第五章 双马树脂——【高性能树脂基体】
- 格式:pptx
- 大小:710.59 KB
- 文档页数:16
新型双马来酰亚胺单体的制备与表征1.绪论1.1 双马来酰亚胺(BMI)树脂介绍[1-2]双马来酰亚胺(BMI)是一类具有马来酰亚胺为双活性端基的化合物,在加热或催化剂作用下可以交联固化其结构式为:图1二十世纪六十年代末,法国罗纳-普朗克公司率先研制出了牌号为M-33 BMI树脂及其复合材料,很快实现了其商品化。
从此拉开了制备BMI单体并合成BMI树脂的序幕双马来酰亚胺树脂具有良好的耐热性,优异的机械性能,耐潮湿、耐化学品、耐宇宙射线,而且加工性能良好,成型工艺灵活,原材料来源广泛、成本低廉,是一类理想的先进复合材料基体树脂,有与环氧树脂相近的流动性和可模塑性,可用与环氧树脂类同的一般方法进行加工成型,克服了环氧树脂耐热性相对较低的缺点,因此,近二十年来得到迅速发展和广泛应用。
双马来酰亚胺树脂(BMI)以其优异的耐热性、电绝缘性、透波性、耐辐射、阻燃性,良好的力学性能和尺寸稳定性,成型工艺类似于环氧树脂等特点,被广泛应用于航空、航天、机械、电子等工业领域中,先进复合材料的树脂基体、耐高温绝缘材料和胶粘剂等。
但是,一般通用的双马来酰亚胺树脂的熔点较高,需高温固化,而且固化产物交联密度较高,脆性较大,限制了其进一步应用。
因此,需要对其进行改性。
近年来,人们对双马改性的重点主要体现在合成新型的双马来酰亚胺,改善工艺性和提高韧性上,也可将其用作功能材料以扩大应用范围。
1.2 双马来酰亚胺树脂的合成[3-4]早在1948年,美国人Searle就获得了BMl合成专利。
此后,Searle在改进合成方法的基础上合成了各种不同结构和性能的BMI单体。
一般来说,BMI单体的合成路线为:首先,2mol马来酸酐与lmol_二元胺反应生成双马来酰亚胺酸;然后,双马来酰亚胺酸再脱水环化生成BMI单体。
选用不同的结构的二胺和马来酸酐,并采用适当的反应条件、工艺配方,提纯及分离方法等可以获得不同结构与不同性能的BMI单体,其反应方程式如下:图21.2.1 二氨基二苯醚双马来酰亚胺1.2.2 己二胺双马来酰亚胺1.3 双马来酰亚胺树脂的结构与性能[5-8]合成BMI树脂所用二元胺中R的结构是有多种形式的。
一种低介电双马树脂改性剂的设计合成目录第一章绪论 (5)1.1双马来酰亚胺树脂 (5)1.1.1 双马来酰亚胺的概述 (5)1.1.2双马来酰亚胺树脂改性的方法 (6)1.2 覆铜板的发展概况 (8)1.2.1BMI树脂在覆铜板的应用以及覆铜板材料对BMI的要求 (8)1.3 本论文的主要方法和研究进展 (9)1.4研究目标 (9)第二章实验 (10)2.1 合成路线 (10)2.2 实验部分 (11)2.2.1仪器与试剂 (11)2.2.2 实验方法 (11)2.2.3实验检测 (12)2.2.4结果与讨论: (15)参考文献 (17)致谢.............................. 错误!未定义书签。
摘要随着科学技术的发展,信息的传递进入高频时代,为了实现信息传递的高频化和高速化,制作基板的材料的介电常数和介质损耗因数必须非常的小。
双马来酰亚胺树脂体系是制备基板的重要材料之一。
因为它有非常好的耐高温、耐辐射、耐湿热性能,还有吸湿性低和热膨胀系数小等优良特性,克服了环氧树脂因为耐热性相对较低和聚酰亚胺树脂成型温度相对较高的缺点。
然而它也具有单体的溶解性差、加工工艺差、固化物脆性高和韧性差等缺陷,仅仅只有双马来酰亚胺单体并无使用价值。
因此要对马来酰亚胺树脂进行韧性强度的改性,使其既能耐高温又能容易加工。
本论文是利用氯丙烯与热塑性酚醛树脂进行反应,然后重排,再与溴乙烷反应,得到产物。
将产物作为固化剂对双马来酰亚胺树脂体系进行改性,既提高树脂的韧性强度,又降低介电常数。
关键词:双马来酰亚胺;氯丙烯; Claisen重排;溴乙烷AbstractWith the development of science and technology, the transfer of information enters era of high-frequency. In order to realize the high frequency and high speed of information transfer, the dielectric constant and dielectric loss factor of the substrate material must be very small. Bismaleimide resin system is one of the important materials