当前位置:文档之家› 函数求值域方法之值域换元法

函数求值域方法之值域换元法

函数求值域方法之值域换元法
函数求值域方法之值域换元法

函数求值域方法之值域换元法

求值域的方法有很多,在众多的方法中,换元法是比较常用且非常有效的求解值域的办法,这里,给大家总结五种常见的换元方法,欢迎大家补充。

五种常见换元办法:①一般换元法;②三角换元法(难度较大);③三角换常值换元法;④双换元法;⑤整体换元法

类型一:一般换元法

形如:y=ax+b 士: cx - d

方法:本形式下,部分函数在取值区间内,单调性确定,所以可以直接使用单调性判断,单调性无法确定的时候,本题可使用一般换元的思路,令t= cx d,

用t表示x,带入原函数得到一个关于t的二次函数,求解值域即可。

例1:求函数f (x)二x - x -1的值域

分析:本题x?[1,=),在取值区间内,x单调增,..x-1单调增,两个单调增的

函数相减无法直接判断单调性,所以单调性无法确认,考虑使用一般换元。

解:另t = Jx _1 (20),则x=t?+1,

代入 f (x)得f (x)二t2-t 1 (t - 0)

本题实求二次函数在指定区间内的范围

3

3

当t -0,f(x)_

4

所以f (x)[彳,二)

变式:求函数f(X)二X ? X -1的值域

分析:本题X?[1「::),在取值区间内,x单调增,??X-1单调增,两个单调增的

函数相加,所以整个函数在取值区间上单调递增所以f(x)_ f(1)即可

由于一般换元法相对来说比较简单,这里就不赘述,留一道练习

练习:求f (x^2x . 3x 1的值域

类型二:三角换元

记住一句话:三角换元一个大原则,三个常用公式

A、一个大原则:x有界,换成sin ncosr

x无界,换成tann

B、三个常用公式:①遇到x2,且前面系数为-1,常用sin J cos^ -1

1

②遇到x2,且前面系数为1,常用——2 1 tan2二

cos日

2tan —

③巧用万能公式:sin^ = ---------- --

1 tan

2 -

2

2 6

1 - tan

2 -

2

COS)

1 tan

2 -

2

三角换元时,尤其注意确定好二的取值范围,下面用具体的例题跟大家说明

例2:求f(x) =x 1 -x2的值域

分析:本题若使用一般换元法,则只能得到x2与t2之间的关系,操作起来比较麻烦,换元法本身的目的就是要使得题目变得更为简单便捷,所以一般换元法失灵,考虑使用三

解:令x =s in V,1-x2—o,- X [-1,1],- si n 厂[-1,1]

角换元,因为x2前面的系数是-1,所以使用公式①换元

解:令x =s in V,1-x2—o,- X [-1,1],- si n 厂[-1,1]

1

另▼[一?,m (原因:方便后面化出来的cosr,不用讨论正负性了) 代入f (x),得f(x) =sin v J -sin1 2 3 4 v =sin「|cosv |

f (x) = sin J COST

辅助角公式,合一变形得:f(x)—2sin(八匸)(厂[一了才)

二二3 二—

「4 [R],

f(x) I 2]

式:

求f(x) =x j2-x2的值域

析:

另x = 2 si nr即可

案:k 2,2]

j x2十1

例3 :求f (x)= —-的值域

x -1

分析:本题x2前面的系数是-所以考虑使用公式②

解:X21 _0, x -1 = 0, x =1

1~r 小r IE IE H JE

另xgp (-倉uq,?)

f(x)(」:,-今]出1,::)

变式:

lx2 +2x +1

求f(x)- 的值域

x +1

1

cos2 r

sin —coz sin r-cosr , 2 sin

4 tan J -1

cos^

Jl H

(-严咛

■/ e e

Jl Jl Tl Tl

4

分析:X22x_0,x=-1, x_0或x 乞-2, X 1-1 或x 1乞-1

1

-1 一一 1,但=0 ,使用三角公式 x+1

具体过程问群主哟

答案:f(x). [―一 [1,、.2]

通过常规的解法很难操作,因而我们通过转化,进

行三角换元,再求解值域。

心)」^^ 竺 ^'sin^^cos^)

