6实验1-2 蛋白质的性质实验
- 格式:doc
- 大小:181.50 KB
- 文档页数:22
蛋白质两性实验报告结果蛋白质两性实验报告结果蛋白质是生命体中不可或缺的重要分子,它们在细胞的结构和功能中起着至关重要的作用。
然而,蛋白质的性质和功能在不同的环境条件下可能会发生变化,其中一个重要的因素就是溶液的pH值。
为了深入了解蛋白质在不同pH值下的行为,我们进行了一系列的两性实验。
实验一:蛋白质的溶解性在这个实验中,我们选择了一种常见的蛋白质——牛血清白蛋白(BSA),并将其溶解在不同pH值的缓冲液中。
我们使用了pH 2、4、7和10的缓冲液,并观察了BSA在不同pH值下的溶解情况。
结果显示,在pH 2和4的缓冲液中,BSA几乎无法溶解。
这是因为在酸性条件下,蛋白质的氨基酸残基会被质子化,导致蛋白质的电荷变得正电。
正电的蛋白质会发生聚集,形成不溶性的沉淀物。
而在pH 7和10的缓冲液中,BSA能够完全溶解。
这是因为在中性和碱性条件下,蛋白质的氨基酸残基不会被质子化,蛋白质的电荷保持中性或负电,从而使其溶解性增强。
实验二:蛋白质的二级结构变化为了研究蛋白质在不同pH值下的二级结构变化,我们使用了紫外-可见光谱技术。
我们分别在pH 2、4、7和10的缓冲液中测量了BSA的紫外吸收光谱。
结果显示,在pH 2和4的缓冲液中,BSA的紫外吸收峰发生了明显的变化。
这表明蛋白质的二级结构发生了改变。
在酸性条件下,蛋白质的α-螺旋结构发生了破坏,而β-折叠结构增加。
这种结构变化可能是由于酸性条件下氨基酸残基之间的相互作用发生了改变。
然而,在pH 7和10的缓冲液中,BSA的紫外吸收光谱没有明显的变化。
这表明蛋白质的二级结构在中性和碱性条件下保持相对稳定。
实验三:蛋白质的功能变化为了研究蛋白质在不同pH值下的功能变化,我们选择了一种常见的蛋白质酶——胰蛋白酶。
我们在pH 2、4、7和10的缓冲液中测量了胰蛋白酶的酶活性。
结果显示,在pH 2和4的缓冲液中,胰蛋白酶的酶活性显著下降。
这是因为在酸性条件下,胰蛋白酶的活性中心中的氨基酸残基发生了质子化,从而使其活性降低。
蛋白质的功能性质实验报告蛋白质的功能性质实验报告引言:蛋白质是生物体内最重要的有机分子之一,它们在细胞的结构和功能中起着关键的作用。
蛋白质的功能性质对于理解生物体的生命活动和疾病的发生机制具有重要意义。
本实验旨在探究蛋白质的功能性质,并通过实验验证其功能。
实验一:酶的催化作用酶是一类特殊的蛋白质,它能够催化生物体内的化学反应。
本实验以淀粉的降解为例,验证了酶的催化作用。
首先,我们将淀粉溶液分成两份,一份加入唾液酶,另一份不加酶。
然后,在恒温水浴中分别加热两个试管,观察淀粉的降解情况。
结果显示,加入酶的试管中淀粉迅速降解,而不加酶的试管中淀粉几乎没有降解。
这表明酶能够催化淀粉的降解反应,加速化学反应的进行。
实验二:抗体的特异性识别抗体是一种特殊的蛋白质,它能够识别和结合特定的抗原。
本实验以酶联免疫吸附实验(ELISA)为例,验证了抗体的特异性识别。
首先,我们将目标抗原分别涂覆在微孔板上的不同孔中。
然后,加入抗体溶液,并通过酶的催化作用,观察抗体与抗原的结合情况。
结果显示,抗体与对应的抗原结合,而与其他抗原不结合。
这表明抗体具有特异性识别的能力,能够选择性地结合目标抗原。
实验三:结构蛋白的机械强度结构蛋白是一种具有机械强度的蛋白质,它能够维持细胞和组织的结构稳定。
本实验以角蛋白为例,验证了结构蛋白的机械强度。
首先,我们将角蛋白溶液制备成薄膜,并在拉伸机上进行拉伸实验。
结果显示,角蛋白薄膜具有较高的抗拉强度和延展性,能够承受较大的外力。
这表明结构蛋白具有机械强度,能够维持细胞和组织的结构稳定。
实验四:运输蛋白的选择性通透性运输蛋白是一种具有选择性通透性的蛋白质,它能够调节物质的进出细胞。
本实验以细胞膜上的离子通道为例,验证了运输蛋白的选择性通透性。
首先,我们将离子通道蛋白溶液制备成薄膜,并浸泡在含有不同离子的溶液中。
结果显示,离子通道蛋白对特定离子具有通透性,而对其他离子不通透。
这表明运输蛋白具有选择性通透性,能够调节物质的进出细胞。
蛋白质的性质实验报告蛋白质的性质实验(一)蛋白质的性质实验(一)蛋白质及氨基酸的呈色反应一、目的1.了解构成蛋白质的基本结构单位及主要连接方式。
2.了解蛋白质和某些氨基酸的呈色反应原理。
3.学习几种常用的鉴定蛋白质和氨基酸的方法。