for preparing the substrate material. Because it has the excellent properties of thermostable and chemical corrosion resistance, radiolytic stability, and electrothermal, and it also has low moisture absorption and excellent features of small thermal expansion coefficient.The heat resistance of epoxy resin is relatively low and the molding temperature of polyimide resin is relatively higher. However, the solubility of monomer is poor, and the application of BMI resin in the higher-requested fields is limited as its brittleness and poor thermal properties. So we need to modification was carried out on the BMI, and the modified resin had good toughness, high temperature resistance and excellent electrical insulation property.We use allyl chloride to react with thermoplastic phenolic resin and then rearranged.The last, the substance reacts with ethyl bromide to give the product. The product as a curing agent for bismaleimide resin system was modified, it can improve the strength of the BMI resin and reduce the dielectric constant.Keywords: Bismaleimide; Chloropropene; Claisen rearrangement; Bromoethane第一章绪论1.1双马来酰亚胺树脂1.1.1 双马来酰亚胺的概述双马来酰亚胺(BMI)树脂是聚酰亚胺体系派生出来的一种树脂体系[1]。
第1期纤维复合材料㊀No.1㊀1142024年3月FIBER ㊀COMPOSITES ㊀Mar.2024缠绕用改性双马来酰亚胺树脂体系性能的研究李金亮,迟㊀波,高小茹,李㊀庚(哈尔滨玻璃钢研究院有限公司,哈尔滨150028)摘㊀要㊀采用T 型双马来酰亚胺树脂和脂肪族双马来酰亚胺树脂为基体树脂,通过添加稀释剂㊁增韧剂㊁不饱和芳烃型固化促进剂,制备了一种适用于缠绕工艺的低粘度改性双马来酰亚胺树脂体系,通过DSC 法确定了树脂体系的固化制度,考察了树脂固化物的耐热性能,采用缠绕工艺制备了国产T800复合材料单向板并测试了力学性能㊂结果表明,在35ħ时,树脂体系粘度为760MPa㊃s,固化物的玻璃化转变温度为287.7ħ,复合材料单向板0ʎ拉伸强度为2457.44MPa,模量为162.55Gpa,弯曲强度为1554.28MPa,层间剪切强度为62.45MPa,纤维与树脂匹配性能良好,力学性能优异㊂关键词㊀缠绕工艺;双马来酰亚胺树脂;复合材料;力学性能Study on the Performance of BismaleimideResin System for WindingLI Jinliang,CHI Bo,GAO Xiaoru,LI Geng(Harbin FRP Institute Co.,Ltd.,Harbin 150028)ABSTRACT ㊀A modified bismaleimide resin system with low viscosity was prepared for the process of winding,through adding diluent,toughening agent,and unsaturated aromatic curing accelerator into the matrix resins of T -type and aliphatic