§3.3多维随机变量函数的分布
- 格式:ppt
- 大小:230.50 KB
- 文档页数:13
第三章多维随机变量及其分布第三章多维随机变量及其分布在许多随机试验中,需要考虑的指标不⽌⼀个。
例如,考查某地区学龄前⼉童发育情况,对这⼀地区的⼉童进⾏抽样检查,需要同时观察他们的⾝⾼和体重,这样,⼉童的发育就要⽤定义在同⼀个样本空间上的两个随机变量来加以描述。
⼜如,考察礼花升空后的爆炸点,此时要⽤三个定义在同⼀个样本空间上的随机变量来描述该爆炸点。
在这⼀章中,我们将引⼊多维随机变量的概念,并讨论多维随机变量的统计规律性。
1.⼆维随机变量及其分布在这⼀节中.我们主要讨论⼆维随机变量及其概率分布,并把它们推⼴到n维随机变量。
1.⼆维随机变量及其分布函数1.⼆维随机变量定义3.1 设Ω ={ω }为样本空间,X=X(ω )和Y=Y(ω )是定义在Ω上的随机变量,则由它们构成的⼀个⼆维向量(X,Y)称为⼆维随机变量或⼆维随机向量.⼆维向量(X,Y)的性质不仅与X及Y有关,⽽且还依赖于这两个随机变量的相互关系。
因此,逐个讨论X和Y的性质是不够的,需把(X,Y)作为⼀个整体来讨论。
随机变量X常称为⼀维随机变量。
2. ⼆维随机变量的联合分布函数与⼀维的随机变量类似,我们也⽤分布函数来讨论⼆维随机变量的概率分布。
定义3.2 设(X,Y)是⼆维随机变量,x,y为任意实数,事件(X≤x)和(Y≤y)的交事件的概率称为⼆维随机变量(X,Y)的联合分布或分布函数,记作F(x,y),即若把⼆维随机变量(X,Y)看成平⾯上随机点的坐标,则分布函数F (X,Y)在(x,y)处的函数值就是随机点(X,Y)落⼊以(x,y)为定点且位于该点左下⽅的⽆穷矩形区域内的概率(见图3-1)。
⽽随机点(X,Y) 落在矩形区域内的概率可⽤分布函数表⽰(见图3-2)分布函数F (x,y)具有以下的基本性质。
(1) 0≤F (x,y)≤1.对于任意固定的x和y,有(2) F (x,y)是变量x或y的单调不减函数,即对任意固定的y,当x2 ≥x1时,;对任意固定的x,当y2 ≥y1时,。
多维随机变量分布公式了解多维随机变量分布的数学公式多维随机变量分布公式在概率论和数理统计中,多维随机变量是指由两个或更多随机变量组成的向量。
多维随机变量的分布可以用数学公式来描述,这些公式包括联合概率密度函数、边际概率密度函数和条件概率密度函数。
通过了解和掌握这些公式,我们可以更好地理解和分析多维随机变量的行为和性质。
1. 联合概率密度函数(Joint Probability Density Function)联合概率密度函数是用来描述多维随机变量的联合概率分布的函数。
对于二维随机变量(X,Y),其联合概率密度函数可以表示为f(x,y),其中x和y分别为X和Y的取值。
联合概率密度函数满足以下性质:- 非负性:对于所有的x和y,有f(x,y) ≥ 0。
- 归一性:联合概率密度函数在整个样本空间上的积分等于1,即∬f(x,y)dxdy = 1。
- 边缘分布:通过联合概率密度函数可以计算出各个分量的边缘概率密度函数。
对于X和Y来说,其边缘概率密度函数分别为f_X(x)和f_Y(y),可以通过联合概率密度函数进行积分计算得到。
2. 边际概率密度函数(Marginal Probability Density Function)边际概率密度函数是指从联合概率密度函数中得到单个随机变量的概率密度函数。
对于二维随机变量(X,Y),其边际概率密度函数可以表示为f_X(x)和f_Y(y),分别表示X和Y的概率密度函数。
边际概率密度函数的计算可以通过对联合概率密度函数进行积分得到。
3. 条件概率密度函数(Conditional Probability Density Function)条件概率密度函数是在给定某个条件下,另一个随机变量的概率密度函数。
对于二维随机变量(X,Y),其条件概率密度函数可以表示为f_Y|X(y|x),表示在已知X=x的条件下,Y=y的概率密度函数。
条件概率密度函数可以通过联合概率密度函数和边际概率密度函数的比值来计算得到。