二、呈色反应(一)双缩脲反应1.原理尿素加热至180℃左右,生成双缩脲并放出一分子氨。
双缩脲在碱性环境中能与Cu2+结合生成紫红色化合物,此反应称为双缩脲反应。
蛋白质分子中有肽键,其结构与双缩脲相似,也能发生此反应。
可用于蛋白质的定性或定量测定。
双缩脲反应不仅为含有两个以上肽键的物质所有。
含有一个肽键和一个—CS—NH2,—CH2—NH2,—CRH—NH2,—CH2—NH2—CHNH2—CH2OH或—CHOHCH2NH2等基团的物质以及一切蛋白质或二肽以上的多肽都有双缩脲反应,但有双缩脲反应的物质不一定都是蛋白质或多肽。
2.试剂3.操作取少量尿素结晶,放在干燥试管中。
用微火加热使尿素熔化。
熔化的尿素开始硬化时,停止加热,尿素放出氨,形成双缩脲。
冷后,加10%氢氧化钠溶液约1mL,振荡混匀,再加1%硫酸铜溶液1滴,再振荡。
观察出现的粉红颜色。
要避免添加过量硫酸铜,否则,生成的蓝色氢氧化铜能掩盖粉红色。
向另一试管加卵清蛋白溶液约1mL和10%氢氧化钠溶液约2 mL,摇匀,再加1%硫酸铜溶液2滴,随加随摇。
观察紫玫瑰色的出现。
(二)茚三酮反应1.原理除脯氨酸、羟脯氨酸和茚三酮反应产生黄色物质外,所有α-氨基酸及一切蛋白质都能和茚三酮反应生成蓝紫色物质。
β-丙氨酸、氨和许多一级胺都呈正反应。
尿素、马尿酸、二酮吡嗪和肽键上的亚氨基不呈现此反应。
因此,虽然蛋白质和氨基酸均有茚三酮反应,但能与茚三酮呈阳性反应的不一定就是蛋白质或氨基酸。
在定性、定量测定中,应严防干扰物存在。
该反应十分灵敏,1∶1500000浓度的氨基酸水溶液即能给出反应,是一种常用的氨基酸定量测定方法。
茚三酮反应分为两步,第一步是氨基酸被氧化形成CO2、NH3和醛,水合茚三酮被还原成还原型茚三酮;第二步是所形成的还原型茚三酮同另一个水合茚三酮分子和氨缩合生成有色物质。
蛋白质的性质实验报告引言:蛋白质是生命体内的基本组成部分之一,也是生物体内起重要功能的分子。
为了深入了解蛋白质的性质,本次实验旨在通过多种实验方法和技术,研究蛋白质的结构、溶解性、酶解性、电泳性质以及光学性质等方面,揭示蛋白质的特点和变化规律。
实验一:溶解性实验材料与方法:1. 采用鸡蛋白、牛乳蛋白和豆腐蛋白作为实验物质。
2. 将这几种物质分别加入不同的试管中,加入相同体积的蒸馏水,并在水浴中加热搅拌。
3. 每隔10秒观察一次试管内物质的溶解情况,记录时间。
结果与分析:经过实验发现,鸡蛋白和牛乳蛋白在加热搅拌过程中逐渐溶解,反应速度较快;而豆腐蛋白则需要更长时间才能完全溶解。
这是因为不同蛋白质具有不同的溶解性,与其分子结构的差异密切相关。
鸡蛋白和牛乳蛋白中的水解蛋白在热力作用下发生构象变化,使其更易溶于水。
而豆腐蛋白含有较多的结合蛋白,抗热性较强,所以需要更长时间才能溶解。
实验二:酶解性实验材料与方法:1. 采用胰蛋白酶作为酶解物质。
2. 将鸡蛋白、牛乳蛋白和豆腐蛋白分别加入试管中。
3. 随后加入胰蛋白酶,保持适宜的温度和酸碱度。
4. 观察酶解反应的进行并记录时间。
结果与分析:通过酶解实验显示,胰蛋白酶能高效地将鸡蛋白、牛乳蛋白和豆腐蛋白分解为较小的片段。
这说明蛋白质在酶解的作用下能够发生化学反应,由长链结构转变为短链或小分子物质。
这也印证了蛋白质的特性之一——可变性。
所以,蛋白质的特性和功能不仅受其自身分子结构的影响,还受到外界环境和酶的影响。
实验三:电泳性质实验材料与方法:1. 先将鸡蛋白、牛乳蛋白和豆腐蛋白分别加入几个小孔的凝胶上。
2. 运用直流电电源进行电泳实验。
3. 观察凝胶上蛋白质的迁移情况,并记录时间。
结果与分析:通过电泳实验发现,不同蛋白质在电场的作用下迁移的速度不同。
豆腐蛋白迁移速度较快,鸡蛋白次之,牛乳蛋白最慢。
这是因为电泳性质与蛋白质的分子量和电荷有关。
在电场中,带正电荷的蛋白质离子会向负极迁移,而带负电荷的蛋白质离子则向阳极迁移。
蛋白质性质实验报告《蛋白质性质实验报告》摘要:本实验旨在通过对蛋白质的性质进行实验研究,探讨其溶解性、凝固性和变性等特性。
通过实验结果的分析,我们可以更加深入地了解蛋白质的结构和功能,为进一步研究蛋白质在生物学和食品工业中的应用提供参考。
引言:蛋白质是生命体内最基本的组成部分之一,它不仅参与了生命体内的代谢过程,还具有结构支持、运输、免疫、调节等多种功能。
蛋白质的性质对其功能起着至关重要的作用,因此对蛋白质性质的研究具有重要的意义。