bismaleimide resins.The curing degree of the resin system was analyzed through DSC,the heat resistance of the cured resin was investigated,and the mechanical properties of T800unidirectional laminates fabricated by winding were tested.The vis-cosity of the resin system exhibits 760MPa㊃s at 35ħ,the glass transition temperature of the cured resin is 287.7ħ;the 0ʎtensile strength,modulus,bending strength,and interlaminar shear strength of the laminates is 2457.44MPa,162.55GPa,1554.28MPa,and 62.45MPa,respectively,which implies exceptional coMPatibility between fiber and resin,as well as superior mechanical properties of the composite.KEYWORDS ㊀filament winding;bismaleimide resin;composite;mechanical property通讯作者:李金亮,男,高级工程师㊂研究方向为树脂基体复合材料㊂E -mail:lijinliang219917@1㊀引言双马来酰亚胺(BMI)树脂是以马来酰亚胺为活性端基的双官能团化合物,BMI 树脂是指用BMI 制备的树脂的总称,是聚酰亚胺树脂派生出来的一类热固性树脂[1-3]㊂随着高性能树脂基复合材料作为结构材料在航空航天领域中应用的不断扩大,人们对作为基体材料的树脂提出了越来越高的要求,不仅要求树脂基体具有良好的耐热性,还要求其兼具优良的韧性与㊀1期缠绕用改性双马来酰亚胺树脂体系性能的研究成型工艺性[2]㊂传统的环氧树脂尽管具有良好的工艺性,成型温度与压力也较易实现,但耐热性相对较差,难以满足航天结构材料对于耐热性日益提高的要求㊂聚酰亚胺树脂尽管耐热性较高,然而其成型工艺却具有相当大的难度,不仅成型温度高,反应时间长,而且成型压力较大,因而难于利用传统设备以及采用常规的辅助材料来制造结构零部件[4-7]㊂BMI可用与环氧树脂类同的一般方法进行加工成型,同时BMI具有优良的耐高温㊁耐辐射㊁耐湿热㊁吸湿率低和热膨胀系数小等一系列优良特性,克服了环氧树脂耐热性相对较差和聚酰亚胺树脂成型温度高㊁压力大的缺点,因此,近二十年来BMI得到了迅速的发展和广泛的应用[8-9]㊂尽管BMI具有良好的耐热性能和力学性能,但未经改性的BMI树脂存在着交联密度高㊁熔点高㊁溶解性差㊁成型温度高以及固化韧性差等缺点[10-14]㊂为了满足航空航天领域对双马来酰亚胺树脂体系的应用需求,对双马来酰亚胺树脂进行了改性,制备了一种适用于缠绕缠绕工艺的双马来酰亚胺树脂体系,并对树脂体系的耐热性能及复合材料力学性能进行研究㊂2㊀实验部分2.1㊀主要原材料双马来酰亚胺树脂(BMI),烯丙基双酚A树脂(O-DABPA),洪湖市双马新材料科技有限公司㊂脂肪族双马来酰亚胺树脂,二烯丙基双酚A 醚,陕西硕博电子材料有限公司㊂碳纤维HF40S,江苏恒神股份有限公司㊂2.2㊀主要实验仪器差示扫描量热仪(DSC),Pyris6型,美国Per-kin-Elmer公司;动态热机械仪,DMA8000型,美国Perkin-Elmer;万能材料试验机,Instron5500R,美国Instron 公司;数控缠绕机,4FW500ˑ1000+,哈尔滨复合材料设备开发有限公司;行星搅拌机,DMS-XJB-5L型,湖南麦克斯搅拌捏合设备有限公司;触摸屏数显粘度计:LC-NDJ-9T,力辰科技㊂2.3㊀缠绕用双马来酰亚胺树脂体系的制备将烯丙基双酚A树脂㊁T型双马来酰亚胺树脂和脂肪族双马来酰亚胺树脂按相应的比例进行称量,称量后的树脂加入反应釜内,通过控制反应釜的反应温度㊁搅拌速度及搅拌时间,使树脂在反应釜内进行预聚合,聚合结束后将反应釜内的树脂进行降温,加入稀释剂㊁增韧剂和促进剂,搅拌均匀,得到缠绕用双马来酰亚胺树脂体系㊂2.4㊀缠绕复合材料单向板的制作将配制好的双马来酰亚胺树脂倒入预热好的胶槽中,向缠绕机输入缠绕程序,进行环向层的缠绕,缠绕结束后断纱,合模,将芯模与分瓣模组装在一起,沿垂直纤维方向慢慢将纤维切断,进行单向板固化㊂固化结束后,将产品降温,当温度降至室温后,取出单向板,按照图纸对复合材料单向板进行加工㊂2.5㊀测试方法2.5.1㊀DSC固化曲线的测定将自制双马来酰亚胺树脂体系胶液在N2气氛下进行DSC测试,测试温度范围为30ħ~400ħ,升温速率分别为5ħ/min㊁10ħ/min㊁15ħ/min㊁20ħ/min㊂2.5.2㊀复合材料理化性能测试复合材料纤维体积含量测试参照GB/T3855-2005执行,固化度测试参照GB/T2576-2005执行㊁复合材料密度测试按GB/T1463-2005执行㊂2.5.3㊀复合材料力学性能测试复合材料拉伸强度㊁弹性模量测试参照GB/T 