2 1+tan 2 日 tan 2^+1 2

1 1

—J

f(x)

[-打

类型三:三角换常值换元法

本类型主要是三角函数求值域下的一类,由于涉及换元,所以在本专题下讲解, 此类题目主要是针对分式形式的三角函数, 用到的换元方法是万能公式的逆向应

用。

2

由于 2tan ? si npl tan 22

cos 71,可令 t =ta nN ,则 sh'cosv 就转化成

1 tan

2 2, 1 tan 22,

了关于t 的函数,再根据一般函数求解值域的办法求解(在另外专题中讲解)

例5:求f(x)

Sin

^的值域

2 —cosx

例4: 求

3

J (x)°;x 2

x x 4

的值域

解: f (x )=$g 二#

x 2 -1 (x 2 1)2 x 2 1 x 2 1

到这一步以后,自然而然想到我们的第三个三角公式一万能公式

e 2ta n —

Sin

1 ta n —

2

COST 2

1「ta n 2

_____ 2

‘ 2

1 ta n —

对f (x )再进行转化

f(x)冷寻尸

分析:本题是高次式求值域,

分析:本题解法颇多,这里主要讲解两种方法。利用万能公式我们可以把正余弦转发为关于t的函数;当然本题也可用斜率的相关知识求解。

解:方法一:万能公式法

2ta nx

f(X)_ sin x 1 tan22x 2tan2x

2—cosx 小1 - tan22x 1 +3tan22x

2 --------------- 2—

1 tan 2x

令tan2x二t,幕2-cosx = 0, x R,tan2x虽然x有范围要求,但是tan2x整体?二R,

t R

2t 2

f(x) 「,当t=0时,f(x)=0,t = 0时,f(x)二一-,分母是对勾函数,应

1 +3t

3t+】

t

用对勾函数的相关性质,可得值域f(x)?[-止,止]

3 3

方法二:斜率法(联系群主要哦)

类型四:双换元法

例6:求f(x) — 1 -x X 3的值域

分析:本题含有两个根号,使用一次换元,无法把根号去掉。有根号的题目,要么换元,要么平方,要么分子分母有理化。本题介绍两种解法。

解:方法一:平方法

f2(x) =1 -x x 3 2 -X2-2x 3 =4 2 -x2-2x 3

1 —x _0,x 3 _0二—3 乞1

本题实求在x?[-3,1]时,- x2 -2x的取值范围,二次函数求范围

0 乞-x2-2x 3 辽4,f2(x) [4,8],f(x) [2,2 2]

方法二:双换元法

令m = 1 -x, n = . x 3, _3 乞x 乞 1

.0_m_2,0 _n_2

函数求值域方法之值域换元法

函数求值域方法之值域换元法 求值域的方法有很多,在众多的方法中,换元法是比较常用且非常有效的求解值域的办法,这里,给大家总结五种常见的换元方法,欢迎大家补充。 五种常见换元办法:①一般换元法;②三角换元法(难度较大);③三角换常值换元法;④双换元法;⑤整体换元法 类型一:一般换元法 形如:y=ax+b 士: cx - d 方法:本形式下,部分函数在取值区间内,单调性确定,所以可以直接使用单调性判断,单调性无法确定的时候,本题可使用一般换元的思路,令t= cx d, 用t表示x,带入原函数得到一个关于t的二次函数,求解值域即可。 例1:求函数f (x)二x - x -1的值域 分析:本题x?[1,=),在取值区间内,x单调增,..x-1单调增,两个单调增的 函数相减无法直接判断单调性,所以单调性无法确认,考虑使用一般换元。 解:另t = Jx _1 (20),则x=t?+1, 代入 f (x)得f (x)二t2-t 1 (t - 0) 本题实求二次函数在指定区间内的范围 3 3 当t -0,f(x)_ 4 所以f (x)[彳,二) 变式:求函数f(X)二X ? X -1的值域