实验方法:1. 蛋白质的溶解性实验:取一定量的蛋白质样品,分别用水、盐水、酒精等不同溶剂进行溶解实验,观察其溶解情况。
2. 蛋白质的凝固性实验:将蛋白质样品加热至一定温度,观察其凝固情况。
3. 蛋白质的变性实验:在不同的酸碱条件下,观察蛋白质的变性情况。
实验结果:1. 蛋白质在水中能够充分溶解,而在盐水和酒精中溶解性较差。
2. 当蛋白质样品被加热至一定温度时,会发生凝固现象。
3. 在酸性或碱性条件下,蛋白质会发生变性,失去原有的结构和功能。
讨论:通过本实验的研究,我们可以得出如下结论:1. 蛋白质在不同溶剂中的溶解性与其化学结构有关,不同的溶剂对蛋白质的溶解能力不同。
2. 蛋白质的凝固性是由于其分子结构在高温条件下发生变化,从而失去了溶解性。
3. 蛋白质的变性是由于其分子结构受到酸碱条件的影响,导致其原有的结构和功能发生改变。
结论:本实验通过对蛋白质性质的研究,揭示了蛋白质在不同条件下的性质变化规律,为我们进一步理解蛋白质的结构和功能提供了重要的实验数据和参考依据。
同时,对蛋白质性质的深入研究也为其在生物学、医学和食品工业等领域的应用提供了理论基础。
蛋白质的功能性质实验报告蛋白质的功能性质实验报告引言:蛋白质是生命体内最重要的有机分子之一,它在维持生命活动中起着至关重要的作用。
蛋白质具有多种功能性质,包括结构支持、酶催化、运输、信号传递等。
本实验旨在探究蛋白质的功能性质,并通过实验验证其在不同环境下的表现。
实验一:蛋白质的结构支持功能在这个实验中,我们选择了鸡蛋白作为研究对象,通过将鸡蛋白溶液注入不同浓度的盐水中,观察蛋白质在不同环境中的表现。
结果表明,当鸡蛋白溶液与低浓度盐水混合时,蛋白质会凝聚成固体,形成一种类似于凝胶的物质。
这说明蛋白质具有结构支持功能,能够在适宜的条件下形成稳定的结构。
实验二:蛋白质的酶催化功能在这个实验中,我们选择了酪氨酸酶作为研究对象,通过观察其在不同温度和pH值下的催化效果,来验证蛋白质的酶催化功能。
结果表明,酪氨酸酶在适宜的温度和pH值下能够催化酪氨酸的分解,产生氨基酸和其他产物。
而在过高或过低的温度和pH值下,酪氨酸酶的催化效果明显降低。
这说明蛋白质的酶催化功能对环境条件十分敏感。
实验三:蛋白质的运输功能在这个实验中,我们选择了血红蛋白作为研究对象,通过观察其在不同浓度的氧气和二氧化碳气体中的吸附情况,来验证蛋白质的运输功能。
结果表明,血红蛋白能够与氧气发生结合,形成氧合血红蛋白,并在高浓度氧气环境中释放氧气。
而在二氧化碳气体环境下,血红蛋白能够与二氧化碳发生结合,形成碳酸血红蛋白,并在低浓度二氧化碳环境中释放二氧化碳。
这说明蛋白质能够通过运输分子来维持生命活动的正常进行。
实验四:蛋白质的信号传递功能在这个实验中,我们选择了G蛋白作为研究对象,通过观察其在细胞膜上的信号传递过程,来验证蛋白质的信号传递功能。
结果表明,G蛋白能够通过与细胞膜上的受体结合,激活细胞内的信号传递通路。
这种信号传递过程对于维持细胞的正常功能和生命活动至关重要。
而当G蛋白发生突变或受到干扰时,信号传递通路会受到阻断,导致细胞功能异常。
蛋白质的化学性质实验报告实验报告:蛋白质的化学性质摘要:本次实验旨在探究蛋白质的化学性质以及它们在不同溶液和温度下的变化。
通过测量各种溶液中的pH值,利用比色法测定蛋白质含量,以及在不同温度下对溶液中蛋白质的稳定性进行观察,得出了蛋白质的化学性质对其功能和应用的重要性。
实验结果表明,蛋白质在不同环境条件下的性质和变化差异明显,研究蛋白质的化学性质对于我们更好地理解其生物学功能和应用,有着重要的科学意义和实际应用价值。
介绍:蛋白质是构成生命体的重要分子之一,它们存在于细胞中并发挥关键的生物学功能。
蛋白质的化学性质对其功能及其应用具有重要影响。
在这个实验中,我们研究了一些蛋白质的化学性质,探究了它们在不同溶液和温度下的变化。
用这种方法可以为更好地理解蛋白质的功能和应用打下基础,并为进一步研究蛋白质结构和作用机理提供重要的信息。
实验方法:1.溶液pH值的测定:我们选取了七种溶液来探究不同pH值对蛋白质的影响。
使用pH试纸测量各种溶液的pH值,并记录结果。
2.蛋白质含量的测定:我们使用比色法来测定各种溶液中蛋白质的含量。
首先通过标准曲线确定各个样品中蛋白质的含量,然后根据比色法可见光分光光度计进行测量,并记录结果。
3.观察蛋白质在不同温度下的变化:我们选择了两种溶液,将其分别加热和冷却,并观察蛋白质的行为变化,记录结果。