3354-2014执行,压缩强度㊁弹性模量测试参照GB/T5258-2008执行,弯曲强度㊁弹性模量测试参照GB/T3356-2014执行,层间剪切强度测试参照JC/T773-2010执行㊂3㊀结果与讨论3.1㊀自制双马来酰亚胺树脂体系粘度和适用期在制备纤维缠绕用树脂基体时,应使缠绕制品具有高的层间剪切强度和较高的与纤维相匹配的断裂延伸率,此外,还要考虑树脂体系的工艺性能,目前大多数缠绕制品是采用湿法缠绕工艺,这种工艺所采用的是低粘度的液体树脂体系㊂粘度和适用期是树脂胶液能否适用湿法缠绕工艺的一个基本因素,粘度过大,纤维无法完全浸润,容易夹带气511纤维复合材料2024年㊀泡,影响复合材料的致密性㊂粘度过小,纤维束不能有效粘附胶液,造成复合材料贫胶[1]㊂自制缠绕双马来酰亚胺树脂体系粘度-温度变化关系曲线如图1所示,自制缠绕双马来酰亚胺树脂体系粘度-时间变化关系曲线如图2所示㊂图1㊀自制缠绕双马来酰亚胺树脂体系粘度-温度曲线图图2㊀自制缠绕双马来酰亚胺树脂体系粘度-时间曲线图缠绕双马来酰亚胺树脂体系的粘度和适用期是树脂实际使用中的重要指标,不同温度下树脂体系的粘度不同,因此对树脂体系粘度的测定是十分必要的[1]㊂由图1可知,在35ħ温度下,缠绕双马来酰亚胺树脂体系的粘度为760MPa㊃s㊂随着温度的升高,树脂体系粘度不断降低,当树脂温度达到75ħ时,树脂体系粘度极低,达到了293MPa㊃s㊂在45ħ温度下,树脂体系的粘度为685MPa㊃s,放置8h 后,树脂体系的粘度仍低于800MPa㊃s,能够满足缠绕工艺对树脂体系粘度的要求㊂3.2㊀缠绕用双马来酰亚胺树脂体系固化制度的确定为了使固化物能充分反映出本身应有的性能,不但要有最佳的比例,还必须要有合理的固化制度㊂所谓固化制度就是确定温度和时间两个匹配条件,使树脂和固化剂充分交联反应,形成交联密度很高的体型结构聚合物,以保证宏观的力学性能[1]㊂自制缠绕双马来酰亚胺树脂体系在不同升温速率下测得的DSC 曲线如图3所示㊂图3㊀自制缠绕双马来酰亚胺树脂体系在不同升温速率下的DSC 曲线图温度强烈地影响着分子运动速度和振动幅度,是提供反应所需能量的必要条件,对反应速度乃至交联结构有决定性的影响[1]㊂由图3可知,自制缠绕双马来酰亚胺树脂体系在5ħ/min㊁10ħ/min㊁15ħ/min㊁20ħ/min 的升温速率下均可得到单一的放热峰㊂自制缠绕双马来酰亚胺树脂体系在不同升温速率下的DSC 反应参数如表1所示㊂表1㊀自制缠绕双马来酰亚胺树脂体系在不同升温速率下的DSC 反应参数System β/(K /min)T i /KT p /KT f /K әΗ/(J /g)BMI 树脂体系5479.227514.41541.63-179.67910488.8526.44562.35-218.74815495.2533.539569.496-190.50420508.408541.35581.75-195.451由表1可知,随着升温速率的提高,树脂的起始反应温度(T i)㊁峰值温度(T p)㊁反应结束温度(T f )均不断提高,利用β外推法及结合树脂实际固化工艺试验,确定了树脂体系的固化制度为100ħ/2h +125ħ/2h +185ħ/1h +235ħ/3h +270ħ/2h,升温速率为1ħ/min ~3ħ/min㊂3.3㊀缠绕用双马来酰亚胺树脂体系耐热性的研究按上述确定的固化制度制备了树脂浇铸体及复合材料,固化度达到了93%以上,能够满足使用要求,自制缠绕双马来酰亚胺树脂固化物的DMA 测试曲线如图4所示㊂DMA 法可以反映在强迫振动下材料的储能模量(Eᶄ)及损耗因子(tanδ)随温度的变化情况,611㊀1期缠绕用改性双马来酰亚胺树脂体系性能的研究图4㊀自制缠绕双马来酰亚胺树脂固化物的DMA 曲线用于测试材料的玻璃化转变温度,由图4可以看出,tanδ曲线的峰值温度为287.7ħ,即树脂的玻璃化转变温度为287.7ħ㊂在温度低于200ħ时,树脂的储能模量变化不大,说明在200ħ下,树脂耐热性能优异㊂为了进一步研究树脂的耐热性能,对树脂固化物的热分解温度(TGA)进行了研究,如图5所示㊂图5㊀缠绕双马树脂浇铸体热分解温度曲线图由图5可知,缠绕BMI 