3.3 随机变量的函数及其分布一、博雷尔函数与随机变量的函数二、单个随机变量的函数的分布律三、随机向量的函数的分布律四、随机向量的变换五、随机变量函数的独立性一、博雷尔函数与随机变量的函数1引例在实际应用问题中,有时需要研究多维随机变量的函数的概率分布. 例如,鱼雷在水下运动时,其速度的三个分量都是随机变量,若已知的联合分布,如何计算其动能的分布.,,x y z v v v ,,x y z v v v 2221()2x y z E m v v v =++2 博雷尔函数() y g x R R R B =1111设有是到上的一个映照,若对于一切中的博雷尔点集均义有定 3.3.1{:()}x g x B ∈∈11()R g x σ11其中为上的博雷尔域,则称尔测数是一元博雷(可)函 注所有的连续函数与单调函数都是博雷尔函数(,,,) n n y g x x x R R R B =11211 设有是到上的一个映照,若对于一切中的博雷尔点集均有义定 3.3.2{(,,,):(,,,)}n n nx x x g x x x B ∈∈12121 (,,,)nn n R g x x x n σ12 其中为上的博雷尔域,则称是尔测数元博雷(可)函 3 随机变量的函数(,,)()()(,,)P g x g P ξξΩΩ若是概率空间上的随机变量,而是一元博雷尔函数,则是上的随机变量.问题g =()?如何根据已知的随机变量的分布求得随机变量的分布ξηξ4 离散型随机变量的函数的分布=2.设的分布律为求的分布律ξηξξp2101-41414141例一维离散型随机变量的函数的分布g =,().如果是离散型随机变量其函数也是离散型随机变量若的分布律为ξηξξξkpkx x x 21kp p p 21g =()则的分布律为ηξk k g x p (),.若中有值相同的应将相应的合并g =()ηξkp k g x g x g x 12()()()k p p p 21二维离散型随机变量函数的分布ξη12--1-21312312112101211221220122(,)设随机变量的分布律为ξη例+-(1),(2).求的分布律ηξξη结论的联合分布律为若二维离散型随机变量i j ij P x y p i j ===={,},,1,2,ξη g =(,)则随机变量函数的分布律为ψξηk k P z P g z ==={}{(,)}ψξη k i j ij z g x y p k ===∑()1,2,.例设相互独立的两个随机变量x与h具有同一分布律,且x的分布律为ξP1 05.0 5.0=:max(,).试求的分布律ζξη卷积公式k k a b =+{}{}, 设与是相互独立的随机变量,它们非负整数值,其概率分别为与,则的分布律为ξηζξηζr r r r c P r P r P r P r a b a b a b -=====+==-++===+++0110{}{0,}{1,1}{,0} ζξηξηξη称此计算公式为离散卷积公式例设且相互独立,求的分布律。
第三讲 多维随机变量及其分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关的概念,掌握随机变量相互独立的条件.3. 掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义 .4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.一、 各种分布与随机变量的独立性1. 各种分布(1)一般二维随机变量 F (x , y )=P { X ≤ x , Y ≤ y }, x ∈ (−∞, +∞), y ∈ (−∞, +∞)的性质F (x , y )为联合分布函数 ⇔ 1) 0 ≤F (x , y )≤1 , ∀x ∈ (−∞, +∞),, y ∈ (−∞, +∞);2) F (−∞, y )= F (x , −∞)=0, F (+∞,+∞)=1;3) F (x , y )关于x , y 均为单调不减函数; 4) F (x , y )关于x , y 均分别右连续.(2)二维离散型随机变量的联合概率分布、边缘分布、条件分布联合概率分布律 P {X = x i , Y = y j } = p i j , i , j =1, 2 ,⋅⋅⋅ , p i j0,1=∑∑ijji p.边缘分布律 p i= P {X = x i }=∑jji p, i =1, 2 ,⋅⋅⋅ , pj = P { Y = y j }=∑iji p, j =1, 2 ,⋅⋅⋅ ,条件分布律 P {X = x i |Y = y j } =jj i p p •, P { Y = y j | X = x i } =•i j i p p .