分析:本题X?[1「::),在取值区间内,x单调增,??X-1单调增,两个单调增的 函数相加,所以整个函数在取值区间上单调递增所以f(x)_ f(1)即可 由于一般换元法相对来说比较简单,这里就不赘述,留一道练习 练习:求f (x^2x . 3x 1的值域 类型二:三角换元 记住一句话:三角换元一个大原则,三个常用公式 A、一个大原则:x有界,换成sin ncosr x无界,换成tann B、三个常用公式:①遇到x2,且前面系数为-1,常用sin J cos^ -1 1 ②遇到x2,且前面系数为1,常用——2 1 tan2二 cos日 2tan — ③巧用万能公式:sin^ = ---------- -- 1 tan 2 - 2 2 6 1 - tan 2 - 2 COS) 1 tan 2 - 2 三角换元时,尤其注意确定好二的取值范围,下面用具体的例题跟大家说明 例2:求f(x) =x 1 -x2的值域 分析:本题若使用一般换元法,则只能得到x2与t2之间的关系,操作起来比较麻烦,换元法本身的目的就是要使得题目变得更为简单便捷,所以一般换元法失灵,考虑使用三 解:令x =s in V,1-x2—o,- X [-1,1],- si n 厂[-1,1]

函数定义域、值域求法总结

函数定义域、值域求法总结 1、函数的定义域是指自变量“x”的取值集合。 2、在同一对应法则作用下,括号整体的取值围相同。 一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x和g(x)受同一个对应法则的作用,从而围相同。因此f[g(x)]的定义域即为满足条件 a≤g(x)≤b的x的取值围。 一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x 和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a≤x≤b 时,g(x)的取值围。 定义域是X的取值围,g(x)和h(x)受同一个对应法则的影响,所以它们的围相同。 ():f(x),f[g(x)] 题型一已知的定义域求的定义域 () ():f g x,f(x) ?? ?? 题型二已知的定义域求的定义域 ()[] ():f g x,f h(x) ?? ?? 题型三已知的定义域求的定义域 () []()[])x(h f x f x g f→ →

()的定义域 求的定义域已知练习)2(],9,3[log :313-x f x f 一、定义域是函数y=f(x)中的自变量x 的围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

函数值域方法大全

值域最值专题 一.知识点 1.函数的值域的定义 在函数y=f(x)中,与自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域。 2.确定函数的值域的原则 ①当函数y=f(x)用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数y=f(x)用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=f(x)由实际问题给出时,函数的值域由问题的实际意义确定。 二、基本初等函数的值域 1.一次函数y=ax+b(a0)的定义域为R ,值域为R 2 2.二次函数的定义域为R , f(x) ax bx c(a 0)22(4ac b)(4ac b)当a>0时,值域为{};当a<0时,值域为{}。 y|y y|y 4a4ak y (k 0) 3.反比例函数的定义域为{x|x0},值域为{y|y0}; xx+ 4.y =a(a>0且a≠1)的值域是R 5.y =logx(a>0且a≠1)的值域是R a 三.当函数y=f(x)用解析式给出时,求函数值域的方法 1.直接法分析:从自变量x 的范围出发,推出y=f(x)的取值范围;(也可以利用常见函数的值域来求) 222x 0,1,2,3y x 2xx 1 1 xy 练习⑴, ⑵3 x y f(x) 2 4 x ⑶ . 答{ y| y2} ⑷ 答{ y| y R 且y -1/2} 2x 52.图象法:当一个函数图象可作时,通过图象可求其值域; 222xy 2x x 1y 2x 4x 103练习⑴(≤≤) ⑵ xx y 1 x x 31f(x) 1 24 ⑶(≤≤) ⑷ 2f f(x) x 6, 2x 4x 6已知(取二者的大的函数值),则 max 3.利用函数的单调性――利用