树脂浇铸体失重5%时的热分解温度为379.59ħ,失重50%时的热分解温度为455.24ħ,可以看出缠绕BMI 树脂浇铸体具有很好的耐温性,这种耐温性与其分子结构有关,BMI 分子中都含有酰亚胺环,除脂肪族外,都含有芳环结构,有的还含有稠环结构,这些刚性结构存在于BMI 分子主链中是其耐温的根本原因㊂3.4㊀复合材料力学性能及理化性能目前在国内航空领域,用作先进树脂基复合材料的碳纤维增强体主要是T700和T800,试验采用了自制缠绕BMI 树脂体系与国产T800碳纤维通过缠绕工艺制备了复合材料单向板,并对单向板的力学性能进行了研究,0ʎ和90ʎ单向板拉伸强度㊁弹性模量的测试值分别如表2和表3所示㊂表2㊀0ʎ单向板拉伸强度㊁弹性模量编号宽度/mm厚度/mm破坏载荷/N强度/MPa弹性模量/GPa112.60 2.0765*******.43163.00212.61 2.03656162563.30164.70312.54 2.00617682462.84156.00412.61 2.10634372395.57166.60512.60 2.00590712344.09162.43X 2457.44162.55S 89.45 4.00CV0.0360.025表3㊀90ʎ单向板拉伸强度㊁弹性模量编号宽度/mm厚度/mm破坏载荷/N强度/MPa弹性模量/GPa124.85 2.0991917.698.21224.92 2.0890917.548.63324.85 2.0889117.248.51424.82 2.0785316.608.84524.70 2.0877615.108.70X 16.848.58S 1.050.24CV 0.0630.028由表2㊁表3可以看出,复合材料单向板0ʎ拉伸强度平均值为2457.44MPa,最大值为2563.30MPa,90ʎ单向板拉伸强度平均值16.84MPa,最大值为17.69MPa,呈现出了较高的常温力学性能㊂0ʎ单向板压缩强度㊁弹性模量和90ʎ单向板压缩强度㊁弹性模量测试值分别如表4和表5所示㊂表4㊀0ʎ单向板压缩强度㊁弹性模量编号宽度/mm厚度/mm破坏载荷/N强度/MPa弹性模量/GPa110.08 2.021*******.85148.28210.07 2.021*******.17154.77310.13 1.99203691010.43155.85410.07 2.021*******.15158.28510.06 1.9719080962.75148.48X 913.27153.13S 71.10 4.52CV 0.0780.030表5㊀90ʎ单向板压缩强度㊁弹性模量编号宽度/mm厚度/mm破坏载荷/N强度/MPa弹性模量/GPa19.95 2.042030100.018.3829.97 2.01197598.558.3539.96 2.05187091.598.3949.86 2.01192497.088.5759.87 2.03157378.518.51711纤维复合材料2024年㊀编号宽度/mm厚度/mm破坏载荷/N强度/MPa弹性模量/GPaX93.158.44S8.780.09 CV0.0940.011由表4和表5可以看出,0ʎ单向板压缩强度平均值为913.27MPa,最大值为1010.43MPa,90ʎ单向板压缩强度平均值为93.15MPa,最大值为100.01MPa,呈现出典型的复合材料力学性能㊂单向板弯曲强度㊁弹性模量和层间剪切强度测试值分别如表6和表7所示㊂表6㊀弯曲强度、弹性模量编号宽度/mm厚度/mm破坏载荷/N强度/MPa弹性模量/GPa112.68 2.0810281855.16162.56 212.72 2.057541396.41154.00 312.65 2.108541515.53158.44 412.64 2.088261495.35163.01 512.63 2.058091508.94166.60 X1554.28160.92 S174.99 4.83 CV0.1130.030表7㊀层间剪切强度编号宽度/mm厚度/mm破坏载荷/N强度/MPa弹性模量/GPa110.18 2.07177163.03210.17 2.06171561.40310.15 2.07180564.43410.13 2.07169460.59510.18 2.06175662.80X62.45S 