常见的调制信号极其波形演示
- 格式:doc
- 大小:34.15 KB
- 文档页数:7
进一步观察双边带调幅波的频谱结构发现,上边带和下边带都反映了调制信号的频谱结构,因而它们都含有调制信号的全部信息。
从传输信息的观点看,可以进一步把其中的一个边带抑制掉,只保留一个边带(上边带或下边带)。
无疑这不仅可以进一步节省发射功率,而且频带的宽度也缩小了一半,这对于波道特别拥挤的短波通信是很有利的。
这种既抑制载波又只传送一个边带的调制方式,称为单边带调幅,用SSB 表示。
由[]()cos cos 1cos()cos()2DSB c m cm c m cm c c U t Au u AU tU tAU U t t ωωωΩΩΩ==Ω=+Ω+-Ω 通过边带滤波器后,就可得到上边带或下边带: 下边带信号:1()cos()2SSBL m cm c u t AU U t ωΩ=-Ω 上边带信号:1()cos()2SSBH m cm c u t AU U t ωΩ=+Ω (二)普通调幅波的产生电路下面介绍一种高电平调幅电路。
高电平调幅电路是以调谐功率放大器为基础构成的,实际上它是一个输出电压振幅受调制信号控制的调谐功率放大器,根据调制信号注入调幅器方式的不同,分为基极调幅、发射极调幅和集电极调幅三种,下面我们仅介绍基极调幅。
基极调幅电路如图1-1所示。
由图可见,高频载波信号u ω通过高频变压器1T 加到晶体管基极回路,低频调制信号u Ω通过低频变压器2T 加到晶体管基极回路,b C 为高频旁路电容,用来为载波信号提供通路。
图1-1基极调幅电路在调制过程中,调制信号u Ω相当于一个缓慢变化的偏压(因为反偏压0b E =,否则综合偏压应是b E u Ω+),使放大器的集电极脉冲电流的最大值max c i 和导通角θ按调制信号的大小而变化。
在u Ω往正向增大时,max c i 和θ增大;在u Ω往反向减小时,max c i 和θ减少,故输出电压幅值正好反映调制信号波形。
晶体管的集电极电流c i 波形和调谐回路输出的电压波形,如图5-8所示,将集电极谐振回路调谐在载频c f 上,那么放大器的输出端便获得调幅波。
正弦调制波信号ur 和三角载波uc 的波形1.引言1.1 概述概述正弦调制波信号(ur)和三角载波(uc)是通信领域中广泛使用的两种波形信号。
正弦调制波信号(ur)是通过改变正弦波的振幅、频率或相位来传输信息的一种调制方式。
而三角载波(uc)是一种具有一定频率和幅度的三角波形信号。
在通信系统中,正弦调制波信号(ur)可以通过调制源信号来实现信息的传输。
它具有波形周期性、连续平滑的特点,能够有效地传输不同频率和频带的信号。
通过调制源信号与正弦波进行调制,可以改变正弦波的振幅或频率,从而实现信号的传输和解调。
正弦调制波信号(ur)可以用于无线通信、广播电视、调频调幅等领域。
三角载波(uc)是一种具有渐变特性的波形信号。
它的波形由上升阶段和下降阶段组成,具有逐渐增大和减小的特点。
三角载波(uc)可以通过电子电路或数学函数进行生成,是一种常用的调制载波信号。
与正弦调制波信号(ur)不同,三角载波(uc)的频率和斜率是可以调节的,因此在不同的应用场景中具有更灵活的适应性。
本文将深入探讨正弦调制波信号(ur)和三角载波(uc)的波形特点。
我们将通过分析它们的波形周期、振幅和频率等参数,了解它们在信号传输中的重要性和应用前景。
此外,我们还将介绍正弦调制波信号(ur)和三角载波(uc)的生成方法和调制原理,以增进对它们的理解和应用。
作者希望通过本文的阐述,能够帮助读者对正弦调制波信号(ur)和三角载波(uc)有更深入的了解,并在相关领域的研究和应用中发挥积极的作用。
在文章的后续部分,我们将详细探讨它们的波形特点、生成方法,并总结它们在通信领域的应用前景。
1.2 文章结构文章结构的主要部分如下:本文主要分为引言、正文和结论三个部分。
下面将对每个部分进行详细的介绍。
引言部分主要包括三个小节:概述、文章结构和目的。
概述部分简要介绍了正弦调制波信号ur 和三角载波uc 的波形,并指出了它们在通信领域中的重要性。
