开题报告(基于PLC的双恒压供水控制系统的设计)
- 格式:doc
- 大小:39.50 KB
- 文档页数:8
一、选题的目的、意义和研究现状
二、研究方案及预期结果
PLC控制变频恒压供水系统主要有变频器、可编程控制器、压力变送器和现场的水泵机组一起组成一个完整的闭环调节系统。
PLC根据管网压力自动控制各个水泵之间切换,并根据压力检测值和给定值之间偏差进行PID运算,输出给变频器控制其输出频率,调节流量,使供水管网压力恒定。
根据以上控制要求,进行系统总体控制方案设计。
硬件设备选型、PLC选型,绘制系统主电路图,绘制控制电路图,设计梯形图控制程序,对程序进行调试。
图1 变频恒压供水系统框图
三、研究进度
1.第5周:查阅资料,完成开题报告
2.第6-7周:在查阅资料的情况下,进行相关方案的论证,选择最优方案
3.第8-9周:分析主电路原理,根据相关指标设计主电路。
4.第10-11周:分析控制电路原理,设计控制电路。
5.第12-13周设计梯形图控制程序。
6.第14-15周:完成毕业设计论文。
7.第16周:毕业答辩。
四.主要参考文献
五、指导教师意见。
基于PLC的恒压供水系统的设计随着科技的发展和社会的进步,人们对水资源的利用和管理越来越重视。
恒压供水系统是一种能够在不同用水量下保持供水压力稳定的系统,广泛应用于工业、农业和民用领域。
本文将介绍基于PLC的恒压供水系统的设计,通过PLC控制系统实现对供水系统的智能控制和优化运行。
恒压供水系统是通过控制水泵的运行来维持供水管网中的压力稳定,当用户用水量变化时,系统能够自动调节水泵的运行状态,以保持供水压力在设定范围内。
恒压供水系统一般由水泵、压力传感器、PLC控制系统等组成。
当供水管网中的压力低于设定值时,PLC 控制系统将启动水泵,当压力达到设定值时,控制系统将停止水泵的运行。
1. 系统传感器的选择恒压供水系统中需要使用压力传感器来检测供水管网中的压力情况,传感器的选择直接影响到系统的准确性和稳定性。
一般情况下,可以选择高精度的压力传感器,通过其测量得到的压力信号输入PLC控制系统,以便系统根据压力变化进行自动调节。
2. PLC控制系统的设计PLC(Programmable Logic Controller)是一种用于工业控制的可编程逻辑控制器,具有良好的稳定性和灵活性,适用于恒压供水系统的设计。
设计PLC控制系统时,首先需要明确系统的控制逻辑和运行流程,然后编写相应的控制程序并进行调试。
3. 水泵的选型和布置恒压供水系统中的水泵是系统的核心部件,其选型和布置直接影响系统的运行效果。
在选型时,需要考虑供水管网的水质、用水量、管网布局等因素,以确保水泵能够满足系统的要求。
水泵的布置也需要符合水力平衡原则,确保供水管网的水流畅通。
恒压供水系统中的水泵一般是多台联动运行的,通过PLC控制系统实现水泵的智能联动是设计的重点。
在控制系统中,需要考虑水泵的启停逻辑、联动方式、切换条件等,以便系统能够根据实际压力需求进行自动调节。
5. 系统的远程监控和报警设计恒压供水系统在运行过程中需要进行实时监控和故障报警,以确保系统的安全可靠运行。
基于PLC的恒压供水系统的设计【摘要】本文主要介绍了基于PLC的恒压供水系统的设计。
引言部分包括引言概述、研究背景和研究意义。
在着重讨论了PLC在恒压供水系统中的应用、系统架构设计、控制策略设计、硬件设计和软件设计。
结论部分主要对设计方案进行优劣比较,并展望未来的发展方向,最后总结全文。
通过对恒压供水系统的设计,可以实现水压稳定,提高供水系统的效率和节约能源成本。
这种基于PLC的设计方案在实际工程中有着广阔的应用前景,有助于提高供水系统的自动化程度,提供更好的供水服务。
【关键词】PLC、恒压供水系统、系统架构、控制策略、硬件设计、软件设计、设计方案优劣比较、未来展望、总结、研究背景、研究意义、引言概述。
1. 引言1.1 引言概述恒压供水系统是一种通过控制水泵的运行来保持管网中恒定的水压的系统。
随着城市化进程的加快和生活水平的提高,恒压供水系统在城市生活中的应用越来越广泛,成为现代城市水务管理中的重要组成部分。
基于PLC的恒压供水系统利用PLC作为控制核心,能够实现自动控制、参数调节、故障检测等功能,可以提高系统的稳定性和可靠性。
本文旨在探讨基于PLC的恒压供水系统的设计和应用。
将介绍PLC在恒压供水系统中的应用,包括PLC的特点、优势以及在恒压供水系统中的具体作用。
然后,将详细介绍系统架构设计,包括系统的组成部分、连接方式以及工作原理。
接着,将探讨控制策略设计,包括系统的控制逻辑、参数调节方法等方面。
还将介绍硬件设计和软件设计,包括控制器的选型、传感器的选择以及编程软件的使用方法等。
通过本文的研究,可以更好地了解基于PLC的恒压供水系统的设计原理和应用方法,为实际工程项目的实施提供有力的技术支持。
1.2 研究背景恒压供水系统是一种在水泵工作中保持水压恒定的系统,能够满足用户对水压稳定的需求,提高供水系统的运行效率和水质管理。
随着现代化社会的发展和城市建设的不断推进,对水资源的需求日益增加,传统的水泵控制系统已经无法满足实际需求。
《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化的快速发展,供水系统的稳定性和效率成为了关键性的问题。
恒压供水系统作为解决这一问题的有效手段,已经得到了广泛的应用。
其中,基于PLC(可编程逻辑控制器)的恒压变频供水系统以其高效、稳定、智能的特点,在供水领域得到了极大的关注。
本文将详细介绍基于PLC恒压变频供水系统的设计与实现。
二、系统设计1. 系统架构设计本系统主要由三部分组成:PLC控制器、变频器和供水泵站。
其中,PLC控制器负责接收压力传感器传来的信号,通过运算处理后,控制变频器调节供水泵的转速,从而达到恒压供水的目的。
2. PLC控制器设计PLC控制器是本系统的核心部分,它需要接收压力传感器的实时数据,对数据进行处理和计算,然后发出控制指令。
此外,还需要具有与其他设备通信的能力。
在设计过程中,应充分考虑PLC的稳定性、可扩展性、抗干扰能力等因素。