1.50CV0.024由表6可以看出,复合材料单向板弯曲强度平均值为1554.28MPa,最大值达到了1855.16MPa㊂复合材料层间剪切强度为62.45MPa,说明树脂体系与国产T800碳纤维浸润性良好,界面性能优异,纤维能够很好的发挥强度㊂4㊀结语(1)采用两种双马来酰亚胺树脂单体作为基体树脂,通过添加稀释剂㊁增韧剂及促进剂,制备了一种适用于缠绕工艺的低粘度改性双马来酰亚胺树脂体系㊂(2)通过DSC法测试了改性双马来酰亚胺树脂体系在不同升温速率下的放热反应,确定了树脂体系的固化制度㊂(3)采用DMA法及TGA法分别测试了改性双马来酰亚胺树脂浇铸体的玻璃化转变温度及热分解温度,浇铸体耐热性能优异㊂(4)采用缠绕工艺制备了复合材料单向板,纤维与树脂的界面性能良好,复合材料力学性能优异㊂参考文献[1]哈玻编著,纤维缠绕技术[M].北京:科学出版社,2022.[2]黄志雄,彭永利等编著.热固性树脂复合材料及其应用[M].北京:化学工业出版社,2006.[3]李金亮,高小茹.改性双马来酰亚胺树脂预浸料性能研究[J].民用飞机设计与研究,2020(01):121-124. [4]徐淑权,蔡建,胡秉飞.湿法缠绕用树脂体系粘度及固化动力学研究[J].化工新型材料,2016,44(3):199-201. [5]Wang Haimei,Zhang Yuechao,Zhu Lirong,et al.Curing behavi-on and kinetics of epoxy resins cured with liquid crystalline curing a-gent[J].J Therm Anal Calorim,2012,107(3):1205-1211.[6]刘宁,张光喜,等.碳纤维复合材料壳体湿法缠绕用高性能树脂基体的研究[J].合成材料老化与应用,2023,52(3):1 -4.[7]Liu Yinling,Cai Zhiqi,Wang Weicheng,et al.Mechanical prop-erties and morphology studies of thermosets from a liquid-crystalline epoxy resin with biphenol and aromatic ester groups[J].Macro-mod Mater Eng,2011,296(1):83-91.[8]张敏,杨洋,雷毅.缠绕用无溶剂低温固化双马来酰亚胺树脂体系[J].热固性树脂,2007,22(1):1-4.[9]Xu Yilei,Dayo A Q,Wang Jun,et al.Mechanical and thermal properties of a room temperature curing epoxy resin and related hemp fibers reinforced composites using a novel in-situ genetated curing agent[J].Materials Chemistry and Physics,2018,203:293-301.[10]刘丽,李勇,等.高效湿法缠绕用环氧树脂配方及其复合材料性能[J].航空动力学报,2020,35(2):378-387. [11]王明,郑志才,等.湿法缠绕用耐温环氧树脂体系研制与性能[J].工程塑料应用,2022,11,50(11).[12]肖亚超,郑志才,等.湿法缠绕成型工艺研究进展[J].化工新型材料,2019,47(增刊).[13]廖国峰,沈伟,等.碳纤维用湿法缠绕成型工艺环氧树脂研究[J].化工新型材料,2021,49(8):101-105. [14]魏程,李刚,等.低成本中温固化湿法缠绕用树脂基体及其国产碳纤维复合材料[J].纤维复合材料,2017,34(04):3-8.811。
双马树脂固化机理
哎哟,这双马树脂固化机理啊,说出来我都觉得有点儿玄乎。
不过咱们得聊聊这个,因为我最近跟几个同行一讨论,发现这双马树脂固化机理还挺有意思的。
那天我正跟小李子在我们公司的小会议室里头,正研究着双马树脂的固化机理。
小李子是咱们公司的新人,对这东西有点儿好奇,就问我:“老陈,你这双马树脂固化机理,到底是个啥玩意儿啊?”
我说:“哎哟,小李子,这双马树脂固化机理,简单来说就是两个‘马’(就是树脂分子)手拉手,一起固化成一个大‘马’。
”
小李子眨巴着大眼睛,好奇地问:“那它们是怎么拉手的呢?”
我笑呵呵地回答:“这个嘛,就像两个小孩儿玩儿皮筋,一开始一个手捏一个皮筋,然后越拉越长,拉到一定程度,‘噌’一下,就黏在一起了。
双马树脂的固化也是这个理儿,两个分子先是慢慢靠近,然后通过化学反应,形成交联结构,固化在一起。
”
这时,旁边的小王插嘴道:“哎呀,我听别人说,双马树脂固化快,强度高,用途广泛,是啥原理让它的强度那么高呢?”