文章结构部分则是介绍文章的整体架构,包括各个部分的内容和次序。
探究现代数字调制技术调制是所有无线通信的基础,调制是一个将数据传送到无线电载波上用于发射的过程。
如今的大多数无线传输都是数字过程,并且可用的频谱有限,因此调制方式变得前所未有地重要。
如今的调制的主要目的是将尽可能多的数据压缩到最少的频谱中。
此目标被称为频谱效率,量度数据在分配的带宽中传输的速度。
此度量的单位是比特每秒每赫兹(b/s/Hz)。
现在已现出现了多种用来实现和提高频谱效率的技术。
幅移键控(ASK)和频移键控(FSK)调制正弦无线电载波有三种基本方法:更改振幅、频率或相位。
比较先进的方法则通过整合两个或者更多这些方法的变体来提高频谱效率。
如今,这些基本的调制方式仍在数字信号领域中使用。
图1显示了二进制零的基本串行数字信号和用于发射的信号以及经过调制后的相应AM和FM信号。
有两种AM信号:开关调制(OOK)和幅移键控(ASK)。
在图1a中,载波振幅在两个振幅级之间变化,从而产生ASK调制。
在图1b中,二进制信号关断和导通载波,从而产生OOK调制。
图1:三种基本的数字调制方式仍在低数据速率短距离无线应用中相当流行:幅移键控(a)、开关键控(b)和频移键控(c)。
在载波零交叉点发生二进制状态变化时,这些波形是相干的。
AM在与调制信号的最高频率含量相等的载波频率之上和之下产生边带。
所需的带宽是最高频率含量的两倍,包括二进制脉冲调制信号的谐波。
频移键控(FSK)使载波在两个不同的频率(称为标记频率和空间频率,即fm和fs)之间变换(图1c)。
FM会在载波频率之上和之下产生多个边带频率。
产生的带宽是最高调制频率(包含谐波和调制指数)的函数,即:m = Δf(T)Δf是标记频率与空间频率之间的频率偏移,或者:Δf = fs –fmT是数据的时间间隔或者数据速率的倒数(1/bit/s)。
M的值越小,产生的边带越少。
流行的FSK版本是最小频移键控(MSK),这种调制方式指定m = 0.5.还使用m = 0.3等更小的值。
信号与系统课程设计设计题目:信号的调制与解调院系:机械电子工程系专业班级:09应用电子技术学生姓名:谢焱松吴杰谭雨恒刘庆学号:09353017 09353018 09353019 09353020专业班级:文如泉起止时间:2010.12.13-2010.12.25设计任务:信号的调制与解调•目的:理解Fourier变换在通信系统中的应用:掌握调制与解调的基本原理。
•要求:实现信号的调制与解调。
•内容:调制信号为一取样信号(自己选,一般取常见的信号),利用MATLAB分析幅度调制(AM)产生的信号频谱,比较信号调制前后的频谱并解调已调信号。
设载波信号的频率为100HZ。
•方法:应用MATLAB平台。
•参考资料:MATLAB相关书籍。
教师点评:一、课程设计目的利用MATLAB 集成环境下的Simulink 仿真平台,设计一个2ASK/2DPSK 调制与解调系统。
用示波器观察调制前后的信号波形;用频谱分析模块观察调制前后信号频谱的变化;加上各种噪声源,用误码测试模块测量误码率;最后根据运行结果和波形来分析该系统性能。
二、课程设计要求(1)熟悉MATLAB 环境下的Simulink 仿真平台,熟悉2ASK/2DPSK 系统的调制解调原理,构建调制解调电路图。
(2)用示波器观察调制前后的信号波形,用频谱分析模块观察调制前后信号的频谱的变化。
并观察解调前后频谱有何变化以加深对该信号调制解调原理的理解。
(3)在调制与解调电路间加上各种噪声源,用误码测试模块测量误码率,并给出仿真波形,改变信噪比并比较解调后波形,分析噪声对系统造成的影响。
(4)在老师的指导下,要求独立完成课程设计的全部内容,并按要求编写课程设计学年论文,能正确阐述和分析设计和实验结果。
三、基本原理1 ASK 调制与解调ASK 即幅移键控(振幅键控),是一种相对简单的调制方式。
对于振幅键控这样的线性调制来说,在二进制里,2ASK 是利用基带矩形脉冲去键控一个连续的载波,使载波时断时续的输出,有载波输出时表示发送“1”,反之表示发送“0”。