3. 变频器与供水泵站设计变频器是连接PLC控制器和供水泵站的桥梁,它接收PLC 的控制指令,调节供水泵的转速。
供水泵站则负责实际的供水任务。
在设计过程中,应考虑泵站的布局、管道的设计、泵的选型等因素,以确保整个系统的稳定性和效率。
三、系统实现1. 硬件实现硬件部分主要包括PLC控制器、变频器、压力传感器、供水泵站等设备的选型和安装。
在选型过程中,应充分考虑设备的性能、价格、维护等因素。
安装过程中,应遵循相关的安全规范,确保系统的稳定性和安全性。
2. 软件实现软件部分主要包括PLC程序的编写和调试。
在编写过程中,应充分考虑系统的控制逻辑、数据处理、通信协议等因素。
在调试过程中,应对系统进行反复测试和优化,确保系统的稳定性和准确性。
四、系统测试与运行1. 系统测试在系统安装完成后,应进行系统测试。
测试过程中,应检查各部分的连接是否正常,系统运行是否稳定,数据是否准确等。
如果发现问题,应及时进行排查和修复。
2. 系统运行经过测试后,系统可以正式投入运行。
《基于PLC的变频恒压供水系统的设计》篇一一、引言随着社会经济的不断发展和人民生活水平的持续提高,对于供水系统的稳定性和可靠性要求越来越高。
传统的供水系统往往存在能耗高、调节不精确等问题。
因此,基于PLC(可编程逻辑控制器)的变频恒压供水系统应运而生,其通过变频技术实现恒压供水,不仅提高了供水的稳定性和可靠性,还大大降低了能耗。
本文将详细介绍基于PLC的变频恒压供水系统的设计。
二、系统设计目标本系统设计的主要目标是实现供水系统的恒压供水,降低能耗,提高供水的稳定性和可靠性。
具体来说,包括以下几点:1. 保持供水压力的稳定性,满足用户需求。
2. 通过变频技术实现电机的节能运行。
3. 实现系统的自动化控制,降低人工干预。
4. 具备故障自诊断和保护功能,确保系统安全稳定运行。
三、系统组成基于PLC的变频恒压供水系统主要由以下几部分组成:1. 水泵:负责供水的动力来源,采用变频电机实现调速。
2. PLC控制器:负责整个系统的控制,包括压力采集、电机控制、故障诊断等功能。
3. 压力传感器:实时监测供水压力,将压力信号转换为电信号供PLC控制器处理。
4. 变频器:接收PLC控制器的指令,控制电机的运行速度,实现恒压供水。
5. 其他辅助设备:包括管网、阀门、过滤器等,保证供水的正常运行。
四、系统设计流程1. 需求分析:根据实际需求,确定系统的功能、性能指标等。
2. 硬件选型:选择合适的水泵、PLC控制器、压力传感器、变频器等硬件设备。
3. 系统布线:根据硬件设备的布局,进行合理的布线设计,确保系统的稳定性和可靠性。
4. 程序设计:编写PLC控制程序,实现压力采集、电机控制、故障诊断等功能。
5. 系统调试:对系统进行整体调试,确保系统的各项功能正常运行。
6. 运行维护:对系统进行定期检查和维护,确保系统的长期稳定运行。
五、系统实现1. 压力采集:通过压力传感器实时监测供水压力,将压力信号转换为电信号供PLC控制器处理。
基于PLC的变频恒压供水系统的研究与开发的开题报告一、选题背景水是生命之源,是人类生活中必不可少的资源。
在现代城市中,供水系统的建设与发展已经成为城市建设的重要组成部分。
随着城市化进程的加快,供水系统规模不断扩大,供水要求越来越高。
传统的非变频供水系统在水压调节方面存在一定的缺陷,往往出现水压波动较大、节能效果不明显等问题。
随着电子技术的发展,基于PLC的变频恒压供水系统逐渐流行起来,该系统具有自动化程度高、稳定性好、节能效果显著等特点,因此得到了广泛应用和研究。
二、选题意义基于PLC的变频恒压供水系统具有重要的实际意义和应用价值。
首先,该系统不仅能够保证供水系统的稳定运行,避免水压波动较大的问题,而且还能够实现节能、减少环境污染等目的。
其次,该系统还能够实现智能化控制,提高了供水系统的自动化程度,大大降低了管理成本。
最后,该系统能够适应不同压力、流量的供水要求,具有广泛的应用前景。
三、研究内容和方案1.研究基于PLC的变频恒压供水系统的设计原理和工作原理。
2.分析该系统在节能、降低环境污染、提高供水质量等方面所起的作用。
3.开发基于PLC的变频恒压供水系统的控制软件和硬件。
4.进行实验室和现场测试,对系统的运行效果和控制精度进行评估。
5.总结和分析研究结果,提出改进和完善的建议。
四、研究计划和预期结果1.项目起止时间本项目研究工作计划从2021年9月开始,到2022年6月结束。
2.研究过程安排第一阶段:文献综述、理论分析和方案设计(2021年9月-2021年11月)第二阶段:系统软硬件的开发与实现(2021年12月-2022年2月)第三阶段:实验室测试和现场测试(2022年3月-2022年5月)第四阶段:总结分析和论文撰写(2022年6月)3.预期结果预计本研究将对基于PLC的变频恒压供水系统的设计、开发和管理方面作出一定的贡献。
预期结果包括:1)研究出一种基于PLC的变频恒压供水系统的设计和工作原理。
《基于PLC的变频恒压供水系统的设计》篇一一、引言随着社会的进步与工业的发展,供水和节水系统的高效性和稳定性日益成为社会关注的焦点。
为满足人们日益增长的用水需求和实现水资源的高效利用,我们设计了一种基于PLC(可编程逻辑控制器)的变频恒压供水系统。
此系统在控制与调节供水量、稳定水压方面表现优异,并实现了较高的自动化程度。
二、系统概述基于PLC的变频恒压供水系统,主要包括水源、供水设备、PLC控制器、变频器等部分。
该系统能够实时监测水压,并根据实际需求调整电机转速,以实现恒压供水。
同时,PLC控制器对整个系统进行集中控制,确保系统的稳定运行。
三、系统设计1. 硬件设计(1) 水泵:系统中的主要设备,负责供水和调节水压。
(2) PLC控制器:作为系统的核心,负责接收传感器信号,发出控制指令。
(3) 变频器:连接水泵和PLC,根据PLC的指令调整电机转速。
(4) 传感器:实时监测水压、流量等参数,并将数据传输给PLC。
(5) 其他辅助设备:如阀门、管道等。
2. 软件设计(1) 数据采集:PLC通过传感器实时采集水压、流量等数据。
(2) 数据处理:PLC对采集的数据进行处理,判断是否需要调整电机转速。