我看着小王,笑着说:“这双马树脂,就像两个超人,手拉手之后,不仅力气大,还能抵抗外界的冲击。
这是因为固化过程中,分子间的交联结构形成了三维网络,让整个材料更加坚韧。
”
小李子听完后,感慨地说:“哎呀,老陈,没想到这双马树脂固化机理背后,还有这么多学问。
下次咱们再讨论讨论。
”
我点点头,笑着说:“好啊,小李子,双马树脂固化机理深着呢,
咱们慢慢研究,总有一天,咱们也能成为‘双马树脂固化机理’的小专家。
”
就这样,我们三人一边研究,一边讨论,笑声不断。
这双马树脂固化机理,真是个让人乐在其中的话题啊!。
高性能双马树脂底胶的性能李洪峰;王德志;曲春艳;顾继友;冯浩;杨海冬;肖万宝【摘要】采用嵌段共聚物增韧双马来酰亚胺(BMI)树脂体系,制备双马来酰亚胺树脂底胶(双马底胶),该底胶的黏附性、铅笔硬度、抗冲击、耐环境、耐老化性能等技术指标满足GJB1388规范要求.采用DSC,TG,DMA测试对双马底胶性能热性能进行表征.结果表明:该底胶具有良好的耐热性,200℃固化后玻璃化转变温度为238℃,5%热失重温度为384℃,230℃热处理后玻璃化转变温度高达268℃,5%热失重温度为407℃.双马底胶和双马胶膜配合使用后粘接强度提高,当与J-188双马胶膜配合使用时,剥离强度提高到l07%,常温和高温剪切强度可提高10%.该底胶也可与其他双马结构胶膜配合使用,适用于金属之间或双马复合材料与金属之间的粘接.【期刊名称】《材料工程》【年(卷),期】2016(044)006【总页数】6页(P38-43)【关键词】双马来酰亚胺;底胶;增韧;结构胶膜【作者】李洪峰;王德志;曲春艳;顾继友;冯浩;杨海冬;肖万宝【作者单位】黑龙江省科学院石油化学研究院,哈尔滨150040;东北林业大学材料科学与工程学院,哈尔滨150040;黑龙江省科学院石油化学研究院,哈尔滨150040;黑龙江省科学院石油化学研究院,哈尔滨150040;东北林业大学材料科学与工程学院,哈尔滨150040;黑龙江省科学院石油化学研究院,哈尔滨150040;黑龙江省科学院石油化学研究院,哈尔滨150040;黑龙江省科学院石油化学研究院,哈尔滨150040【正文语种】中文【中图分类】TQ433.4胶黏剂底胶是用于金属结构件粘接前,喷涂于被粘基材表面,与胶膜配套使用,进行结构件粘接的一种胶液[1-4]。
底胶的作用一方面是当金属件完成表面处理后不能马上进行粘接时,底胶可以保护金属表面不被氧化;另一方面底胶中一般加入抑制腐蚀剂,与胶膜所构成的胶接体系,可增加金属胶接件的耐久、耐湿热性能;另外,底胶在金属表面具有良好的浸润性,形成金属与胶膜的过渡层,能有效增强胶膜与金属基材的附着力。
双马树脂与环氧树脂双马树脂和环氧树脂是两种常见的树脂材料,它们在工业中有着广泛的应用。
本文将重点介绍双马树脂和环氧树脂的特性、用途以及它们在不同领域中的应用。
双马树脂,也称聚酰胺树脂,是一种高性能的工程塑料。
它具有优异的耐热性、耐化学腐蚀性和机械强度,因此被广泛应用于航空航天、汽车制造、电子电器等领域。
双马树脂通常以颗粒的形式存在,可以通过注塑、挤出、吹塑等加工方法制成各种形状的制品。
双马树脂具有优异的综合性能,可满足不同领域对材料性能的要求。
环氧树脂是一种常用的高分子材料,具有优异的机械性能和电气绝缘性能。
环氧树脂具有很强的粘接能力和耐化学腐蚀性,可以与各种材料进行粘接和涂覆。
环氧树脂通常以液体的形式存在,通过加入固化剂进行固化,形成坚硬的固体。
环氧树脂的固化时间较长,需要在一定的温度下进行加热处理,以促进固化反应的进行。
环氧树脂具有多种固化方式,可以根据具体需要选择合适的固化剂。
双马树脂和环氧树脂在不同领域中有着各自的应用。
双马树脂在航空航天领域中被广泛应用于制造航空器的结构件,如机身、机翼等,以及发动机零部件。
双马树脂的优异性能可以提高飞机的安全性和可靠性。
在汽车制造领域,双马树脂被用于制造汽车的外观件、内饰件和发动机零部件,可以提高汽车的耐用性和安全性。
在电子电器领域,双马树脂被广泛应用于制造电器外壳、电路板以及电子元件的封装材料,具有优异的绝缘性能和耐热性能。
环氧树脂在建筑领域中被广泛应用于地坪涂料、防水涂料和粘接剂等方面。
环氧树脂地坪具有良好的耐磨性和耐化学腐蚀性,可以提供一个平整、耐用的地面。