1.通信系统组成(尤其是数字系统,各部分作用)
数字通信系统的模型:
1)信源编码与译码:
信源编码有两个基本功能:一是提高信息传输的有效性,即通过某种数据压缩技术设法减少码元数目和降低码元速率。
码元速率决定传输所占的带宽,而传输带宽反映了通信的有效性。
二是完成模/数转换,即当信息源给出的是模拟信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输。
信源译码是信源编码的逆过程。
2)信道编码与译码
信道编码的目的是增强数字信号的抗干扰能力。
数字信号在信道传输时受到噪声等的影响后将会引起差错。
为了减小差错,信道编码器对传输的信息码元按一定的规则加入保护成分(监督元),组成所谓“抗干扰编码”。
接收端的信道译码器按相应的逆规则进行解码,从中发现错误或纠正错误,提高通信系统的可靠性。
3)加密与解密
在需要实现保密通信的场合,为了保证所传信息的安全,人为地将被传输的数字序列扰乱,即加上密码,这种处理过程叫加密。
在接收端利用
与发送端相同的密码复制品对收到的数字序列进行解密,恢复原来信息。
4)数字调制与解调
数字调制就是把数字基带信号的频谱搬移到高频出,形成在信道中传输的带通信号。
基本的数字调制有振幅键控(ASK)、频移键控(FSK)、绝对相移键控(PSK)、相对(差分)相移键控(DPSK)。
在接收端可以采用相干解调或非相干解调还原数字基带信号。
对高斯噪声下的信号检测,一般用相关器或匹配滤波器来实现。
5)同步
同步是使收发两端的信号在时间上保持步调一致,是保证数字通信系统有序、准确、可靠工作的前提条件。
按照同步的功用不同,分为载波同步、位同步、群同步、和网同步。
2.通信的质量指标(有效性、可靠性两者的相互协调。
模拟、数字通信的有效可靠分别用什么来衡量)
通信系统的性能指标涉及其有有效性、可靠性、适应性、经济性、标准性、可维护性等,通信的有效性和可靠性是主要的矛盾所在。
所谓有效性是指传输一定信息量时所占用的信道资源(频带宽度和时间间隔),或者说是传输的“速度”问题,而可靠性则是指接收信息的准
确程度,也就是传输的“质量”问题。
这两个问题相互而又相对统一,并且还可以进行互换。
模拟通信系统的有效性可用有效传输频带来度量,同样的消息用不同的调制方式,则需要不同的频带宽度。
可靠性通常用接受端解调器输出信噪比来度量。
输出信噪比越高,通信质量就越好。
不同调制方式在同样信噪比下所得到得解调后的输出信噪比是不同的。
数字通信系统的有效性可用传输速率和频带利用率来衡量。
(1)码元传输速率Rb,又称码元速率、传码率。
它被定义为单位时间(美秒)传送码元的数目,单位为波特(Baud),简记为B。
Rb=1/T(B)
(2)信息传输速率Rb,简称传信率,又称比特率。
它定义为单位时间内传递的平均信息量或比特数,单位为比特/秒,简记为b/s或bps。
码元速率和信息速率有以下确定的关系,即Rb=RBlog2M(b/s)
(3)频带利用率。
真正衡量数据通信系统的有效性指标是频带利用率,它定义为单位带宽(每赫)内的传输速率,即§=RB/B(B/Hz)
数字通信系统的可靠性可用差错率来衡量,差错率常用误码率和误码率表示。
(1)误码率Pe,是指错误接受的码元数在传输总码元数中所占的比例,更确切的说,误码率是码元在传输系统中被传输的概率,即Pe=错误码元数/传输总码元数。
(2)误码率Pb,又称误比特率,是指错误接受的比特数在传输总比特数中所占的比例,即Pb=错误比特数/传输总比特数。
显然,在二进制中有Pb=Pe。
3.模拟、数字调制区别
模拟调制的调制信号是模拟信号,数字调制的调制信号时数字信号。
4.量化?量化标准(信噪比),信噪比与量化电平数的关系
量化就是把幅度连续变化的的信号变换为幅度离散的信号,这是模拟信号到数字信号的映射变换。
量化器的平均输出信号量噪比随量化电平数M的增大而提高。
(SO/Nq)dB=20lgM(dB)
量化标准:
采用预加重,去加重改善信噪比,如何改变?