结果:1.在不同溶液中,蛋白质的稳定性和活性不同,其pH值和含量密切相关。
2.温度的变化会影响蛋白质的结构和稳定性。
我们发现,当蛋白质被加热时,其失活率会显著提高;而当蛋白质被冷却时,结构发生变化不太明显。
结论:本实验详细探讨了蛋白质的化学性质,以及其在不同溶液和温度下的变化。
实验结果表明,研究蛋白质的化学性质对于我们更好地理解其生物学功能和应用具有重要科学意义和实际应用价值。
通过本次实验,我们进一步认识了蛋白质的性质和变化规律,并为进一步研究蛋白质的结构和功能提供了重要信息。
蛋白质的功能性质实验报告
蛋白质是生命体内的重要组成部分,具有多种功能性质,包括结构支持、酶催化、运输、传导、免疫和调节等。
本实验旨在探究蛋白质的功能性质,并通过实验数据验证其在生物体内的重要作用。
首先,我们选择了几种常见的蛋白质,包括酶类、结构蛋白和激素,通过一系
列实验方法来验证它们的功能性质。
在酶类实验中,我们以淀粉酶和蛋白酶为例,验证了它们在催化淀粉和蛋白质水解反应中的作用。
实验结果表明,酶类蛋白能够高效催化特定底物的反应,从而加速生物体内的代谢过程。
其次,我们进行了结构蛋白的实验,选择了胶原蛋白和肌动蛋白作为研究对象。
通过实验数据的分析,我们发现结构蛋白在细胞和组织的支持和稳定中起着重要作用,同时也参与了肌肉的收缩和运动。
在激素的实验中,我们选取了胰岛素和甲状腺素进行研究。
实验结果显示,激
素类蛋白在生物体内具有调节代谢和生长发育的重要功能,能够通过血液循环传递到不同的组织器官,发挥其调节作用。
综合实验结果可以看出,蛋白质的功能性质是多种多样的,它们在生物体内扮
演着重要的角色。
通过本次实验,我们不仅验证了蛋白质的功能性质,也加深了对生命体内蛋白质作用的理解,为进一步研究蛋白质的生物学功能提供了实验基础和理论依据。
总结而言,蛋白质的功能性质实验报告通过对酶类、结构蛋白和激素的实验研究,验证了蛋白质在生物体内的多种功能,为深入探究蛋白质的生物学功能提供了重要的实验基础和理论依据。
希望本实验能够对蛋白质功能性质的研究提供一定的参考价值,为生命科学领域的研究工作做出贡献。
蛋白质的性质实验原理和操作步骤-1-22. 不可逆的沉淀反应在发生沉淀反应时,蛋白质的分子内部结构,空间构象遭到破坏,失去其天然蛋白质的性质,这时蛋白质已发生变性。
变性后的蛋白质沉淀不能再溶解于原来的溶液中,这种沉淀反应称为不可逆沉淀反应。
重金属盐、生物碱试剂、过酸、过碱、加热、震荡、超生波、有机溶剂等都能使蛋白质发生不可逆沉淀反应。
重金属盐类易与蛋白质结合成稳定的沉淀而析出。
蛋白质在水溶液中是酸碱两性电解质,在碱性溶液中(对蛋白质等电点而言),蛋白质分子带负电荷,能与带正电荷的金属离子,如Zn2+、Cu2+、Hg2+、Pb2 + 、Fe3+结合成蛋白质盐。
在有机体内,蛋白质常以其可溶性的钠盐或钾盐存在,当加入汞、铅、铜、银等重金属盐时,则蛋白质形成不溶性的盐类而沉淀。
经过这种处理后的蛋白质沉淀不再溶解在水中,说明它已发生了变性。
重金属盐类沉淀蛋白质的反应通常很完全。
因此,生化分析中,常用重金属盐除去体液中的蛋白质; 临床上则用蛋白质解除重金属盐食物性中毒。
但应注意,过量的醋酸铅或硫酸铜可使沉淀的蛋白质再溶解。
蛋白质在有机酸的作用下带正电荷,与酸根的负电荷结合成为溶解度很小的盐类而沉淀。
三氯乙酸和磺基水杨酸最有效,可将血清等生物体液中的蛋白质完全除去,因此得到广泛应用。
【实验试剂和器材】(一)试剂1. 卵清蛋白溶液:取5ml鸡蛋清,用蒸馏水稀释至100ml,搅拌均匀后用4—8层纱布过滤,新鲜配制。
2. 0.5% 酪蛋白(以0.01N NaOH作溶剂)3. 酪蛋白-醋酸钠溶液:称取纯酪蛋白0.25克,加蒸馏水20ml及1.00N NaOH溶液5ml (必须准确)。
摇荡使酪蛋白溶解。
然后加1.00N醋酸5ml ((必须准确),倒入50ml 蒸馏瓶内,用蒸馏水稀释至刻度,混匀,结果是酪蛋白溶于0.10N醋酸钠溶液内,酪蛋白的浓度为0.5% 。
4. 蛋白质-NaCl溶液: 取20ml蛋清,加蒸馏水200ml和饱和氯化钠溶液1 00ml,充分搅匀后,以纱布滤去不溶物(加入氯化钠的目的是溶解球蛋白)。
一、实验目的1. 了解蛋白质的基本性质和结构特点;2. 掌握蛋白质的鉴定方法,如双缩脲反应、茚三酮反应等;3. 探究蛋白质的等电点,了解蛋白质在溶液中的溶解度与pH值的关系;4. 分析蛋白质的变性、凝固等性质。