高中函数值域求法小结

函数值域求法小结 一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数) 1、求242-+-=x y 的值域。 由绝对值函数知识及二次函数值域的求法易得: )[)[∞+-∈∞+∈-+-=,2,,024)(2y x x g 所以 2、求函数1 11 y x = ++的值域。 分析:首先由1x +≥0,得1x ++1≥1,然后在求其倒数即得答案。 解: 1x +≥0∴1x ++1≥1,∴0< 1 11 x ++≤1,∴函数的值域为(0,1]. 二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域) 1、求函数][)4,0(422∈+--=x x x y 的值域。 设:)0)((4)(2 ≥+-=x f x x x f 配方得:][)4,0(4)2()(2 ∈+--=x x x f 利用二次函数的 相关知识得][4,0)(∈x f ,从而得出:][2,2-∈y 。 说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:0)(≥x f 。 2、求函数3 42-+-=x x e y 的值域。 解答:此题可以看作是u e y =和342-+-=x x u 两个函数复合而成的函数,对u 配方可得: 1)2(2+--=x u ,得到函数u 的最大值1=u ,再根据u e y =得到y 为增函数且0>y 故 函数3 42-+-=x x e y 的值域为:],0(e y ∈。 3、若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。 本题可看成一象限动点),(y x p 在直线42=+y x 上滑动时函数xy y x lg lg lg =+的最大值。利用两点(4,0),(0,2)确定一条直线,作出图象易得: 2 )1(2lg[)]24(lg[lg lg lg ),2,0(),4,0(2+--=-==+∈∈y y y xy y x y x 而,y=1时,y x lg lg +取最大值2lg 。 三、反函数法(分子、分母只含有一次项的函数,也可用于其它易

函数定义域值域求法总结

、函数定义域、值域求法总结

————————————————————————————————作者:————————————————————————————————日期:

函数定义域、值域求法总结 1、函数的定义域是指自变量“x ”的取值集合。 2、在同一对应法则作用下,括号内整体的取值范围相同。 一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而范围相同。因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值范围。 一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x 和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x≤b 时,g(x)的取值范围。 定义域是X 的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。 ()的定义域 求的定义域已知练习)2(],9,3[log :313-x f x f 一、定义域是函数y=f(x)中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 ():f (x),f[g(x)]题型一已知的定义域求的定义域 ()():f g x ,f (x)????题型二已知的定义域求的定义域 ()[]():f g x ,f h(x)????题型三已知的定义域求的定义域()[]()[] )x (h f x f x g f →→

(2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式2 1 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ???≠-≥+0201x x ? ???≠-≥2 1 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②214 3)(2-+--=x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-= x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3- ]

高中数学求函数值域的方法十三种审批稿

高中数学求函数值域的 方法十三种 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

高中数学:求函数值域的十三种方法 一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性 八、函数单调性法(☆) 九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、 十三、一一映射法 十四、 多 种 方 法 综 合 运 用 一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。 【例1】 求函数1y =的值域。 11≥, ∴函数1y =的值域为[1,)+∞。 【例2】求函数 x 1 y = 的值域。 【解析】∵0x ≠ ∴0 x 1≠ 显然函数的值域是: ),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1- =f f,()1 1- f所以: = 2 0= f,()()0 ∈ 3 x,而()()3 -f = 1= {}3,0,1- ∈ y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x∈,则函数的值域为{}1 y。 y ≥ |- 二.配方法:配方法式求“二次函数类”值域的基本方法。形如2 =++的 F x af x bf x c ()()() 函数的值域问题,均可使用配方法。 【例1】求函数225,[1,2] y x x x =-+∈-的值域。 【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8] 【变式】已知,求函数的最值。 【解析】由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,最大值为。 图2

函数值域方法

函数值域方法汇总 一.单调性法 例1.求函数x 53x y ---= 的值域 例2.求函数11--+=x x y 的值域 例3.求函数x x y -+-=53的值域 解一: 例4.已知函数.2]2,0[34)(2的值,求实数上有最大值在区间a x ax x f -+= 解:(1)当0=a 时,舍去;,2324)2(≠-?=f (2)当↑??- =?上在时,对称轴方程为]2,0[)(02 0x f a x a 舍去,04 3 254)2(?-=?=+=?a a f ; (3)当时, 0?a 02 ?-=a x 对称轴方程为, ①]1,(]0,1[1]2,0[2--∞∈?-∈?∈-a a a 154 2384)2(-?-=?=--=-?a a a a f ,舍去 ②122-???-a a ↑?上在]2,0[)(x f 4 3-=?a 纵上,4 3 -=a 例5.求|1||3||2|-+-+-=x x x y 的值域 例6.求|2||4||1||3|-+-+-+-=x x x x y 的值域