预加重和去加重设计思想是保持输出信号不变,有效降低输出噪声,以达到提高输出信噪比的目的。
预加重网络是在信道噪声介入之前加入的,它对噪声没有影响(并未提升噪声),而输出端的去加重网络将输出噪声降低,因此有效地提高调制信号高频端的输出信噪比,进一步改善了调频系统的噪声性能。
5.非线性失真
在双端口网络或传输线上,输入与输出之间为非线性关系时出现的信号失真。
非线性失真亦称波形失真、非线性畸变,表现为音响系统输出信号与输入信号不成线性关系,
6.码间串扰?无码间串扰条件?
码间串扰是由于系统传输总特性(包括收、发滤波器和信道的特性)不理想,导致前后码元的波形畸变、展宽,并使前面波形出现很长的拖尾,蔓延到当前码元的抽样时刻上,从而对当前码元的判决造成干扰。
码间串扰严重时会造成错误判决。
无码间串扰的时域条件:h(KTs)={1 k=0
{0 k为其他整数
若对h(t)在时刻t=KTs抽样,h(t)的抽样值除了在t=0时不为零外,在其他所有抽样点上均为零,就不存在码间串扰。
一个实际的H(W)特性若能等效成一个理想(矩形)低通滤波器,则可实现无码间串扰。
7.非线性调制、线性调制区别
线性调制是幅度调制,在波形上,幅度已调信号的幅度随基带信号的规律而呈正比地变换;在频谱结构上,它的频谱完全是基带信号频谱在频
域内的简单搬移,且这种搬移是线性的。
但注意,“线性”并不意味着已调信号与调制信号之间符合线性变换关系。
事实上,任何调制过程都是一种非线性的变换过程。
非线性调制时角度调制,已调信号频谱不再是原调制信号频谱的线性搬移,而是频谱的非线性变换,会产生与频谱搬移不同的新的频率成分,与线性调制相比,其优势是具有较高的抗噪声性能,缺点是占用更宽的带宽。
8.2PSK、4PSK原理,抗干扰能力比较。
2PSK非相干解调法将经延时半个载波周期的接收信号与原接收信号相加,检测出两相邻码元载波相位变化情况,从而解调出数字信息,该解调方法能克服“倒π”现象,有较强的内在检错特性及抗噪声性能,并且实现较简单容易
移相键控即受键控的载波相位调制是按基带脉冲改变的一种数字调制方式。
其中,四相移相键控制(4PSK)的应用广泛,它是用4种不同相位代表4种不同相位的信息,因此对于输入的二进制数字序列应该先分组,将每两个比特编为一组;然后用4种不同的相位对其表征。
例如,若输入的二进制数字信息序列为10110010…,则可将他们分成10,11,00,10,…,然后用4种不同的相位对其表征。
4DPSK技术是多进制数字调相系统中经常使用的一种技术,它抗干扰能力强、误码性能
好、频谱利用率高,而且,它成功地解决了四进制绝对移相键控(4PSK)在相干解调过程中产生的相位模糊问题,使系统的性能得以提高。
9.直方图(偏重数字电视方向)
直方图是一幅图像中各像素灰度值出现次数或频数的统计结果,它只反映该图像中不同灰度值出现的频率,而不能反映某一灰度值像素所在的位置信息
任意一幅图像,都能唯一的确定一个与之对应的直方图,图像与直方图之间是一种多对一的映射关系H(D)=-dA(D)/dD 一幅连续图像的直方图是某面积函数的导数的负值。