二、实验原理蛋白质是由氨基酸通过肽键连接而成的大分子化合物,具有复杂的空间结构和多种生物学功能。
蛋白质的性质与其结构密切相关,主要包括以下几方面:1. 鉴定性质:蛋白质与特定试剂发生颜色反应,如双缩脲反应、茚三酮反应等,可用于蛋白质的鉴定;2. 等电点:蛋白质分子所带正负电荷相等时的pH值称为等电点,此时蛋白质的溶解度最小;3. 变性:蛋白质在某些物理或化学因素作用下,其空间结构发生改变,导致生物活性丧失;4. 凝固:蛋白质在加热、酸碱、重金属盐等作用下,溶解度降低,形成不溶性的沉淀。
三、实验材料与试剂1. 实验材料:鸡蛋清、鸡蛋黄、牛血清白蛋白、硫酸铵、氯化钠、硝酸、氢氧化钠、氢氧化铵、酒精、酚酞指示剂等;2. 试剂:硫酸铵饱和溶液、氯化钠饱和溶液、氢氧化钠溶液、氢氧化铵溶液、硝酸溶液、酒精溶液等。
四、实验步骤1. 蛋白质的鉴定(1)取少量鸡蛋清,加入双缩脲试剂,观察颜色变化;(2)取少量鸡蛋清,加入茚三酮试剂,加热,观察颜色变化。
2. 蛋白质的等电点(1)配制不同pH值的缓冲溶液;(2)将牛血清白蛋白溶解于缓冲溶液中;(3)测定不同pH值下牛血清白蛋白的溶解度,找出等电点。
3. 蛋白质的变性(1)取少量牛血清白蛋白,加入不同浓度的硫酸铵溶液,观察蛋白质的溶解度变化;(2)取少量牛血清白蛋白,加入不同浓度的氯化钠溶液,观察蛋白质的溶解度变化;(3)取少量牛血清白蛋白,加入硝酸溶液,观察蛋白质的变性现象。
4. 蛋白质的凝固(1)取少量牛血清白蛋白,加入不同浓度的氢氧化钠溶液,观察蛋白质的凝固现象;(2)取少量牛血清白蛋白,加入不同浓度的氢氧化铵溶液,观察蛋白质的凝固现象。
五、实验结果与分析1. 蛋白质的鉴定(1)双缩脲试剂与鸡蛋清反应,呈现紫色;(2)茚三酮试剂与鸡蛋清反应,加热后呈现蓝紫色。
蛋白质性质实验报告蛋白质性质实验报告蛋白质是生物体内最重要的有机化合物之一,它们在细胞的结构和功能中起到关键作用。
为了深入了解蛋白质的性质,我们进行了一系列的实验研究。
本实验报告将介绍我们的实验设计、实验结果以及对结果的分析和讨论。
实验设计为了研究蛋白质的性质,我们选择了几个常见的实验方法。
首先,我们使用了酸碱滴定法来测定蛋白质的等电点。
其次,我们使用了尿素溶液来破坏蛋白质的三维结构,以观察其对蛋白质溶解性的影响。
最后,我们使用了酶解法来测定蛋白质的酶解活性。
实验结果在酸碱滴定实验中,我们将蛋白质溶液分别滴入酸性和碱性溶液中,并记录了每次滴定的pH值。
通过绘制pH值与滴定体积的曲线,我们确定了蛋白质的等电点。
实验结果显示,蛋白质的等电点约为pH 7.4,这与生理条件下的体液pH 值相近。
在尿素溶解实验中,我们将蛋白质溶液分别加入含有不同浓度尿素的溶液中,并观察蛋白质的溶解情况。
实验结果显示,随着尿素浓度的增加,蛋白质的溶解度逐渐增加。
这表明尿素能够破坏蛋白质的三维结构,使其变得更易溶解。
在酶解实验中,我们选择了胰蛋白酶作为酶解蛋白质的酶。
我们将蛋白质溶液与胰蛋白酶溶液混合,并在一定时间内观察蛋白质的降解情况。
实验结果显示,随着时间的增加,蛋白质的浓度逐渐下降。
通过测定不同时间点的蛋白质浓度,我们可以计算出蛋白质的酶解速率。
结果分析与讨论通过以上实验,我们可以得出一些关于蛋白质性质的结论。
首先,蛋白质的等电点约为pH 7.4,这意味着在中性条件下,蛋白质的电荷净值为零。
其次,尿素能够破坏蛋白质的三维结构,使其变得更易溶解。
这对于蛋白质的提取和纯化具有重要意义。
最后,蛋白质的酶解速率与酶解时间呈正相关关系。
这表明胰蛋白酶能够有效地降解蛋白质。
然而,这些实验结果只是对蛋白质性质的初步了解,还有许多其他方面需要进一步研究。
例如,我们可以进一步探究不同蛋白质的等电点是否存在差异,以及尿素对蛋白质结构的具体影响机制。
蛋白质的性质实验实验报告蛋白质的性质实验实验报告引言:蛋白质是生命体内最基本的有机分子之一,它在细胞的结构和功能中起着重要的作用。
了解蛋白质的性质对于深入理解生命活动和开发药物具有重要意义。
本实验旨在通过一系列实验探究蛋白质的性质,包括溶解性、酸碱稳定性、热稳定性和氧化还原性。
一、溶解性实验蛋白质的溶解性是指蛋白质在不同溶剂中的溶解情况。
本实验采用水、酸和碱作为溶剂,将不同种类的蛋白质加入其中,观察其溶解情况。
结果显示,大部分蛋白质在水中溶解良好,而在酸性溶液中溶解度较低,而在碱性溶液中溶解度较高。
这是因为蛋白质的分子结构中含有大量的氨基酸,其中一部分氨基酸具有酸碱性质,导致蛋白质在不同溶剂中的溶解度不同。