【点评】求函数)(||||||2121n n x x x x x x x x x y ???-++-+-= 的最值时,①n 为奇数时, 取得最小值;时,当y x x n 2 1+=②取得最小值。 时,为偶数时,当y x x x n n n ],[1 22 +∈ 例7.求函数的值域|2|6|1|3|3|---+-=x x x y 例8.求函数的值域|1|2|3|6|2|3|4|-+---+-=x x x x y 【点评】求函数的最值时)(||||||)(212211n n n x x x x x a x x a x x a x f ???-++-+-= , ,无最大值; 时,当)}(,),(),(min{)(0)1(21min 1n i n i x f x f x f x f a =?∑= ; ,时,当)}(,),(),(max{)}(,),(),(min{)(0)2(21max 21min 1n n i n i x f x f x f y x f x f x f x f a ===∑= ,无最小值。 时,当)}(,),(),(max{)(0)3(21max 1 n i n i x f x f x f x f a =?∑= 例9.已知函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0, f (-1)=-2,求f (x )在区间[-2,1]上的值域。 解:0)0()0()0()00(=?+=+f f f f 为奇函数则令)()()()()()(,x f x f x f x f x f x x f x y ?-=-?-+=--= )()()()()(0)(0,121112121221x f x f x f x f x x f x x f x x x x ???+-??-??-?则令 上单调递增在R x f )(? 422)1()1()11()2(-=--=-+-=--=-f f f f ,2)1()1(=--=f f [-4,2][-2,1])(上的值域为在x f ?

高中数学3(换元法)

第 7 讲 换元法(高中版) (第课时) 换元法? ??? ??? ???? ??? ???? ?? ??????? ????三角代换均值代换 整体代换策略化超越式为代数式化无理式为有理式化分式为整式降次复杂问题简单化非标准问题标准化 用途 重点:1.;2.;3.。 难点:1.;2.;3.;。 我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子。换元的关键是构造元和设元。 换元的实质是转化,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式。换元后要注意新变量的取值范围,它既不能缩小也不能扩大。 换元法在因式分解、化简求值、恒等式证明、条件等式证明、方程、不等式、函数、数列、三角、解析几何等问题中有广泛的应用。 换元的常用策略有:整体代换(有理式代换,根式代换,指数式代换,对数式代换、复变量代换)、三角代换、均值代换等。 整体代换:在条件或者结论中,某个代数式反复出现,那么我们可以用一个字母来代替它, 当然有时候要通过变形才能发现。例如解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角代换:如果把代数式换成三角式更容易求解时,可以利用代数式中与三角知识的联系进

行换元。例如求函数y =x +1-x 的值域时,易发现x ∈[0,1],设x =sin 2 α ,α∈[0, π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。又如变量x 、y 适合条件x 2 +y 2 =r 2 (r>0)时,则可作三角代换x =rcos θ、y =rsin θ化为三角问题。 均值代换:对两个类似的式子,可令其算术平均值为t 进行换元;如果遇到形如 S y x =+ 或 S y x =+2 2 这样的对称结构,可设 x =S 2+t ,y =S 2-t 或 t S x +=22 ,t S y +=2 2等等。 1.换元法在方程中的应用 我们知道,解分式方程时一般用“去分母”的方法,把分式方程化成整式方程来解;解无理方程一般用“两边乘方”的方法,将无理方程化成有理方程来解。然而利用这些常规的变形方法解题,有时会产生高次方程,解起来相当繁琐,甚至有时难于解得结果。对于某些方程,我们可以用新的变量来替换原有的变量,把原方程化成一个易解的方程。 例.(高二)如果关于x 的方程 0sin cos 22 2 4 =++θθx x 有相异的四实根,求θ的范围。 分析:此题已知条件的形式比较陌生,我们先看看能不能把它转化为我们所熟悉的形式。 令 t x =2 ,则原方程化为: 0sin cos 22 2=++θθt t ⑴ 使原方程有相异的四实根等价于使方程⑴有两不等正根。 由此得 ?? ? ? ?>>->-=?)4(0sin )3(0cos ) 2(0sin 4cos 4222θθθθ 即 ?? ? ??≠<>0sin 0cos 02cos θθθ 解之得 4 52432ππθππ+<<+ k k 且 )()12(J k k ∈+≠πθ 2.换元法在不等式中的应用 例.(高二)设对所于有实数x ,不等式x 2 log 241()a a ++2x log 221a a ++log 2()a a +142 2 >0 恒成立,求a 的取值范围。 分析:不等式中,log 241()a a +、 log 221a a +、log 2()a a +142 2 三项有何联系?对它们进 行变形后再实施换元法。 解: 设 log 2 21 a a +=t ,则 log 241()a a +=log 2812()a a +=3+log 2a a +12=3-log 221 a a +=3-t , log 2()a a +142 2 =2log 2 a a +12=-2t , 代入后原不等式简化为 (3-t )x 2 +2tx -2t>0 ,它对一切实数x 恒成立,

