b<0C.(b﹣a)(a+1)>0D.(b﹣1)(a﹣1)>010.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了。
右面两个图框是用法国“小九九”计算78和89的两个示例。
若用法国“小九九”计算79,左右手依次伸出手指的个数是( )A.2,3B.3,3C.2,4D.3,411.给出下列说法:①1乘任何有理数都等于这个数本身;②0与任何有理数的积均为0;③﹣1乘任何有理数都等于这个有理数的相反数;④一个数的倒数与其本身相等的数是±1.其中正确的有( )A.1个B.2个C.3个D.4个12.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如下表:十六进制0 1 2 3 4 5 6 7十进制0 1 2 3 4 5 6 7十六进制8 9 A B C D E F十进制8 9 10 11 12 13 14 15例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A ×B=( )A.6EB.72C.5FD.B0二、填空题13.计算:﹣2×3= .14.绝对值不大于4.5的所有整数的和为__________,积为__________;15.﹣54的绝对值是,倒数是.16.一个数与﹣34的积为12,则这个数是____________17.某学生将某数乘以﹣1.25时漏了一个负号,所得结果比正确结果小0.25则正确结果应是 .18.甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.三、解答题19.计算:(114﹣56+12)×(﹣12);20.计算:15÷(﹣32+56);21.计算:|﹣2|÷(﹣12)+(﹣5)×(﹣2);22.计算:﹣112÷34×(﹣0.2)×134÷1.4×(﹣35).23.一辆出租车在一条东西走向的大街上行驶,这辆出租车连续送客20次,其中8次向东行驶,12次向西行驶,向东行驶每次的行程为10 km,向西行驶每次的行程为7 km.(1)该出租车连续20次送客后,停在何处?(2)该出租车一共行驶了多少路程?24.如图,小明有4张写着不同数的卡片,请你按照题目要求抽出卡片,完成下列问题.(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?25.用加、减、乘、除号和括号将3,6,﹣8,5这四个数(每个数都要用且只用一次)进行加减乘除四则运算使结果为24,请你写出两个算式.26.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如14524÷=,14342÷=所以14是“差一数”; 19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.27.请观察下列算式,找出规律并填空211⨯=1﹣21, 321⨯=21﹣31, 431⨯=31﹣41,541⨯=41﹣51则: (1)第10个算式是 = . (2)第n 个算式为 = . (3)根据以上规律解答下题:211⨯+321⨯+431⨯+… +202420231⨯的值.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】C6.【答案】D7.【答案】A8.【答案】C9.【答案】C.10.【答案】C11.【答案】D12.【答案】A13.【答案】﹣6.14.【答案】0,015.【答案】54﹣4516.【答案】﹣2 317.【答案】1 818.【答案】4.19.【答案】原式=114×(﹣12)+(﹣56)×(﹣12)+12×(﹣12)=﹣15+10+(﹣6)=﹣1120.【答案】原式=﹣22.5;21.【答案】原式=6;22【答案】原式=﹣3 1023.【答案】解:(1)该出租车停在出发地西面4km处;(2)该出租车一共行驶了164 km.24.【答案】解:(1)抽﹣3和﹣5,最大值为:﹣3×(﹣5)=15; (2)抽1和﹣5,最小值为:(﹣5)÷1=﹣5;25.【答案】解:答案不唯一,如(﹣8)÷(3﹣5)×6=24,6÷(3﹣5)×(﹣8)=24等. 26.【答案】解:(1)∵49594÷= 493161÷=∴49不是“差一数” ∵745144÷= 743242÷=∴74是“差一数”;(2)解法一:∵“差一数”这个数除以5余数为4 ∴“差一数”这个数的个位数字为4或9∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399 ∵“差一数”这个数除以3余数为2∴“差一数”这个数的各位数字之和被3除余2∴大于300且小于400的所有“差一数”为314、329、344、359、374、389. 