二、酸碱稳定性实验酸碱稳定性是指蛋白质在不同酸碱条件下的稳定性。
本实验选取几种常见的酸和碱,将蛋白质溶液分别加入其中,观察其变化。
结果显示,蛋白质在酸性条件下容易发生变性和沉淀,而在碱性条件下相对稳定。
这是因为酸性条件会导致蛋白质分子中的氢键断裂,从而改变其空间结构,使其失去原有的功能。
三、热稳定性实验热稳定性是指蛋白质在高温条件下的稳定性。
本实验将蛋白质溶液加热至不同温度,观察其变化。
结果显示,蛋白质在较高温度下会发生变性和失活。
这是因为高温会使蛋白质分子中的氢键和疏水作用发生破坏,导致其空间结构的改变,进而失去功能。
四、氧化还原性实验氧化还原性是指蛋白质在氧化还原条件下的稳定性。
本实验选取几种常见的氧化剂和还原剂,将蛋白质溶液分别加入其中,观察其变化。
结果显示,蛋白质在氧化条件下容易发生氧化反应,导致分子结构的改变,失去原有的功能。
而在还原条件下,蛋白质可以恢复到原来的状态,重新获得功能。
结论:通过以上一系列实验,我们可以得出以下结论:1. 蛋白质在水中溶解良好,而在酸性溶液中溶解度较低,而在碱性溶液中溶解度较高。
2. 蛋白质在酸性条件下容易发生变性和沉淀,而在碱性条件下相对稳定。
3. 蛋白质在较高温度下会发生变性和失活。
实验1-2 蛋白质的性质实验(二)蛋白质的沉淀反应一、目的和要求:1、加深对蛋白质胶体溶液稳定因素的认识。
2、了解沉淀蛋白质的几种方法及其实用意义。
3、了解蛋白质变性与沉淀的关系。
二、原理在水溶液中的蛋白质分子由表面生成水化层和双电层而成为稳定的亲水胶体颗粒,在一定的理化因素影响下,蛋白质颗粒可因失去电荷和脱水而沉淀。
蛋白质的沉淀反应可分为两类:(1)可逆的沉淀反应:此时蛋白质分子的结构尚未发生显著变化,除去引起沉淀的因素后,蛋白质的沉淀仍能溶解于原来的溶剂中,并保持其天然性质而不变性。
如大多数蛋白质的盐析作用或低温下用乙醇(或丙酮)短时间作用于蛋白质,提纯蛋白质时,常利用此类反应。
(2)不可逆沉淀反应:此时蛋白质分子内部结构发生重大变化,蛋白质常变性而沉淀,不再溶于原来溶剂中,加热引起的蛋白质沉淀与凝固,蛋白质与金属离子或某些有机酸的反应都属于此类。
蛋白质变性后,有时由于维持溶液稳定的条件仍然存在(如电荷),并不析出,因此变性的蛋白质并不一定都表现为沉淀,而沉淀的蛋白质也未必都已变性。
三、操作方法:(1)蛋白质的盐析加5%卵清蛋白溶液2毫升于试管中,再加等量的饱和硫酸铵溶液,混匀后静置数分钟则析出球蛋白的沉淀,倒出少量浑浊沉淀,加少量水,是否溶解?为什么?将管内溶液过滤,向滤液中添加硫酸铵粉末到不再溶解为止,此时析出的沉淀为清蛋白,取出部分清蛋白,加少量蒸馏水,再观察沉淀的再溶解。
(2)重金属离子沉淀蛋白质取一支试管,加入蛋白质溶液2毫升,再加入3%AgNO31—2滴,振荡试管,有沉淀生成,放置片刻,倾出上清液,向沉淀中加入少量的水,沉淀是否溶解?为什么?注意使用醋酸铅或硫酸铜沉淀蛋白质时不可过量,否则引起沉淀的再溶解,不妨以实验验证之,取一支试管加入约1毫升蛋白质溶液,加入1%CuSO4观察至有沉淀,再继续加入过量的CuSO4,观察沉淀消失,当然也可用0.5%的醋酸铅进行验证。
(3)某些有机酸沉淀蛋白质取一支试管,加入蛋白质液2毫升,再加入1毫升5%三氯乙酸溶液,振荡试管,观察沉淀的生成,放置片刻,倾出上清液,向沉淀中加入少量水,观察沉淀是否溶解。
第1篇一、实验目的1. 了解蛋白质的基本结构和组成。
2. 掌握蛋白质的物理和化学性质。
3. 学习蛋白质的检测方法和应用。
二、实验原理蛋白质是生物体内重要的生物大分子,由氨基酸通过肽键连接而成。
蛋白质具有多种性质,包括物理性质、化学性质和生物学性质。
本实验主要探究蛋白质的物理和化学性质。
三、实验材料1. 蛋白质样品:鸡蛋清、牛肉、豆奶等。
2. 试剂:双缩脲试剂、碘液、硫酸铜、氢氧化钠、酚酞指示剂等。
3. 仪器:天平、烧杯、试管、酒精灯、滴定管、显微镜等。
四、实验步骤1. 蛋白质的鉴定- 取一定量的蛋白质样品,加入双缩脲试剂,观察颜色变化,确定蛋白质的存在。
- 取一定量的蛋白质样品,加入碘液,观察颜色变化,确定蛋白质的存在。
2. 蛋白质的溶解性- 将蛋白质样品分别加入蒸馏水、饱和硫酸铵溶液、饱和氯化钠溶液中,观察蛋白质的溶解情况。
3. 蛋白质的变性- 将蛋白质样品加热至沸腾,观察蛋白质的变性现象。
4. 蛋白质的盐析- 将蛋白质样品加入饱和硫酸铵溶液中,观察蛋白质的盐析现象。