2017最新函数解析式求法和值域求法总结及练习题

2[()]()()f f x af x b a ax b b a x ab b =+=++=++ 函 数 解 析 式 的 七 种 求 法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法. 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f . 解:设b ax x f +=)()0(≠a ,则 ∴???=+=342b ab a , ∴??????=-===3 212b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 . 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式 容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原 复合函数的定义域,而是()g x 的值域. 例2 已知221)1 (x x x x f +=+ )0(>x ,求 ()f x 的解析式.

解:2)1()1(2-+=+x x x x f Θ, 21≥+x x , 2)(2-=∴x x f )2(≥x . 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.与配 凑法一样,要注意所换元的定义域的变化. 例3 已知x x x f 2)1(+=+,求)1(+x f . 解:令1+=x t ,则1≥t ,2)1(-=t x . Q x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x . 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数)(2 x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点. 则 ?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , Θ点),(y x M '''在)(x g y =上 , x x y '+'='∴2. 把???-='--='y y x x 64代入得:)4()4(62--+--=-x x y . 整理得672---=x x y , ∴67)(2---=x x x g . 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造 方程组,通过解方程组求得函数解析式. 例5 设,)1(2)()(x x f x f x f =-满足求)(x f . 解 Θx x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得:x x f x f 1)(2)1(=- ② 解① ②联立的方程组,得:x x x f 323)(--=. 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性” 的变量进行赋值,使问题具体化、简单化,从而求得解析式. 例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立, 求)(x f .

求函数值域 、 周期的方法总结(适合高一)

求函数值域 、 周期的方法总结(适合高一) 求值域 一、直接法:(从自变量x 的范围出发,推出()y f x =的取值范围)例1.求函数2+=x y 的值域。 二、配方法(是求二次函数值域的基本方法,如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法)例2.求函数242y x x =-++([1,1]x ∈-)的值域。 三、分离常数法(分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法)例3.求函数125 x y x -=+的值域。 四、换元法(运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函 数的值域,如y ax b =+a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法 求解。例4.求函数2y x = 五、函数的单调性法(确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域,形如求函数()0>+=k x k x y 的值域(k x <<0时为减函数;k x >时为 增函数))例5.求函数y x = 六、利用有界性(利用某些函数有界性求得原函数的值域)例6求函数2211 x y x -=+的值域。 七、数型结合法(函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法)例7.求函数11-++=x x y 的值域。 除此之外,还有反函数法(即利用函数和它的反函数的定义域与值域的关系,通过求反函数的定义域而得到原函数的值域)和判别式法(即把函数转化成关于x 的二次方程()0,=y x F ,通过方程有实根,0≥?,从而求得原函数的值域,需熟练掌握一元二次不等式的解法),在今后的学习中,会具体讲述。 周期 一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立 则f (x )叫做周期函数,T 叫做这个函数的一个周期。 二.重要结论 1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; 2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。 3、 若函数()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数

高中数学解题基本方法——换元法

高中数学解题基本方法——换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx·cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 ·a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) ·log 2 (2x+1-2)〈2的解集是_______________。

函数定义域、值域求法的总结

函数定义域、值域求法总结 一、定义域是函数()y f x =中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数()y f x =中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式2 1 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+020 1x x ? ???≠-≥21x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f

求函数定义域和值域方法和典型题归纳

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见要是满足有意义的情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。 (2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形

高中函数值域的12种解法(含练习题)