解法二:∵“差一数”这个数除以5余数为4,且除以3余数为2 ∴这个数加1能被15整除∵大于300且小于400的能被15整除的数为315、330、345、360、375、390 ∴大于300且小于400的所有“差一数”为314、329、344、359、374、389. 27.【答案】解:(1)第10个算式是11110111101-=⨯; (2)第n 个算式为()11111+-=+n n n n ; (3)原式=2024120231202312022141313121211-+-++-+-+- =202411-=20242023.。
有理数的乘除法测试时间:60分钟总分:100一、选择题(本大题共10小题,共30.0分)1.若,则下列各式正确的是A. B. C. D. 无法确定2.正整数x、y满足,则等于A. 18或10B. 18C. 10D. 263.若,,且,则等于A. 1或B. 5或C. 1或5D. 或4.算式之值为何?A. B. C. D.5.计算的值是A. 6B. 27C.D.6.若,,且,则的值为A. B. C. 5 D.7.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数8.的倒数与4的相反数的商是A. B. 5 C. D.9.计算等于A. 1B.C.D.10.计算:的结果是A. 1B.C.D.二、填空题(本大题共10小题,共30.0分)11.若,,则ab______ 0;若,,则ab______12.已知,,且,则的值等于______ .13.比大的数是______ ;比小______ ;数______ 与的积为14.14.若“”是一种数学运算符号,并且,,,,则的值为______ .15.计算的结果是______ .16.四个互不相等的整数a、b、c、d,使,则______ .17.______ .18.计算:______.19.化简:______ .20.已知,,且,则的值为______ .三、计算题(本大题共4小题,共24.0分)21.22.运算:23..24..四、解答题(本大题共2小题,共16.0分)25.数学老师布置了一道思考题“计算:”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为,所以.请你判断小明的解答是否正确,并说明理由.请你运用小明的解法解答下面的问题.计算:.26.利用适当的方法计算:.答案和解析【答案】1. C2. A3. B4. D5. D6. B7. D8. C9. B10. C11. ;12. 8或13. ;;14. 10015. 316. 1217.18.19. 320. 或21. 解:原式,.22. 解:原式.23. 解:原式.24. 解:原式,.25. 解:正确,理由为:一个数的倒数的倒数等于原数;原式的倒数为,则.26. 解:原式.【解析】1. 解:,同号两数相乘得正,不等式两边乘以同一个正数,不等号的方向不变.故选C.根据有理数乘法法则:两数相乘,同号得正可得再根据不等式是性质:不等式两边乘或除以同一个负数,不等号的方向改变,解答此题.主要考查了不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变不等式两边乘或除以同一个正数,不等号的方向不变不等式两边乘或除以同一个负数,不等号的方向改变.2. 解:,y是正整数,、均为整数,,或,存在两种情况:,,解得:,,;,解得:;或10,故选A.易得、均为整数,分类讨论即可求得x、y的值即可解题.本题考查了整数的乘法,本题中根据或分类讨论是解题的关键.3. 解:因为,,所以,,因为,所以,,所以;所以,,所以;故选B先由绝对值和平方根的定义求得x、y的值,然后根据分类计算即可.本题主要考查的平方根的定义、绝对值、有理数的加法,求得当时,,当时,是解题的关键.4. 解:原式.故选:D.根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.5. 解:原式,故选:D.利用有理数的乘法法则进行计算,解题时先确定本题的符号.本题考查了有理数的乘法,解题的关键是确定运算的符号.6. 解:,,,,,当,,即当,,;当,,即,,.故选B.首先用直接开平方法分别求出a、b的值,再由可确定a、b同号,然后即可确定a、b的值,然后就可以求出的值.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7. 