大学物理波动方程和波的能量
- 格式:ppt
- 大小:1005.00 KB
- 文档页数:23
§5惠更斯原理波的衍射波的反射与折射一、惠更斯原理OS 1S 2u ∆tu ∆tS 1S 2在均匀的自由空间波传播时,任一波面上的每一点都可以看作发射子波的点波源,以后任意时刻,这些子波的包迹就是该时刻的波面。
——波沿直线传播t+∆t 时波面t 时波面t+∆t 时波面S1i 2三、波的反射与折射介质1MN反射波与入射波在同一介质中传播tu MD AN ∆==i容易算出i i '=(n 1)(n 2)A B C DMNi 1i1tu MD ∆1=tu AN ∆2=21u u AN MD =2sin i AD AN =1sin i AD MD =11u c n =22u c n =2211sin sin i n i n =介质2A B C D1122sin sin i u i u =21n =介质2相对于介质1的折射率折射波与入射波在不同介质中传播介质相对于空气的折射率声波—机械纵波一、声压媒质中有声波传播时的压力与无声波传播时的静压力之差纵波—疏密波稀疏区域:实际压力小于静压力,声压为负值稠密区域:实际压力大于静压力,声压为正值§7声波与声强级次声波可闻声超声波声压是仪器所测得的物理量定义声压:p = p -p 0对某声波媒质无声波——静压力p 0 、密度ρ0有声波——压力p 、密度ρ)(Hz ν2020000p+pV+∆V ∆V。
大学物理波动的知识点总结一、波动的基本概念1.波动的定义波动是一种可以在介质中传播的能量或者信息的方式。
波动既可以是物质的波动,比如水波、声波等,也可以是场的波动,比如电磁波等。
根据波的传播方式和规律,波动可以分为机械波和电磁波。
2.波动的特点波动具有传播性、干涉性、衍射性和波粒二象性等特点。
波动的传播性表明波动能够沿着介质传播,干涉性指波动能够互相叠加,并产生干涉现象,衍射性说明波动能够弯曲传播并产生衍射现象,波粒二象性则是指波动既具有波动特征,也具有粒子特征。
3.波的基本要素波的基本要素包括振幅、频率、波长、波速等。
振幅是波动能量的大小,频率是波动的振动周期,波长是波动在空间中占据的长度,波速是波动在介质中的传播速度。
二、波动方程1.一维波动方程一维波动方程描述了一维波动在空间和时间上的变化规律。
一维波动方程的基本形式为:∂²u/∂t²=v²∂²u/∂x²其中u(x,t)表示波动的位移,v表示波速,t表示时间,x表示空间坐标。
2.二维波动方程二维波动方程描述了二维波动在空间和时间上的变化规律。
二维波动方程的基本形式为:∂²u/∂t²=v²(∂²u/∂x²+∂²u/∂y²)其中u(x,y,t)表示波动的位移,v表示波速,t表示时间,x和y表示空间坐标。
3.波动方程的解波动方程一般是偏微分方程,其解一般通过分离变量、叠加原理、傅里叶变换等方法求解。
对于特定的边界条件和初始条件,可以得到波动方程的具体解。
三、波动的性质1.反射和折射波动在介质表面的反射和折射是波动的基本性质之一。
反射是波动从介质边界反射回来的现象,折射是波动通过介质界面时改变传播方向的现象。
2.干涉和衍射干涉是波动相遇并相互叠加的现象,衍射是波动通过小孔或者障碍物后产生的弯曲传播的现象。
干涉和衍射都是波动的波动性质。
数学物理中的波动方程与波函数波动方程是数学物理中一种重要的方程,用于描述波动现象的传播和行为。
在波动方程中,波函数是一个关键的概念,用于描述波动的性质和变化。
本文将介绍波动方程和波函数的基本概念、性质和应用。
一、波动方程的基本概念波动方程是一种偏微分方程,用于描述波动现象的传播和行为。
它通常以时间和空间变量为自变量,通过对波函数的求导和求解来描述波动的性质和变化。
波动方程的一般形式可以表示为:∂²u/∂t² = c²∇²u其中,u是波函数,t是时间,c是波速,∇²是拉普拉斯算符。
这个方程表示了波函数在时间和空间上的二阶导数之间的关系。
二、波函数的性质和特点波函数是波动方程的解,它描述了波动的性质和变化。
波函数的性质和特点包括以下几个方面:1. 波函数的形式:波函数可以是一维、二维或三维的,具体形式取决于波动方程的维度和边界条件。
常见的波函数形式包括正弦函数、余弦函数、指数函数等。
2. 波函数的振幅:波函数的振幅表示波动的幅度或强度,通常用于描述波动的能量或振动的大小。
振幅可以是实数或复数,取决于波动的性质。