二维连续型随机变量的联合概率密度、边缘密度和条件密度f (x , y )为联合概率密度 ⇔ 1︒ f (x , y )≥0,2︒1=⎰⎰∞+∞-∞+∞- ),(dxdy y x f .设( X , Y )~ f (x , y )则 分布函数:⎰⎰∞-∞-=xydxdy y x f y x F ),(),(;边缘概率密度: ⎰∞+∞-=),()(dy y x f x f X , ⎰∞+∞-= ),()(dx y x f x f Y .条件概率密度: )(),()|(|y f y x f y x f Y Y X =, )(),()|(|x f y x f x y f X X Y =.⎰⎰=∈Ddxdy y x f D Y X P ),(}),{(.),(),(yx y x F y x f ∂∂∂=22. 随机变量的独立性和相关性X 和Y 相互独立 ⇔ F (x , y )= F X (x )F Y (y );⇔ p i j = p ip j (离散型)⇔ f (x , y )= f X (x )f Y (y ) (连续型)【注】 1 X 与Y 独立, f (x ), g (x )为连续函数 f (X )与g (Y )也独立.2 若X 1, ⋅⋅⋅⋅, X m , Y 1, ⋅⋅⋅⋅, Y n 相互独立, f , g 分别为m 元与 n 元连续函数 f (X 1, ⋅⋅⋅⋅, X m )与g (Y 1, ⋅⋅⋅⋅, Y n )也独立.3 常数与任何随机变量独立. 3. 常见的二维分布(1)二维均匀分布 (X , Y )~ U (D ), D 为一平面区域. 联合概率密度为⎪⎩⎪⎨⎧∈=.,.),(,)(),(其他01D y x D S y x f (2)二维正态分布 (X , Y )~ N (μ1 , μ2, σ12 ,σ22,), −∞ <μ1, μ2 < +∞, σ1>0, σ2 > 0,| | <1. 联合概率密度为221121ρσπσϕ-=),(y x ⎥⎥⎦⎤⎢⎢⎣⎡-+------22222121212122121σμσσμμρσμρ)())(()()(y y x x e性质:( a ) X ~ N (μ1, σ12 ), Y ~ N (μ2, σ22 ) ( b ) X 与Y 相互独立ρX Y =0 , 即 X 与Y 不相关.( c ) C 1X +C 2Y ~ N (C 1 μ1+ C 2 μ2, C 12 σ12 + C 22σ22 +2C 1C 2 σ1 σ2 ).( d ) X 关于Y=y 的条件分布为正态分布: )](),([22122111ρσμσσρμ--+y N 【 例1 】 设A ,B 为事件,且P (A )=41, P (B |A )=21, P (A |B )=12令 X =⎩⎨⎧否则发生若,0,1A , Y =⎩⎨⎧否则发生若,0B ,1(1) 试求(X , Y )的联合分布律; (2)计算Cov ( X , Y ); (3) 计算 22(2,43)Cov X Y +.【 例2 】设随机变量X 与Y 相互独立,下表列出了二维随机变量(X , Y )联合分布律及关于X 和关于Y 的边缘分布律中的部分数值, 试将其余数值填入表中的空白处.【 例3 】设随机变量X 与Y 独立同分布, 且X 的概率分布为313221PX 记{}{}Y X V Y X U ,m in ,,m ax ==.(I )求(U , V )的概率分布;(II )求(U , V )的协方差C ov (U , V ). 【详解】(I )易知U , V 的可能取值均为: 1, 2. 且{}{}})1,m in ,1,(m ax )1,1(=====Y X Y X P V U P)1,1(===Y X P 94)1()1(====Y P X P , {}{}0})2,m in ,1,(m ax )2,1(======Y X Y X P V U P , {}{}})1,m in ,2,(m ax )1,2(=====Y X Y X P V U P)2,1()1,2(==+===Y X P Y X P)2()1()1()2(==+===Y P X P Y P X P 94=, {}{}})2,m in ,2,(m ax )2,2(=====Y X Y X P V U P)2()2()2,2(======Y P X P Y X P 91=, 故(U , V )的概率分布为:(II ) 9122941209411)(⨯⨯+⨯⨯++⨯⨯=UV E 916=, 而 914952941)(=⨯+⨯=U E , 910912981)(=⨯+⨯=V E .