(3) 控制输出:PLC根据处理结果,向变频器发出控制指令,调整电机转速。
(4) 故障诊断:系统具有故障自诊断功能,当设备出现故障时,能够及时报警并停止运行。
四、系统功能1. 恒压供水:系统能够实时监测水压,并根据实际需求调整电机转速,以实现恒压供水。
2. 节能环保:通过变频技术,根据实际需求调整电机转速,实现节能环保。
3. 自动化程度高:PLC控制器对整个系统进行集中控制,实现较高的自动化程度。
4. 故障自诊断:系统具有故障自诊断功能,当设备出现故障时,能够及时报警并停止运行,保证系统的稳定性和安全性。
五、实施与应用该系统可广泛应用于居民小区、办公楼、工厂等需要供水的场所。
通过实时监测水压、流量等参数,调整电机转速,实现恒压供水,满足人们的用水需求。
《基于PLC的变频恒压供水系统的设计》篇一一、引言随着城市化进程的不断推进和居民生活质量的提升,对供水的需求和质量要求也越来越高。
为满足这些需求,我们提出了一种基于PLC的变频恒压供水系统设计方案。
此系统结合了可编程逻辑控制器(PLC)与变频技术,有效控制了水泵的运行状态,达到了稳定供水的目的。
该设计不仅能实现水压的稳定输出,还可以降低能源消耗,具有很高的实际应用价值。
二、系统概述基于PLC的变频恒压供水系统主要由以下几个部分组成:PLC控制器、变频器、水泵、传感器和管网等。
其中,PLC控制器和变频器是该系统的核心部分,负责实现水压的稳定输出和能源的节约。
三、系统设计1. PLC控制器设计PLC控制器是整个系统的“大脑”,负责接收传感器采集的数据,并根据这些数据对变频器进行控制,以实现水压的稳定输出。
在设计过程中,我们选择了高性能的PLC控制器,其处理速度快、可靠性高,可以确保系统的稳定运行。
2. 变频器设计变频器是实现恒压供水的关键设备。
它可以根据PLC控制器的指令调整水泵的转速,从而达到控制水压的目的。
我们选择了高性能的变频器,具有较高的转换效率和稳定的运行性能。
3. 水泵设计水泵是供水系统的核心设备。
在设计过程中,我们选择了高效、低噪音的水泵,以满足供水的需求。
同时,我们还考虑了水泵的节能性能,选择了能效较高的水泵。
4. 传感器设计传感器负责采集水压、流量等数据,为PLC控制器提供控制依据。
我们选择了高精度的传感器,以确保数据的准确性。
5. 管网设计管网是供水系统的“血管”,其设计直接影响到供水的质量和效率。
我们采用了高强度、耐腐蚀的管道材料,并进行了合理的布局和安装,以确保供水的稳定和高效。
四、系统实现在系统实现过程中,我们首先对各个设备进行了选型和采购,然后进行了设备的安装和调试。
在调试过程中,我们对系统的各项性能进行了测试和优化,确保系统能够稳定、高效地运行。
最后,我们对系统进行了实际运行测试,验证了该设计的可行性和实用性。
基于PLC的恒压变频供水系统的研制的开题报告一、研究背景及意义恒压变频供水系统是一种新型节能、环保的供水设备,可以实现供水系统的运行自动化和节能控制。
传统的供水系统可能存在着单一控制方式、能耗高等问题,而恒压变频供水系统可以利用PLC控制器实现多种控制方式,利用变频器控制水泵运行速度,从而减少能耗,提高供水系统的安全性和稳定性。
二、研究内容及技术路线(一)研究内容1. 恒压变频供水系统的工作原理及功能介绍;2. PLC控制器在恒压变频供水系统中的应用研究;3. 相关传感器的选型、安装及信号采集研究;4. 恒压变频供水系统的软件设计;5. 恒压变频供水系统的硬件设计;6. 恒压变频供水系统的系统调试和运行测试。
(二)技术路线技术路线如下图所示:1. 恒压变频供水系统的工作原理及功能介绍;2. PLC控制器在恒压变频供水系统中的应用研究;3. 相关传感器的选型、安装及信号采集研究;4. 恒压变频供水系统的软件设计;5. 恒压变频供水系统的硬件设计;6. 恒压变频供水系统的系统调试和运行测试。
三、预期成果1. 研制出一套基于PLC的恒压变频供水系统;2. 对恒压变频供水系统的PLC控制器应用、传感器选型、软、硬件设计等方面得出优化结论;3. 针对恒压变频供水系统的技术储备和技术掌握提出建议,为以后类似系统的优化与改进提供参考。
四、研究的实际应用价值1. 恒压变频供水系统研究的成功建立,将有助于大幅度提高现有供水系统的使用效率,节约能源;2. 恒压变频供水系统研究成果的推广,将有助于充分发挥现有设施潜能,为建设智慧城市提供可靠、安全、高效、便捷的供水保障;3. 恒压变频供水系统研究对提高供水系统效益指标,改善社会供水保障具有显著的现实意义。
基于PLC的恒压供水系统【开题报告】开题报告电气工程及其自动化基于PLC的恒压供水系统一、课题研究意义及现状本课题主要研究变频技术在恒压供水系统中应用,并利用PLC设计完成恒压供水系统。
在我国,节电节水的潜力非常大。
据有关国际组织发表的资料显示:中国的单位国民经济总产值所消耗的电是美国、德国等的4倍左右,消耗的水是他们的2倍左右。
我国的大量用电设备中,风机和泵类电机的耗电量占全国发电量的50%左右,若推广新型电机调速技术,可节电40%左右,即可以节约全国发电量的 1/5.由于我国人均占有水、电资源相对于别国又少很多,因此,在我国一方面水电供给紧张,而另一方面,水电的浪费又十分惊人。
节电节水,不仅潜力巨大, 而且意义深远。
传统供水方式占地面积大,水质易污染,基建投资多,而最主要的缺点是水压不能保持恒定,导致部分设备不能正常工作。
供水方式的优劣直接影响了人们的生产生活,目前我国许多城市和生活小区的供水系统仍然采用传统的高位水塔或直接水泵加压供水方式。
由于用水量具有很大的随机性,在用水高峰期水压不够,这种供水方式不能提供良好的供水质量,而且因扬程高电动机一直高速运转需要消耗大量的能量,电费占水费成本的近60%。
随着电力电子技术的发展,变频技术也逐渐应用到供水系统中。
近十年来,变频技术的应用在我国有很大的发展,并取得了良好的效果。
可以说,变频技术已为大多数用户所接受。
变频调速恒压供水以其节能、安全、高品质的供水质量等优点,使我国供水技术装备水平从90年代初开始经历了一次飞跃。
恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统。