高中函数值域的12种求法 一、观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为[3,+∞]。 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二、反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y >1}) 三、配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4], ∴0≤√(-x2+x+2)≤3/2,函数的值域是[0,3/2]。 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√(15-4x)的值域。(答案:值域为{y∣y≤3}) 四、判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*) 当y≠2时,由Δ=(y-2)2-4(y-2)(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可

换元法

换元法

运用换元法解题时,要引入什么样的“新元”和怎样引入“新元”,不同的问题有不同的方法和技巧。 换元的方法有:局部换元、三角换元、均值换元等。换元的种类有:等参量换元、非等量换元。 局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如:解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式:2t +t-2≥0求解得:t ≥1,t ≤-2指数函数的单调性求解2x ≥1, 2x ≤-2的问题。 x ≥0,x ≤ 1 4 三角换元:应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=21x -的值域时,若x ∈[-1,1],设x=sin α ,sin α∈[-1,1 ],问题变成了熟悉的求三角函数值域。如变量x 、y 适合条件222x y r +=时(r>0),则可作三角代换x=rcos θ、y=rsin θ化为三角问题。 均值换元:如遇到x+y=2S 形式时,设x= S+t ,y= S -t 等等。 例1. 分解因式 分析:从式子的特征来看,可把各看作一个整体使问题简化,事实上,本题解法较多,下面提供三种方法,供同学们学习参考。 解:法一:对和换元,用换元法解 设 则原式 法二:用换元法来解

设,则 原式 法三:将原式整理成关于x的二次三项式 原式 在函数中的应用 1、求函数的定义域 例2、设函数y=f(x)的定义域是[2,3],求函数y=f(x2)的定义域。 解:设x2=t,则y=f(t)的定义域上[2,3],即2≦t≦3,因此2≦x2≦3,所以 -√3≦x≦-√2或√2≦x≦√3,所求定义域是[-√3,-√2]∪[√2,√3] 2、求函数的解析式 例3、已知f(x+1)=x2-2x,求f(x)的解析式 解:设x+1=t,则x=t-1, 所以 f(t)=(t-1)2-2(t-1)=t -4t-1,即f(x)=x2-4x-1。 例4、已知f(x+1/x)=x2+1/x2, 求f(x)的解析式 解:设x+1/x =t,则x2+1/x2=(x+1/x)2-2,即x2+1/x2=t2-2 故f(t)=t2-2, 因此f(x)=x2-2 化简求值:

函数值域求法总结及练习题

函 数 值 域 求 法 1.重难点归纳. (1)求函数的值域. 此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图像法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域. (2)函数的综合性题目. 此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强. (3)运用函数的值域解决实际问题. 2.值域的概念和常见函数的值域. 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域. 常见函数的值域: 一次函数()0y kx b k =+≠的值域为R . 二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞???? , 当0a <时的值域为24,4ac b a ?? --∞ ?? ?. 反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R . 正,余弦函数的值域为[]1,1-,正,余切函数的值域为R . 3.求函数值域(最值)的常用方法. 一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数) 1、求242-+-=x y 的值域. 2、求函数 y =的值域.

二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域) 1、求函数][)4,0(422∈+--=x x x y 的值域. 2、若,42=+y x 0,0>>y x ,试求xy 的最大值。 三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型) 对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求原函数的值域。 1、求函数1 2+= x x y 的值域. 2、求函数224 1 x y x +=-的值域. 四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为 0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断) 1、求函数3 27 4222++-+=x x x x y 的值域. 解:由于本题的分子、分母均为关于x 的二次形式,因此可以考虑使用判别式法,将原 函数变形为:7423222-+=++x x y xy y x 整理得:073)2(2)2(2=++-+-y x y x y 当2≠y 时,上式可以看成关于x 的二次方程,该方程的x 范围应该满足 032)(2≠++=x x x f ,即R x ∈此时方程有实根即△0≥, △[2 92(2)]4(2)(37)0[,2]2 y y y y =---+≥?∈-. 注意:判别式法解出值域后一定要将端点值(本题是2 9 ,2- ==y y )代回方程检验. 将29,2-==y y 分别代入检验得2=y 不符合方程,所以)2,2 9 [-∈y .

相关主题
文本预览
相关文档 最新文档