故 814910914916)()()(),(=⨯-=-=V E U E UV E V U Cov .【 例4】 设随机变量X 在区间(0, 1)上服从均匀分布, 在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布, 求(Ⅰ)随机变量X 和Y 的联合概率密度;(Ⅱ)Y 的概率密度; (Ⅲ)概率}1{>+Y X P .二、 二维(或两个)随机变量函数的分布1.分布的可加性(1)若X ~B (m, p ), Y ~B (n, p ), 且X 与Y 相互独立,则 X +Y ~ B (m +n , p ). (2)若X ~P (λ1), Y ~P (λ2), 且X 与Y 相互独立,则 X+Y ~ P (λ1+λ2).(3)若X ~N (211,μσ), Y ~P (222,μσ), 且X 与Y 相互独立,则 X+Y ~ N (221212,μμσσ++).一般地,若X i ~N (2,i i μσ), i =1, 2, …, n , 且X 1,X 2,…,X n 相互独立,则Y =C 1X 1+C 2X 2+…+C n X n +C 仍服从正态分布,且此正态分布为2211(,),n ni i i i i i N C C Cμσ==+∑∑ 其中C 1,…,C n 为不全为零的常数.2. 两个随机变量函数的分布. 【例5】 设X与Y相互独立, 且~(1),~(2),X P Y P 则{max(,)0}______;P X Y ≠={min(,)0}__________.P X Y ≠=【 例6】 设X 与Y 相互独立, 其密度函数分别为:1,01,()X x f x <<⎧=⎨⎩0,其他. ,0,()y Y e y f x -⎧>=⎨⎩0,其他.求Z =2X +Y 的概率密度.【 例7】设二维随机变量(X , Y )的概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其它.(I )求{}Y X P 2>;(II )求Z =X+Y的概率密度)(z f Z . 【详解】(I ){}Y X P 2>⎰⎰>=yx dxdy y x f 2),(⎰⎰--=1221)2(ydx y x dy 247=. (II )方法一: 先求Z 的分布函数: ⎰⎰≤+=≤+=zy x Z dxdy y x f Z Y X P z F ),()()(当z <0时, 0)(=z F Z ; 当10<≤z 时, ⎰⎰=1),()(D Z dxdy y x f z F ⎰⎰---=yz zdx y x dy 0)2(3231z z -=; 当21<≤z 时, ⎰⎰-=2),(1)(D Z dxdy y x f z F ⎰⎰-----=111)2(1yz z dx y x dy3)2(311z --=;当2≥z 时, 1)(=z F Z . 故Z =X+Y的概率密度)(z f Z =)(z F Z '⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z方法二: ⎰∞+∞--=dx x z x f z f Z ),()(,⎩⎨⎧<-<<<---=-.,0,10,10),(2),(其他x z x x z x x z x f ⎩⎨⎧+<<<<-=.,0,1,10,2其他x z x x z 当z ≤0 或z ≥ 2时, 0)(=z f Z ; 当01z <<时, ⎰-=zZ dx z z f 0)2()()2(z z -=;当21<≤z 时, ⎰--=11)2()(z Z dx z z f 2)2(z -=;故Z =X+Y的概率密度)(z f Z ⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z【例8】 设随机变量X 与Y 相互独立, X 有密度函数f (x ), Y 的分布律为()i i P Y a p ==, i =1,2. 试求Z =X +Y 的概率分布.。