特别是在实际应用中,变频供水技术得到了很大的发展。
随着电力电子技术的飞速发展,变频器的功能也越来越强。
充分利用变频器内置的各种功能,对合理设计变频调速恒压供水设备,降低成本,保证产品质量等方面有着非常重要的意义。
《基于PLC的变频恒压供水系统的设计》篇一一、引言随着社会经济的发展和城市化进程的加速,对供水的稳定性和可靠性要求越来越高。
为了满足这一需求,本文提出了一种基于PLC(可编程逻辑控制器)的变频恒压供水系统设计。
该系统采用先进的变频技术,通过PLC控制,实现供水的恒压、节能、稳定等目标。
二、系统设计目标本系统的设计目标主要包括以下几个方面:1. 恒压供水:通过精确控制水泵的转速和启停,实现供水压力的稳定,满足用户需求。
2. 节能降耗:采用变频技术,根据实际需求调整水泵转速,降低能耗。
3. 自动化控制:通过PLC实现系统的自动化控制,减少人工干预,提高系统运行的可靠性。
4. 故障诊断与保护:系统具备故障诊断和保护功能,一旦出现故障,能够及时报警并采取相应措施。
三、系统组成本系统主要由以下几部分组成:1. 水泵:负责供水的动力设备,采用高效、低噪音的水泵。
2. PLC控制系统:包括PLC控制器、变频器、传感器等,负责系统的控制、调节和保护。
3. 压力传感器:用于实时检测供水压力,为PLC提供反馈信号。
4. 变频器:根据PLC的指令,调节水泵的转速,实现恒压供水。
5. 其他辅助设备:如水管、阀门、过滤器等,保证供水的质量和稳定性。
四、系统工作原理本系统的工作原理如下:1. 压力传感器实时检测供水压力,将信号传输给PLC控制器。
2. PLC控制器根据压力传感器的信号,结合预设的压力值,计算出实际压力与设定压力的偏差。
3. PLC控制器根据计算出的偏差,向变频器发出控制指令,调节水泵的转速。
4. 变频器根据PLC的指令,调整水泵的转速,使供水压力保持恒定。
5. 如果出现故障或异常情况,系统会立即报警并采取相应措施,保证系统的安全运行。
五、系统实现1. 硬件实现:根据系统设计目标和组成,选择合适的水泵、PLC控制器、变频器、压力传感器等设备,进行硬件连接和安装。
2. 软件实现:编写PLC控制程序,实现系统的自动化控制、故障诊断与保护等功能。
《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化进程的快速发展,供水系统的稳定性和效率问题越来越受到关注。
恒压变频供水系统作为一种先进的供水技术,通过精确控制水泵的转速和输出,实现了水压的稳定供应。
本文将详细介绍基于PLC(可编程逻辑控制器)的恒压变频供水系统的设计与实现过程。
二、系统设计1. 需求分析在系统设计阶段,首先需要对供水系统的需求进行详细分析。
包括供水范围、水压要求、水泵数量及功率等。
同时,还需考虑系统的稳定性、可维护性及节能性等因素。
2. 硬件设计硬件设计是恒压变频供水系统的基础。
主要包括PLC控制器、变频器、水泵、压力传感器等设备。
其中,PLC控制器负责整个系统的控制与协调,变频器用于调节水泵的转速,压力传感器则用于实时监测水压。
3. 软件设计软件设计是实现恒压变频供水系统的关键。
通过PLC编程,实现对水泵的转速、输出及水压的精确控制。
同时,还需设计友好的人机界面,方便操作人员对系统进行监控与操作。
三、系统实现1. PLC编程PLC编程是实现恒压变频供水系统的核心。
通过编写梯形图或指令表,实现对水泵的转速、输出及水压的精确控制。
在编程过程中,需充分考虑系统的稳定性、响应速度及节能性等因素。
2. 硬件连接与调试将PLC控制器、变频器、水泵、压力传感器等设备连接起来,进行系统调试。
确保各设备之间能够正常通信,并实现精确的控制与协调。
3. 人机界面开发开发友好的人机界面,方便操作人员对系统进行监控与操作。
人机界面应具有直观、易操作、信息丰富等特点,能够实时显示水压、水泵状态等信息。
四、系统测试与优化1. 系统测试在系统测试阶段,需要对恒压变频供水系统进行全面的测试,包括稳定性测试、响应速度测试、节能性测试等。
确保系统能够满足实际需求。
2. 参数优化根据测试结果,对系统的参数进行优化,以提高系统的性能和稳定性。
优化过程中,需充分考虑系统的实际运行情况及外界环境因素。
基于PLC的双恒压供水控制系统设计摘要近些年来随着可编程控制器快速发展,可编程控制器已广泛应用于各个领域。
本论文设计了一种基于PLC的双恒压供水系统,该系统由一台PLC、一台水泵、一个水塔、六个液位传感器等构成。
双恒压供水控制系统的基本控制策略是:采用可编程控制器(PLC)构成控制系统,进行优化控制水泵,并自动调整水泵运行的台数,完成水塔水位的控制。
当水塔中的液位发生变化时,根据液位传感器的信号,PLC自动控制水泵的运行台数,系统的控制目标是水塔的水位。
手动控制,值班人员通过按钮手动控制水泵,使液位控制在一定的范围之内,实现手动恒压供水。
根据恒压供水系统设计的需求,力求做到使系统运行稳定,操作简便,解决水塔的双恒压供水的问题,保证供水安全、快捷、可靠。
恒压供水保证了供水质量,PLC控制系统丰富了供水系统的控制功能,提高了系统的可靠性。
关键词:PLC,恒压供水系统,液位传感器,水塔DESIGN OF DOUBLE CONSTANT-PRESSURE SUPPLYING WATER CONTROL SYSTEM BASED ON PLCABSTRACTIn recent years, with the rapid development of Programmable Logic Controller, it has been widely used in various fields. A kind of Double Constant-pressure Supplying Water Control Syst em is designed in this paper. The system is constituted of a PLC, three pumps, a Water Tower , six Liquid Level