解:根据题意得,由比例的性质得:...或.故选:D.设这两个数分别为a、b,根据题意得到,从而可得到,从而可判断出a、b之间的关系.本题主要考查的是有理数的除法、平方差公式的应用,得到是解题的关键.8. 解:的倒数是,4的相反数是,.故选C.依据相反数、倒数的概念先求得的倒数与4的相反数,然后根据有理数的除法法则求出它们的商.主要考查相反数、倒数的概念及有理数的除法法则.9. 解:,故选:B.根据有理数的除法法则:除以一个数等于乘以这个数的倒数,可得答案.本题考查了有理数的除法,解题关键是把有理数的除法转化成有理数的乘法.10. 解:,故选:C.根据有理数的除法,即可解答.本题考查了有理数的除法,解决本题的关键是熟记有理数的除法.11. 解:若,,则;若,,则.故答案为:;.利用有理数乘法法则判断即可得到结果.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12. 解:,,且,,或,,则或.故答案为:8或根据题意利用有理数的乘法法则判断x与y异号,再利用绝对值的代数意义求出x与y的值,即可求出的值.此题考查了有理数的乘法与减法,以及绝对值,熟练掌握运算法则是解本题的关键.13. 解:比大的数是:;比小;;故答案为:,,.比大的数是,根据有理数的加法法则即可求解;根据题意列式,列出算式,再进行计算即可;根据除法法则进行计算即可.本题考查了有理数的除法和加减法运算,熟练掌握运算法则是解题的关键;注意题中“大”、“小”的意思.14. 解:.故答案为:100.根据“”的运算方法列出算式,再根据有理数的乘法和有理数的除法运算法则进行计算即可得解.本题考查了有理数的乘法,有理数的除法,读懂题目信息,理解新定义的运算方法是解题的关键.15. 解:原式,故答案为:3.根据有理数的除法和乘法,即可解答.本题考查了有理数的乘法和除法,解决本题的关键是把除法转化为乘法计算.16. 解:四个互不相等的整数,,,的积为25,这四个数只能是1,,5,,,,,,则.故答案为:12.找出25的四个互不相等的因数,即1,,5,.本题主要考查了有理数的乘法及加法,解题的关键是要理解25分成四个互不相等的因数只能是1,,5,.17. 解:原式,故答案为:原式利用除法法则变形,约分即可得到结果.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.18. 解:原式,故答案为:.根据有理数的除法,可得有理数的乘法,根据有理数的乘法,可得答案.本题考查了有理数的除法,利用有理数的除法是解题关键.19. 解:,故答案为:3.根据分数的分子分母同号得正,能约分的要约分,可得答案.本题考查了有理数的除法,分子分母同号得正异号得负,并把绝对值相除.20. 解:,,,,,当时,,,当时,,,故答案为:或.根据绝对值的性质求出a,b,再根据有理数的加法判断出b的值,有理数的除法进行计算即可得解.本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.21. 根据有理数的除法法则,先把除法化成乘法,再根据有理数的乘法进行计算即可.本题主要考查对有理数的乘法、除法等知识点的理解和掌握,能熟练地运用法则进行计算是解此题的关键.22. 原式先计算括号中的加减运算,再计算除法运算即可得到结果.此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.23. 原式利用乘法分配律计算即可得到结果.此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.24. 根据乘法算式的特点,可以用括号内的每一项与相乘,计算出结果.在进行有理数的乘法运算时,要灵活运用运算律进行计算.25. 正确,利用倒数的定义判断即可;求出原式的倒数,即可确定出原式的值.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.26. 逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.。