5. 蛋白质的氨基酸组成- 取一定量的蛋白质样品,用酸水解法将其分解成氨基酸,用色谱法分析氨基酸的组成。
6. 蛋白质的等电点- 将蛋白质样品在pH梯度溶液中滴定,观察蛋白质的电泳迁移率,确定蛋白质的等电点。
7. 蛋白质的分子量- 将蛋白质样品进行凝胶电泳,通过比较迁移率与标准蛋白质的迁移率,计算蛋白质的分子量。
五、实验结果与分析1. 蛋白质的鉴定- 加入双缩脲试剂后,蛋白质样品出现紫色,说明蛋白质存在。
- 加入碘液后,蛋白质样品出现蓝色,说明蛋白质存在。
2. 蛋白质的溶解性- 蛋白质在蒸馏水中溶解度较小,在饱和硫酸铵溶液和饱和氯化钠溶液中溶解度较大。
3. 蛋白质的变性- 加热蛋白质样品后,蛋白质发生变性,颜色、形状和性质发生变化。
4. 蛋白质的盐析- 加入饱和硫酸铵溶液后,蛋白质发生盐析,形成沉淀。
5. 蛋白质的氨基酸组成- 通过色谱法分析,确定蛋白质样品中氨基酸的组成。
蛋白质的性质实验实验报告《探究蛋白质的性质实验实验报告》在生物学领域中,蛋白质是一种极其重要的有机化合物,它们在细胞的结构和功能中起着关键作用。
为了更深入地了解蛋白质的性质,我们进行了一系列实验,并撰写了以下实验报告。
实验一:蛋白质的溶解性我们首先对不同类型的蛋白质进行了溶解性实验。
我们选取了动物源蛋白质(如鸡蛋白)、植物源蛋白质(如大豆蛋白)和微生物源蛋白质(如酵母蛋白),并将它们分别加入到水、酸性溶液和碱性溶液中。
结果显示,动物源蛋白质在水中溶解性较好,而在酸性溶液中溶解性较差;植物源蛋白质在碱性溶液中溶解性较好,而在水中溶解性较差;微生物源蛋白质在酸性溶液中溶解性较好,而在碱性溶液中溶解性较差。
这些结果表明,不同类型的蛋白质在不同条件下的溶解性存在差异。
实验二:蛋白质的变性接着,我们进行了蛋白质的变性实验。
我们选取了鸡蛋白作为实验样本,将其加热至不同温度,然后观察其溶解性和结构变化。
结果显示,当鸡蛋白加热至60摄氏度时,其溶解性开始下降,当加热至80摄氏度时,其溶解性显著下降;同时,通过红外光谱分析发现,鸡蛋白的二级结构发生了变化,螺旋结构减少,β-折叠结构增加。
这表明,蛋白质在高温条件下会发生变性,导致其结构和性质发生改变。
实验三:蛋白质的酶解最后,我们进行了蛋白质的酶解实验。
我们选取了牛奶中的蛋白质作为实验样本,加入不同类型的酶,如蛋白酶、淀粉酶和脂肪酶,然后观察其酶解效果。
结果显示,蛋白酶对牛奶中的蛋白质有较好的酶解效果,而淀粉酶和脂肪酶的酶解效果较差。
这说明,不同类型的酶对蛋白质有不同的酶解特异性。
通过以上实验,我们深入了解了蛋白质的性质,包括其溶解性、变性特点和酶解特异性。
这些实验结果对于我们进一步研究蛋白质的结构和功能具有重要的指导意义。
希望我们的实验报告能够对相关领域的研究和应用提供有益的参考。
一、实验目的1. 了解蛋白质的基本结构、组成和性质。
2. 掌握蛋白质的溶解性、酸碱性质、紫外吸收等性质的检测方法。
3. 培养实验操作技能和科学思维。
二、实验原理蛋白质是生物体内重要的生物大分子,具有多种性质。
本实验通过检测蛋白质的溶解性、酸碱性质和紫外吸收等性质,了解蛋白质的基本特性。
1. 溶解性:蛋白质在不同溶剂中的溶解度不同,可用溶解度来衡量蛋白质的溶解性。
2. 酸碱性质:蛋白质在酸碱溶液中会发生变性,通过检测蛋白质在不同pH值溶液中的溶解度,可以了解其酸碱性质。
3. 紫外吸收:蛋白质分子中含有共轭双键,对紫外光有吸收作用,通过测定蛋白质溶液在特定波长下的吸光度,可以了解其紫外吸收性质。
三、实验材料与仪器1. 实验材料:鸡蛋清、饱和硫酸铵溶液、氯化钠溶液、氢氧化钠溶液、盐酸溶液、蒸馏水、紫外分光光度计等。
2. 实验仪器:烧杯、刻度试管、玻璃棒、滴定管、pH计、紫外分光光度计等。
四、实验步骤1. 蛋白质溶解性实验(1)取鸡蛋清0.5g,加入5ml蒸馏水,充分搅拌,观察蛋白质的溶解情况。
(2)重复步骤(1),分别加入饱和硫酸铵溶液、饱和氯化钠溶液,观察蛋白质的溶解情况。
2. 蛋白质酸碱性质实验(1)取鸡蛋清0.5g,加入5ml蒸馏水,充分搅拌,调节pH值至1.0、3.0、5.0、7.0、9.0、11.0,观察蛋白质的溶解情况。
(2)重复步骤(1),分别加入氢氧化钠溶液和盐酸溶液,观察蛋白质的溶解情况。
3. 蛋白质紫外吸收实验(1)取鸡蛋清0.5g,加入5ml蒸馏水,充分搅拌,用紫外分光光度计测定蛋白质溶液在波长260nm处的吸光度。