3. 波函数的频率:波函数的频率表示波动的周期性或重复性,通常用于描述波动的频率或振动的频率。
频率可以是连续的或离散的,取决于波动的性质。
4. 波函数的相位:波函数的相位表示波动的相对位置或相对相位,通常用于描述波动的相位差或相位差。
相位可以是实数或复数,取决于波动的性质。
三、波动方程的应用波动方程在数学物理中有广泛的应用,涉及到多个学科和领域。
以下是一些常见的波动方程的应用:1. 声波传播:声波是一种机械波,可以通过波动方程来描述声波的传播和行为。
在声学中,波动方程被用于研究声波的传播速度、频率和振幅等特性。
2. 光波传播:光波是一种电磁波,可以通过波动方程来描述光波的传播和行为。
在光学中,波动方程被用于研究光波的传播速度、频率和振幅等特性。
大学物理 ——波(一)引言概述:波是一种常见的物理现象,在自然界和人类日常生活中都能观察到。
本文旨在介绍大学物理学习中的第一部分——波的基本概念和性质。
通过本文的学习,读者将了解波的定义、波的分类以及波动方程等重要概念,并深入探讨机械波和电磁波的性质以及波的传播规律。
正文:1. 波的概念- 定义:波是一种能量传播的方式,以振动或震动形式传递能量而不传递物质的现象。
- 特点:波具有传播、反射、折射和干涉等特点,能够对物体进行作用。
- 分类:根据振动方向和能量传播方式的不同,波可分为机械波和电磁波两大类。
2. 机械波- 定义:机械波是通过介质(如水、空气等)传播的波动现象。
- 特点:机械波必须依赖介质进行传播,传播速度取决于介质的性质。
- 分类:根据粒子振动方向的不同,机械波可分为横波和纵波两种。
- 性质:机械波具有反射、折射、干涉和衍射等特性。
3. 电磁波- 定义:电磁波是通过电场和磁场相互作用而传播的波动现象。
- 特点:电磁波可以在真空中传播,其传播速度为光速。
- 分类:根据波长和频率的不同,电磁波可分为射线、微波、红外线、可见光、紫外线、X射线和γ射线等。
- 性质:电磁波可以反射、折射、干涉和衍射,并具有波粒二象性。
4. 波动方程- 定义:波动方程是描述波动现象的数学表达式。
- 机械波方程:对于一维机械波,波动方程一般表示为∂²u/∂x ² = (1/v²) * ∂²u/∂t²,其中v为波速。
- 电磁波方程:对于电磁波,波动方程一般表示为∇²E - (1/c²) * ∂²E/∂t² = 0,其中c为光速。
5. 波的传播规律- 原理:波的传播遵循赫兹和惠更斯原理。
- 赫兹原理:根据赫兹原理,波会沿着直线传播,且传播方向垂直于波前。
- 惠更斯原理:根据惠更斯原理,波会在达到障碍物或波前边缘时发生衍射,形成新的波前。
波的特性与波动方程波是一种能量以振荡或传播的方式传递的物理现象。
它们可以是机械波,例如通过介质传播的声波或水波,也可以是电磁波,例如光波或无线电波。
波的特性与波动方程密切相关,通过波动方程我们可以描述波的行为和性质。
一、波的特性1. 频率和周期波的频率是指在单位时间内波所振动的次数,通常以赫兹(Hz)来衡量。
而波的周期是指波所振动完成一次周期所需要的时间,周期的倒数即为频率。
频率和周期是波的基本特性,对于同一类型的波,频率越高,周期越短。
2. 波长和波速波长是指波的一个完整振动周期所对应的距离,通常用λ表示,单位是米。
波长与频率成反比,即波长越短,频率越高。
而波速是指波传播的速度,它等于波长乘以频率。
在给定介质中,波速是恒定的,而波长和频率可以相互改变。
3. 幅度和能量传播波的幅度是指波的振动幅度的最大值或偏离平衡位置的最大距离。
幅度与波的能量传播有关,波的振幅越大,能量传播越强。
例如,在水波中,波浪的高度就是波的振幅,波浪越高,能量传播越远。
二、波动方程波动方程是用来描述波的运动和传播的数学公式。
具体形式和解法取决于波的类型和条件。
1. 一维波动方程一维的波动方程通常用于描述沿一条直线传播的波,其一般形式为:∂²u/∂t² = v²∂²u/∂x²其中,u是波在时刻t和位置x的位移;v是波的传播速度。
这个方程描述了波的传播过程中,位移随时间和位置变化的关系。
2. 二维和三维波动方程二维和三维的波动方程通常用于描述在平面或空间中传播的波,其形式更为复杂。
例如,在二维情况下,波动方程可以表示为:∂²u/∂t² = v²(∂²u/∂x² + ∂²u/∂y²)其中,u是波在时刻t和位置(x, y)的位移。
在三维情况下,波动方程还会多出一个偏导数项。
三、波的类型波可以分为多种类型,包括机械波和电磁波。