七年级数学上册《第一章有理数的乘除法》同步练习题及答案(人教版) 班级姓名学号一、选择题(共8题)1. −2的倒数是( )A.−12B.2C.12D.−22.计算(−1)×5的结果是( )A.−1B.1C.5D.−53.在2,0,1,9四个有理数中,没有倒数是( )A.2B.0C.1D.94.如图,点A和B表示的数分别为a和b,下列式子中,不正确的是( )A.a>−b B.ab<0C.a−b>0D.a+b>05.四个互不相等的整数的积是25,那么这四个整数的和等于( )A.125B.25C.0D.以上答案都不对6.已知四个数:2,−3,−4,5,任取其中两个数相乘,所得积的最大值是( )A.20B.12C.10D.−67.下列运算正确的是 ( )A . (−312)−(−12)=4B . 34×(−43)=1C . 0−(−6)=6D . (−3)÷(−6)=28.下列说法正确的是 ( )A . 5 个有理数相乘,当负因数为 3 个时,积为负B .绝对值大于 1 的两个数相乘,积比这两个数都大C . 3 个有理数的积为负数,则这 3 个有理数都为负数D .任何有理数乘以 (−1) 都等于这个数的相反数二、填空题(共5题)9. ∣−13∣ 的相反数是 ,倒数是 .10.计算:−3+2= ,(−5)×(−3)= .11.根据如图所示的流程图计算,若输入 x 的值为 −1,则输 y 的值为 .12.新定义运算:a ∗b =a −2b 则 (3∗2)∗2= .13.如果四个互不相等的整数的积为 6,那么这四个整数的和是 .三、解答题(共6题)14.计算:(1) 23−6×(−3)+2×(−4).(2) −1.53×0.75−0.53×(−34).15.数学活动课上,王老师在 6 张卡片上分别写了 6 个不同的数(如图),然后从中抽取 3 张.−3+2+10+5−8(1) 使这 3 张卡片上各数之积最小,最小的积为多少?(2) 使这 3 张卡片上各数之积最大,最大的积为多少?16.用常规方法计算 160÷(14−15+13) 时比较麻烦,小明想了个办法:先将该式除式与被除式颠倒位置,算出 (14−15+13)÷160=(14−15+13)×60=23 后,再利用倒数关系求出原式的值 160÷(14−15+13)=123.请采用小明的方法计算 (−140)÷(14−15+12−310) 的值.17.如果 a ,b ,c 为有理数,且 a <0,bc >0求∣a∣a +∣b∣b +∣c∣c 的值.18.如图,A ,B 两点在数轴上对应的数分别为 a ,b 且点 A 在点 B 的左侧∣a∣=10,a +b =80,ab <0.(1) 求 a ,b 的值;(2) 现有一只电子蚂蚁 P 从点 A 出发,以每秒 3 个单位长度的速度向右运动,同时另一只电子蚂蚁 Q 从点 B 出发,以每秒 2 个单位长度的速度向左运动.设两只电子蚂蚁在数轴上的点 C 处相遇,求点 C 对应的数.19.中央电视台每一期的《开心辞典》栏目,都有一个“二十四点”的趣味题,现在给出1∼13之间的自然数,从中任取4个,将这4个数(4个数都用且只能用一次)进行“+”“−”“×”“÷”运算,可加括号使其结果等于24.例如:对1,2,3,4可作运算(1+2+3)×4=24,也可以写成4×(2+3+1),但视作相同方法.(1) 现有4个有理数−9,−6,2,7你能用三种不同的算法得出24吗?(2) 若给你3,6,7,−13你还能得出24吗?答案1. A2. D3. B4. C5. C6. B7. C8. D9. −13;310. −1;1511. 112. −513. ±114.(1)23−6×(−3)+2×(−4) =23+18−8=33.(2)−1.53×0.75−0.53×(−34) =(−1.53+0.53)×0.75=−1×0.75=−0.75.15.(1) (+2)×(+5)×(−8)=−80.(2) (−3)×(+5)×(−8)=120.16. −110.17. 1或−3.18.(1) ∵A,B两点在数轴上对应的数分别为a,b且点A在点B的左侧ab<0∴a<0,b>0又∣a∣=10,a+b=80∴a=−10,b=90.(2) 由题意,得这两只电子蚂蚁经过[90−(−10)]÷(3+2)=20(秒)相遇.则电子蚂蚁Q运动的路程为20×2=40.∴点C对应的数为90−40=50.19.(1) ①2+7−(−9−6)=24;②2×(−6)×(7−9)=24;③−6×(7−2−9)=24;④−9×2−(−6)×7=24.(2) 6−(−13+7)×3=24.。
1.4 有理数的乘除法练习题
一、选择
1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )
A.一定为正
B.一定为负
C.为零
D. 可能为正,也可能为负
2.若干个不等于0的有理数相乘,积的符号( )
A.由因数的个数决定
B.由正因数的个数决定
C.由负因数的个数决定
D.由负因数和正因数个数的差为决定
3.下列运算结果为负值的是( )
A.(-7)×(-6)
B.(-6)+(-4);
C.0×(-2)(-3)
D.(-7)-(-15)
4.下列运算错误的是( )
A.(-2)×(-3)=6
B.