Sensors and so on.A relay control system is constituted of the use of Programmable Logic Controller (PLC), it is optimizing the control of pumps. This is the basic control strategy of Constant Pressure Water Supply Control System, the pumps has been controlled. When the level is changed of the towers, the pumps are controlled by PLC automatic control signals in accordance with liquid level sensor. The water level in the towers is controlling objectives. Controlling by the hands, the On Duty controls the pumps through the manual control button, so that a certain level could be controlled within the scope of. According to the requirement of the Constant Pressure Water Supply System, we could achieve a stable system operation and operate easily. The problem of Constant Pressure Water Supply dual towers is solved. The quality of the water is the protection. PLC Control System enriches the control functions of the Water Supply System, and improves the reliability of the system.Key words:PLC,constant pressure water supply system,liquid level sensor,water tower1.绪论自动化技术是当今几大高新技术之一,从某种意义来说,自动化技术已成为现代化的代名词。
基于PLC控制的双恒压无塔供水系统设计1.系统概述双恒压无塔供水系统是一种集PLC控制技术、传感器技术和水泵技术于一体的现代供水系统。
该系统通过PLC控制水泵的运行,实现恒压供水。
其主要特点是操作简便,自动化程度高,可靠性强。
2.系统结构该系统由PLC控制器、传感器、水泵和压力感应器组成。
2.1PLC控制器PLC控制器是整个系统的核心,用于控制和调节水泵的运行。
PLC控制器接收传感器检测到的压力信号,根据设定的参数判断是否需要开启水泵,并根据实际的压力情况控制水泵的运行频率和时间。
2.2传感器压力传感器用于检测水压,它将水压信号转换为电信号,并发送到PLC控制器。
PLC控制器根据传感器检测到的压力信号进行判断和控制。
2.3水泵水泵用于将水送入供水系统。
水泵的运行与停止由PLC控制器根据传感器检测到的压力进行控制。
当水压低于设定值时,PLC控制器将启动水泵,提供足够的水压。
当水压高于设定值时,PLC控制器将停止水泵的运行。
2.4压力感应器压力感应器用于感应水泵出口的压力,它将压力信号发送到PLC控制器。
通过接收到的压力信号,PLC控制器可以实时检测供水系统的压力情况,根据设定的压力参数进行控制和调节。
3.系统工作原理当供水系统启动时,PLC控制器开始工作。
它不断接收传感器发送的压力信号,并与设定的压力参数进行比较。
如果当前水压低于设定值,PLC控制器将开启水泵,水泵开始供水。
当水压达到设定值时,PLC控制器将关闭水泵,停止供水。
在水泵运行过程中,PLC控制器会不断地根据传感器发送的压力信号进行调节。
如果水压过高,PLC控制器将减少水泵的运行频率和时间,以减小供水量。
如果水压过低,PLC控制器将增加水泵的运行频率和时间,以提供更多的水压。
通过不断地调节水泵的运行,系统可以实现恒压供水。
在实际应用中,系统还可以增加人机界面,方便操作人员进行参数的设定和监控。
4.系统优势4.1操作简便:整个系统通过PLC控制器实现自动化操作,只需要简单的参数设定即可实现恒压供水,操作方便快捷。
开题报告电气工程及自动化基于PLC控制变频恒压供水系统一、课题研究意义及现状水一直是人类生产生活中不可缺少的重要组成部分。
随着社会经济的发展,水对人民生活和工业生产的影响越发显著的今日,一个良好的供水系统越发显的重要。
但传统供水方式占地面积大 ,水质易污染 ,且成本高 ,其中最大的缺点是不能很好的保持水压的恒定。
然而,变频调速技术作为一种新型成熟的交流电机调速技术 ,以其独特优良的性能被广泛应用于交流电机速度控制方面 ,在供水行业中。
由于生产和供水质量的特殊需要 ,对恒压供水压力有着严格的要求 ,因而变频调速技术得到了更加深入的应用。
可编程序控制器(Programmable Logic Controller,简称PLC),一种具有微处理机的数位电子设备,用与自动化控制的数位逻辑控制器,可以将控制指令随时载入记忆体存储与执行。
广泛应用于目前的工业控制领域,具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力、强编程简单等特点。
所以将PLC作为恒压供水控制系统的核心使其优点移植到恒压供水系统,可以有效提高恒压供水系统的稳定和安全性。
变频器(Variable-frequency Drive,简称VFD),是应用变频技术与微电子技术,通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件。
用来实现水泵电机的无极调速。