在防水涂料方面,环氧树脂具有良好的附着力和耐候性,可以有效防止水的渗透。
在粘接剂方面,环氧树脂具有很强的粘接能力,可以用于粘接各种材料,如金属、塑料、陶瓷等。
总结起来,双马树脂和环氧树脂是两种重要的树脂材料,它们在工业中有着广泛的应用。
双马树脂具有优异的耐热性、耐化学腐蚀性和机械强度,适用于航空航天、汽车制造、电子电器等领域。
双马树脂与环氧树脂双马树脂和环氧树脂都是常用的树脂类材料,具有广泛的应用领域。
双马树脂是一种热固性树脂,主要由双酚A和甲醛聚合而成,具有优良的耐热性、耐化学腐蚀性和机械强度。
而环氧树脂是一种由环氧基团和活性氢基团聚合而成的热固性树脂,具有优良的电绝缘性、机械强度和耐腐蚀性。
双马树脂具有较高的耐热性和耐化学腐蚀性,能够在高温和腐蚀性环境下保持稳定性。
这使得双马树脂在航空航天、汽车制造、电子电器、化工等领域得到广泛应用。
例如,在航空航天领域,双马树脂可以用于制造航天器的外壳和结构件,以提供良好的机械强度和耐热性。
在汽车制造领域,双马树脂可以用于制造发动机零件和车身结构件,以提高汽车的耐高温性和耐腐蚀性。
在电子电器领域,双马树脂可以用于制造电子元件的外壳和绝缘材料,以确保电子设备的性能和可靠性。
在化工领域,双马树脂可以用于制造耐酸碱腐蚀的储罐和管道。
环氧树脂具有优良的电绝缘性和机械强度,广泛用于电子电器、航空航天、建筑等领域。
在电子电器领域,环氧树脂可以用于制造电路板、绝缘材料和封装材料,以提供良好的电绝缘性和机械强度。
在航空航天领域,环氧树脂可以用于制造飞机的结构件和航天器的外壳,以提高飞机和航天器的性能和安全性。
在建筑领域,环氧树脂可以用于制造地板、涂料和粘合剂,以提供耐磨性和耐腐蚀性。
尽管双马树脂和环氧树脂具有不同的特性和应用领域,但它们也有一些共同之处。
首先,它们都是热固性树脂,具有较高的耐热性和耐化学腐蚀性。
其次,它们都可以通过聚合反应固化成硬质材料,具有良好的机械强度和耐久性。
此外,它们都可以通过调整配方和工艺参数,来满足特定应用的要求。
总的来说,双马树脂和环氧树脂是具有广泛应用的树脂类材料,它们在航空航天、汽车制造、电子电器、化工、建筑等领域发挥着重要作用。
双马树脂具有耐热性和耐化学腐蚀性等特点,而环氧树脂具有电绝缘性和机械强度等特点。
通过选择合适的树脂材料,可以满足不同领域的需求,提高产品的性能和可靠性。
1.1 引言先进树脂基复合材料以其轻质、高比强、高比模、耐高温和极强的材料性和可设计性而成为发展中的高技术材料之一。
其在航空、航天工业中的应用也显示了独特的优势和潜力,被认为是航空、航天材料技术进步的重要标志[1]。
而基体树脂则是决定复合材料性能优劣的一个关键因素。
作为先进树脂基复合材料的基体树脂,它不仅要有优良的机械性能(尤其是断裂韧性)、耐热、耐湿热、耐老化、耐腐蚀等,而且还要有良好的加工性。
但现有树脂存在的主要问题是不能将高温性能、耐湿热性、韧性及加工性有机地统一起来。
目前用于先进树脂基复合材料的基体树脂主要是环氧树脂、聚酰亚胺树脂和双马来酰亚胺树脂。
环氧树脂具有优良的加工性,但耐湿热性能差,已逐渐不能满足高性能的要求。
聚酰亚胺树脂具有突出的耐热性、耐湿热性能,但其苛刻的工艺条件限制了其应用。
双马来酰亚胺(BMI)树脂是今年来发展起来的一种新型耐热高聚物[2],它的价格比较便宜,其成型加工的条件也不是十分的苛刻。
采用间接法合成在加工中没有小分子放出,故使得制品无气隙。
除了作为复合材料的母体树脂外,也可以作压塑料、涂料、胶粘剂等。
在200℃~220℃一万小时老化后仍无明显的降解现象发生。
它还能耐射线,在5×109rad照射下机械性能不发生变化。
它广泛用于航空、航天和机电等高科技领域。
BMI不仅具有聚酰亚胺树脂的耐热性、耐侯性、耐湿热性的优点,而且具有类似于环氧树脂的成型工艺性,是目前备受青睐的的高性能聚合物之一。
1.2 双马来酰亚胺树脂概述双马来酰亚胺(BMI)树脂是由聚酰亚胺树脂体系派生出来的一类树脂体系,是以马来酰亚胺(MI)为活性端基的双官能团化合物,其树脂具有与典型热固性树脂相似的流动性和可塑性,可用与环氧树脂相同的一般方法加工成型。
同时它具有聚酰亚胺树脂的耐高温、耐辐射、耐潮湿和耐腐蚀等特点[3],但它同环氧树脂一样,有固化物交联密度很高使材料显示脆性的弱点,溶解性能差。