1
(6)3
2
⎛⎫
-⨯-=- ⎪
⎝⎭
C.(-5)×(-2)×(-4)=-40
D.(-3)×(-2)×(-4)=-24
5.若两个有理数的和与它们的积都是正数,则这两个数( )
A.都是正数
B.是符号相同的非零数
C.都是负数
D.都是非负数
6.下列说法正确的是( )
A.负数没有倒数
B.正数的倒数比自身小
C.任何有理数都有倒数
D.-1的倒数是-1
7.关于0,下列说法不正确的是( )
A.0有相反数
B.0有绝对值
C.0有倒数
D.0是绝对值和相反数都相等的数
8.下列运算结果不一定为负数的是( )
A.异号两数相乘
B.异号两数相除
C.异号两数相加
D.奇数个负因数的乘积
9.下列运算有错误的是( )
A.1
3
÷(-3)=3×(-3) B.
1
(5)5(2)
2
⎛⎫
-÷-=-⨯-
⎪
⎝⎭
C.8-(-2)=8+2
D.2-7=(+2)+(-7)
10.下列运算正确的是( )
A.
11
34
22
⎛⎫⎛⎫
---=
⎪ ⎪
⎝⎭⎝⎭
; B.0-2=-2; C.
34
1
43
⎛⎫
⨯-=
⎪
⎝⎭
; D.(-2)÷(-4)=2
二、填空
1.如果两个有理数的积是正的,那么这两个因数的符号一定______.
2.如果两个有理数的积是负的,那么这两个因数的符号一定_______.
3.奇数个负数相乘,结果的符号是_______.
4.偶数个负数相乘,结果的符号是_______.
5.如果41
0,0
a b
>>,那么
a
b
_____0.
6.如果5a>0,0.3b<0,0.7c<0,那么b
ac
____0.
7.-0.125的相反数的倒数是________.
8.若a>0,则a
a
=_____;若a<0,则
a
a
=____.
三、解答
1.计算:
(1)
3
8
4
⎛⎫
-⨯
⎪
⎝⎭
; (2)
1
2(6)
3
⎛⎫
-⨯-
⎪
⎝⎭
; (3)(-7.6)×0.5; (4)
11
32
23
⎛⎫⎛⎫
-⨯-
⎪ ⎪
⎝⎭⎝⎭
.
2.计算.
(1)
3
8(4)2
4
⎛⎫
⨯-⨯--
⎪
⎝⎭
; (2)
3
8(4)(2)
4
-⨯-⨯-; (3)
3
8(4)(2)
4
⎛⎫
⨯-⨯-⨯-
⎪
⎝⎭
.
3.计算
(1)
111111
111111
234567
⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫
-⨯-⨯-⨯---⨯-
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
;
(2)
111111 111111 223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
.
4.计算
(1)(+48)÷(+6); (2)
21
35
32
⎛⎫⎛⎫
-÷
⎪ ⎪
⎝⎭⎝⎭
;(3)4÷(-2); (4)0÷(-1000).
答案
一、ACBBA,DCCAB
二、1.相同; 2互异; 3负; 4正的; 5.>; 6.>; 7.8; 8.1,-1
三、1.(1)-6;(2)14;(3)-3.8;(4)
1 8 6
2.(1)22;(2)2;(3)-48;
3.(1)
2
1
3
;(2)
5
8
4.(1)8;(2)2
3
;(3)-2;(4)0
5.(1)-7;(2)375;(3)4 6.(1)14;(2)-240。