将变频器运用于恒压供水系统,使恒压供水系统水压维持更精确。
同时变频器的运用大幅度降低了电机的启动频率,利用变频器使电机软启,提高了电机的使用寿命同时节省了电能。
所以,PLC变频恒压供水控制系统与传统的供水系统相比,在维持水压恒定,性能稳定,便于维护修理,节约电能等等方面有传统供水不能比拟的优点。
二、课题研究的主要内容和预期目标1、研究如何利用台达WPLSoft 2.20软件,编写程序(梯形图)实现台达DVP-32ES可编程序控制器对变频器和电机的调节控制。
2、研究如何利用ABB公司的ACS510系列变频器的内部应用宏对水泵电机的调速实现水压的控制。
plc恒压供水系统开题报告PLC恒压供水系统开题报告一、引言恒压供水系统是一种能够保持供水压力稳定的系统,通过控制水泵的运行来实现。
传统的供水系统存在着供水压力不稳定、浪费水资源等问题,而PLC(可编程逻辑控制器)技术的应用可以有效解决这些问题。
本文将探讨PLC恒压供水系统的设计与实现。
二、系统设计1. 系统结构PLC恒压供水系统由水泵、传感器、PLC控制器、人机界面以及电气元件等组成。
水泵用于提供水源,传感器用于感知水压变化,PLC控制器负责控制水泵的运行,人机界面用于操作和监控系统。
2. 系统原理当供水压力低于设定值时,传感器将信号传输给PLC控制器,控制器通过判断信号来启动水泵。
水泵开始运行后,PLC控制器会根据传感器反馈的水压信号来调整水泵的运行状态,以保持供水压力稳定。
三、系统实现1. PLC编程PLC控制器的编程是实现恒压供水系统的关键。
通过编写逻辑控制程序,可以实现对水泵的启停控制、水泵频率的调整等功能。
同时,还可以设置报警功能,当水泵出现故障或供水压力异常时,系统能够及时发出警报。
2. 人机界面设计人机界面是用户与系统进行交互的重要途径。
通过合理设计界面,用户可以方便地监控系统的运行状态,并进行相应的操作。
界面应具备直观、简洁、易操作等特点,以提高用户的使用体验。
四、系统优势1. 供水压力稳定PLC恒压供水系统能够根据实时的水压信号来控制水泵的运行,从而保持供水压力的稳定。
不论是高峰期还是低谷期,系统都能够自动调整水泵的运行状态,确保用户获得稳定的供水压力。
2. 节约水资源传统的供水系统往往存在着浪费水资源的问题,而PLC恒压供水系统可以根据实际需求来控制水泵的运行,避免了不必要的水资源浪费。
3. 自动报警功能PLC恒压供水系统具备自动报警功能,当水泵出现故障或供水压力异常时,系统能够及时发出警报,提醒用户进行处理,从而保障供水系统的安全运行。
五、应用前景PLC恒压供水系统在城市供水、工业生产等领域具有广阔的应用前景。
基于PLC的恒压供水系统的设计一、引言恒压供水系统是现代城市生活中常见的设备,它能够保持水压稳定,满足不同用水设备对水压的需求。
而PLC(可编程逻辑控制器)作为现代自动化控制系统的核心,具有高精度、稳定性强等特点,已广泛应用于各个领域。
本文将通过PLC对恒压供水系统的设计,实现对水泵运行、压力控制等参数的精确控制,从而提高供水系统的性能和稳定性。
1. 恒压供水系统的工作原理恒压供水系统主要由水泵、压力传感器、PLC控制器和阀控制器等组成。
当用户开启水龙头用水时,压力传感器感知到水压下降,PLC则会启动水泵进行供水,当水压升高到设定值时,PLC会控制关闭水泵。
这样就能够保持系统内的水压稳定,满足用户的需求。
2. PLC控制原理PLC作为恒压供水系统的核心控制器,负责监测水压、控制水泵启停等功能。
其控制原理主要包括四个步骤:(1)采集数据:通过压力传感器等传感器采集系统中的各项参数,比如水压、水流量等。
(2)数据处理:PLC将采集到的数据进行处理和分析,根据设定的逻辑规则进行判断和运算。
(3)控制执行:根据处理后的数据结果,PLC控制执行相应的操作,比如启停水泵、调整阀门开度等。
(4)监测反馈:PLC实时监测系统运行状态,并接收执行结果的反馈信息,保证供水系统的稳定运行。
1. 系统参数设定需要根据实际需要设定恒压供水系统的各项参数,比如供水压力、水泵启停设定值、阀门开度等。
根据系统参数的设定,编写相应的PLC控制程序,实现对水泵运行、压力控制等功能的自动化控制。
3. PLC硬件布置与连线根据控制程序的需求,布置PLC控制器及相关IO模块,进行连线连接,确保PLC与系统中的各个传感器、执行器等设备能够正常通讯。
4. 调试与运行对编写好的PLC控制程序进行调试,检查系统各部分设备的运行状态,确保系统能够按照设定的参数稳定运行。
1. 精确控制:PLC具有较高的精度和稳定性,能够实现对恒压供水系统的精确控制。
毕业论文(设计)开题报告题目基于PLC控制的恒压供水系统设计姓名学号学院机械电气化工程学院专业班级机电一体化13班指导教师基于PLC控制的恒压供水系统设计一、本课题的来源及研究目的和意义水是生命之源,人类生存和发展都离不开水。
在通常的城市及乡镇供水中,基本上都是靠供水站的电动机带动离心水泵,产生压力使管网中的自来水流动,把供水管网中的自来水送给用户。
但供水机泵供水的同时,也消耗大量的能量,如果能在提高供水机泵的效率、确保供水机泵的可靠稳定运行的同时,降低能耗,将具有重要经济意义。
我国供水机泵的特点是数量大、范围广、类型多,在工程规模上也有一定水平,但在技术水平、工程标准以及经济效益指标等方面与国外先进水平相比,还有一定的差距。
变频恒水压供水系统集变频技术、电气传动技术、现代控制技术于一体。
采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便地实现供水系统的集中管理与监控;同时可达到良好的节能性,提高供水效率。
所以研究设计基于变频调速的恒定水压供水系统,对于提高企业效率以及人民的生活水平,同时降低能耗等方面具有重要的现实意义。
变频恒压供水系统在工业和生活中有很广阔的应用前景,除了具有明显的节能效果外,还具有操作方便、容易、维护量小的特点,变频器的软启动功能也减少了对电网的冲击,使设备运行方式更趋于合理,设备的自动化水平得到提高。
总之,采用变频恒压供水系统是一种技术先进、经济实用的选择。
随着社会经济的迅速发展,水对人们的生活和工业生产越来越重要,人们对供水的安全可靠性的要求不断提高。
给水压力与流量对用户的用水质量具有直接影响,因而对给水水压、流量的控制,直接影响到给水系统的供水质量。
给水泵组是一种长期运行的用电设备,节约泵组的电耗,对国家节能减排意义重大。
是把先进的自动化技术、控制技术、通讯及网络技术、节能技术等应用于给水领域。
针对城市高层建筑和消防供水系统的实际情况,以单片机和变频器为主要单元组成变频调速恒压供水系统。
毕业论文(设计)开题报告论文题目:基于PLC的双恒压供水控制系统的设计系部名称:专业班级:学生姓名:学号:指导教师:教师职称:年月1、PLC的产生和定义1969年美国数字设备公司(DEC)根据要求,研制开发出世界上第一台可编程序控制器,并在GM公司汽车生产线上应用成功。
这是世界上的第一台可编程序控制器,型号为PDP-14。
人们把它称作可编程序逻辑控制器(PLC,Programmable Logic Controller),简称PLC。
国际电工委员会(IEC)于1987年2月对可编程控制器的定义是:“可编程序控制器是一种数字运算操作的电子系统,专为工业环境而设计。
它采用了可编程序的存储器,用来在其内部存储逻辑运算、顺序控制、定时、计数和算术运算等操作的命令,并通过数字式和模拟式的输入和输出,控制各种类型机械的生产过程;而有关的外围设备,都是按易于工业系统连成一个整体,易于扩充其功能的原则设计。
”PLC总的发展趋势是向高集成度、小体积、大容量、高速度、易使用、高性能、信息化、软PLC、标准化、与现场总线技术紧密结合等方向发展。
2、PLC的组成(1)输入寄存器输入寄存器可按位进行寻址,每一位对应一个开关量,其值反映了开关量的状态,其值的改变由相互如开关量驱动,并保持一个扫描周期。
CUP可以读其值,但是不可以写或修改。
(2)输出寄存器输出寄存器的每一位都表明了PLC在下一个时间段的输出值,而程序循环执行开始时的输出寄存器的值,表明的是上一时间段的真实输出值,在程序执行过程中,CPU可以读其值,并作为条件参加控制,还可以修改其值,而中间的变换仅仅影响寄存器的值。
只有程序执行到一个循环的尾部时的值,才影响下一时间段的输出,即只有最后的修改才对输出接点的真实值产生影响。
(3)存储器存储器分为系统存储器和用户存储器。
系统存储器存储的是系统程序,它是由厂家开发固化好了的,用户不能修改,PLC要在系统程序的管理下运行。
毕业论文(设计)开题报告论文题目:基于PLC的双恒压供水控制系统的设计系部名称:专业班级:学生姓名:学号:指导教师:教师职称:年月1、PLC的产生和定义1969年美国数字设备公司(DEC)根据要求,研制开发出世界上第一台可编程序控制器,并在GM公司汽车生产线上应用成功.这是世界上的第一台可编程序控制器,型号为PDP—14。
人们把它称作可编程序逻辑控制器(PLC,Programmable Logic Controller),简称PLC。
国际电工委员会(IEC)于1987年2月对可编程控制器的定义是:“可编程序控制器是一种数字运算操作的电子系统,专为工业环境而设计。
它采用了可编程序的存储器,用来在其内部存储逻辑运算、顺序控制、定时、计数和算术运算等操作的命令,并通过数字式和模拟式的输入和输出,控制各种类型机械的生产过程;而有关的外围设备,都是按易于工业系统连成一个整体,易于扩充其功能的原则设计。
”PLC总的发展趋势是向高集成度、小体积、大容量、高速度、易使用、高性能、信息化、软PLC、标准化、与现场总线技术紧密结合等方向发展。
2、PLC的组成(1)输入寄存器输入寄存器可按位进行寻址,每一位对应一个开关量,其值反映了开关量的状态,其值的改变由相互如开关量驱动,并保持一个扫描周期。
CUP可以读其值,但是不可以写或修改。
(2)输出寄存器输出寄存器的每一位都表明了PLC在下一个时间段的输出值,而程序循环执行开始时的输出寄存器的值,表明的是上一时间段的真实输出值,在程序执行过程中,CPU可以读其值,并作为条件参加控制,还可以修改其值,而中间的变换仅仅影响寄存器的值。
只有程序执行到一个循环的尾部时的值,才影响下一时间段的输出,即只有最后的修改才对输出接点的真实值产生影响。
(3)存储器存储器分为系统存储器和用户存储器。
系统存储器存储的是系统程序,它是由厂家开发固化好了的,用户不能修改,PLC要在系统程序的管理下运行。
用户存储器中存放的是用户程序和运行所需要的资源,I/O寄存器的值作为条件决定着存储器中的程序如何被执行,从而完成复杂的控制功能。
(4)CUP单元CUP单元控制着I/O寄存器的读、写时序,以及对存储器单元中的程序的解释执行工作,是PLC的大脑。
(5)其他单元接口其他单元接口是用于提供PLC与其他设备和模块进行连接通信的物理条件。
系统存储器用户存储器CUP其他接口电路.......................输入电路输出寄存器输出电路输入寄存器输入量图1 PLC的组成3、恒压供水的概念及意义众所周知,水是生产生活中不可缺少的重要组成部分,在节水节能己成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。
主要表现在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象,而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时将会造成能量的浪费,同时有可能使水管爆破和用水设备的损坏。
随着社会的发展和进步,城市高层建筑的供水问题日益突出。
一方面要求提高供水质量,不要因为压力的波动造成供水障碍;另一方面要求保证供水的可靠性和安全性,在发生火灾时能够可靠供水。
针对这两方面的要求,新的供水方式和控制系统应运而生,这就是PLC控制的恒压无塔供水系统。
恒压供水包括生活用水的恒压控制和消防用水的恒压控制--即双恒压系统。
恒压供水保证了供水的质量,以PLC为主机的控制系统丰富了系统的控制功能,提高了系统的可靠性。
4、变频恒压供水系统的发展前景传统的恒压供水方式是采用水塔、高位水池、气压罐等设施来实现。
随着变频调速技术的日益成熟和广泛应用,利用变频器、PID调节器、传感器、PLC 等器件的有机结合,构成控制系统,调节水泵的输出流量,实现恒压供水。
变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。
在早期,由于国外生产的变频器的功能主要限定在频率控制、升降速控制、正反转控制、起制动控制、起制动控制、压频比控制及各种保护功能。
应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制.随着变频技术的发展和变频恒压供水系统的稳定性、可靠性以及自动化程度高等方面的优点以及显著的节能效果被大家发现和认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水功能的变频器,像日本Samco公司,就推出了恒压供水基板,备有“变频泵固定方式”、“变频泵循环方式”两种模式。
它将PID调节器和PLC可编程控制器等硬件集成在变频器控制基板上,通过设置指令代码实现PLC和PID等电控系统的功能,只要搭载配套的恒压供水单元,便可直接控制多个内置的电磁接触器工作,可构成最多7台电机(泵)的供水系统。
这类设备虽微化了电路结构,降低了设备成本,但其输出接口的扩展功能缺乏灵活性,系统的动态性能和稳定性不高,与别的监控系统(如BA系统)和组态软件难以实现数据通信,并且限制了带负载的容量,因此在实际使用时其范围将会受到限制。
目前国内有不少公司在做变频恒压供水的工程,大多采用国外的变频器控制水泵的转速,水管管网压力的闭环调节及多台水泵的循环控制,有的采用可编程控制器(PLC)及相应的软件予以实现;有的采用单片机及相应的软件予以实现。
但在系统的动态性能、稳定性能、抗扰性能以及开放性等多方面的综合技术指标来说,还远远没能达到所有用户的要求。
原深圳华为(现己更名为艾默生)电气公司和成都希望集团(森兰变频器)也推出了恒压供水专用变频器,无需外接PLC和PID调节器,可完成最多4台水泵的循环切换、定时起、停和定时循环.该变频器将压力闭环调节与循环逻辑控制功能集成在变频器内部实现,但其输出接口限制了带负载容量,同时操作不方便且不具有数据通信功能,因此只适用于小容量,控制要求不高的供水场所。
可以看出,目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性的变频恒压供水系统的水压闭环控制研究得不够.因此,有待于进一步研究改善变频恒压供水系统的性能,使其能被更好的应用于生活、生产实践。
5、变频恒压供水系统的优势相对与传统的加压供水方式,变频恒压供水系统的优点突出的体现在以下几个方面:(1)高效节能.变频恒压供水系统的最显著优点就是节约电能,节能量通常在10-40%.从单台水泵的节能来看,流量越小,节能量越大。
(2)恒压供水.变频恒压供水系统实现了系统供水压力稳定而流量可在大范围内连续变化,从而可以保证用户任何时候的用水压力,不会出现在用水高峰期热水器不能正常使用的情况。
(3)安全卫生.系统实行闭环供水后,用户的水全部由管道直接供给,取消了水塔、天面水池、气压罐等设施,避免了用水的“二次污染”,取消了水池定期清理的工作。
(4)自动运行、管理简便。
新型的小区变频恒压供水系统具备了过流、过压、欠压、欠相、短路保护、瞬时停电保护、过载、失速保护、低液位保护、主泵定时轮换控制、密码设定等功能,功能完善,全自动控制,自动运行,泵房不设岗位,只需派人定期检查、保养。
(5)延长设备寿命、保护电网稳定.使用变频器后,机泵的转速不再是长期维持额定转速运行,减少了机械磨损,降低了机泵故障率,而且主泵定时轮换控制功能自动定时轮换主泵运行,保证各泵磨损均匀且不锈死,延长了机泵使用寿命。
变频器的无级调速运行,实现了机泵软启动,避免了电机开停时的大电流对电机线圈和电网的冲击,消除了水泵的水锤效应。
(6)占地少、投资回收期短。
新型的小区变频恒压供水系统采用水池上直接安装立式泵,控制间只要安放一到两个控制柜,体积很小,整个系统占地就非常小,可以节省投资。
另外不用水塔或天面水池、控制间不设专人管理、设备故障率极低等方面都实现了进一步减少投资,运行管理费低的特点,再加上变频供水的节能优点,都决定了小区变频恒压供水系统的投资回收期短,一般约2年.6、参考文献:[1]王永华,现代电气控制及PLC应用技术(第二版)[M].北京:航空航天大学出版社,2008,2。
[2]高中正。
西门子S7-200CN PLC 编程技术及工程应用[M].北京:电子工业出版社,2010。
[3]孙振强。
可编程控制器原理及应用教程[M].北京:清华大学出版社,2006。
[4]廖常初主编。
《PLC基础及应用》。
机械工业出版社,2004.[5]易传禄主编。
《可编程序控制器应用指南》上海科普出版社。
[6]殷庆纵,李洪群.可编程控制器原理与实践[M].北京:清华大学出版社,2010。
[7]李方圆.西门子S7—200 PLC从入门到实践[M]。
北京:电子工业出版社,2010。
本论文(设计)要研究或解决的问题:1、使用S7-200系列PLC及变频器实现双恒压供水控制系统,即包括生活用水的恒压控制和消防用水的恒压控制。
2、熟悉PLC、传感器、变频器等电气元件的选型原则及安装方法.3、编制PLC输入/输出分配表,绘制输入/输出端子接线图。
4、熟悉电气原理图和接线图的绘制。
5、电气元件控制线路的现场安装及调试。
6、控制程序的设计、编写与调试。
本论文(设计)采用的研究手段和方法:本毕业设计课题基于任务要求,首先要查找相关文献资料,了解恒压供水的原理及方法。
进而确定所需电气元件的种类,根据其具体情况进行元件选型。
再制定出硬件的基本构架,在电气原理图的基础上,合理设计安装电器元件,并正确接线,最后使用PLC编程软件编写程序并进行现场调试,最后完成设计报告,总结经验。
本设计水泵的具体动作标准都基于PLC控制,由高低水位控制器给PLC提供信号,根据信号控制变频器以调节水泵的动作,从而实现恒压控制生活及消防用水的具体要求。
指导教师意见:指导教师:年月日导师组审核意见:负责人:年月日系毕业论文领导小组审核意见:负责人:年月日。