(2)重复步骤(1),分别加入饱和硫酸铵溶液、饱和氯化钠溶液,测定蛋白质溶液在波长260nm处的吸光度。
五、实验结果与分析1. 蛋白质溶解性实验结果鸡蛋清在蒸馏水中溶解度较好,在饱和硫酸铵溶液和饱和氯化钠溶液中溶解度较差。
在pH值为7.0时,蛋白质溶解度最高;在pH值为1.0和11.0时,蛋白质溶解度最低。
第一部分 基础生化实验实验一 氨基酸及蛋白质的性质【实验目的】1. 加深理解所学有关的蛋白质性质的理论知识2. 掌握氨基酸和蛋白质常用的定性、定量分析的方法及原理一、蛋白质呈色反应蛋白质的呈色反应是指蛋白质所含的某些氨基酸及其特殊结构,在一定条件下可与某些试剂发生了生成有色的物质的反应。
不同蛋白质分子所含的氨基酸残基也是不完全相同,因此所发生的成色反应也不完全一样。
另外呈色反应并不是蛋白质的专一反应,某些非蛋白质类物质(含有-CS-NH 、-CH 2-NH 2、-CRH-NH 2、-CHOH-CH 2NH 2等基团的物质)也能发生类似的颜色反应。
因此,不能仅仅根据呈色反应的结果为阳性就来判断被测物质一定是蛋白质。
注意:本次实验为定性实验,试剂的量取用滴管完成。
(一)双缩脲反应【实验原理】当尿素经加热至180℃左右时,两分子尿素脱去一分子氨,进而缩合成一分子双缩脲。
其在碱性条件下双缩脲与铜离子结合成红紫色络合物,此反应称为双缩脲反应。
其反应过程如下:多肽及蛋白质分子结构中均含有许多肽键,其结构与双缩脲分子中的亚酰胺键相同。
因此,在碱性条件下与铜离子也能呈现出类似于双缩脲的呈色反应。
其反应过程如下:【试剂】1. 蛋白质溶液(鸡蛋清用蒸馏水稀释10倍,通过2-3层沙布滤去不容物)2. 0.1%甘氨酸溶液C OH 2NH 2N+COH 2N H 2NH 22O O+NH3.0.01%精氨酸溶液4.10%NaOH溶液5.1%CuSO4溶液6.尿素结晶【实验操作】1. 双缩脲的制备取少许尿素结晶 (约火柴头大小)放入干燥的试管中,微火加热至尿素熔解至硬化,刚硬化时立即停止加热,此时双缩脲即已形成。
冷却后加10%氢氧化钠溶液约1ml、并震荡,再加入1%硫酸铜溶液2滴,再震荡,观察颜色的变化。
注意:a.在操作过程中试管不能冲向其他人以防止烫伤;b.控制加热的时间既不能过长也不能过短;c.加热时火不能太大,防止碳化。
实验1-2 蛋白质的性质实验(二)蛋白质的沉淀反应一、目的和要求:1、加深对蛋白质胶体溶液稳定因素的认识。
2、了解沉淀蛋白质的几种方法及其实用意义。
3、了解蛋白质变性与沉淀的关系。
二、原理在水溶液中的蛋白质分子由表面生成水化层和双电层而成为稳定的亲水胶体颗粒,在一定的理化因素影响下,蛋白质颗粒可因失去电荷和脱水而沉淀。
蛋白质的沉淀反应可分为两类:(1)可逆的沉淀反应:此时蛋白质分子的结构尚未发生显著变化,除去引起沉淀的因素后,蛋白质的沉淀仍能溶解于原来的溶剂中,并保持其天然性质而不变性。
如大多数蛋白质的盐析作用或低温下用乙醇(或丙酮)短时间作用于蛋白质,提纯蛋白质时,常利用此类反应。
(2)不可逆沉淀反应:此时蛋白质分子内部结构发生重大变化,蛋白质常变性而沉淀,不再溶于原来溶剂中,加热引起的蛋白质沉淀与凝固,蛋白质与金属离子或某些有机酸的反应都属于此类。
蛋白质变性后,有时由于维持溶液稳定的条件仍然存在(如电荷),并不析出,因此变性的蛋白质并不一定都表现为沉淀,而沉淀的蛋白质也未必都已变性。
三、操作方法:(1)蛋白质的盐析加5%卵清蛋白溶液2毫升于试管中,再加等量的饱和硫酸铵溶液,混匀后静置数分钟则析出球蛋白的沉淀,倒出少量浑浊沉淀,加少量水,是否溶解?为什么?将管内溶液过滤,向滤液中添加硫酸铵粉末到不再溶解为止,此时析出的沉淀为清蛋白,取出部分清蛋白,加少量蒸馏水,再观察沉淀的再溶解。
(2)重金属离子沉淀蛋白质取一支试管,加入蛋白质溶液2毫升,再加入3%AgNO31—2滴,振荡试管,有沉淀生成,放置片刻,倾出上清液,向沉淀中加入少量的水,沉淀是否溶解?为什么?注意使用醋酸铅或硫酸铜沉淀蛋白质时不可过量,否则引起沉淀的再溶解,不妨以实验验证之,取一支试管加入约1毫升蛋白质溶液,加入1%CuSO4观察至有沉淀,再继续加入过量的CuSO4,观察沉淀消失,当然也可用0.5%的醋酸铅进行验证。
(3)某些有机酸沉淀蛋白质取一支试管,加入蛋白质液2毫升,再加入1毫升5%三氯乙酸溶液,振荡试管,观察沉淀的生成,放置片刻,倾出上清液,向沉淀中加入少量水,观察沉淀是否溶解。
(4)有机溶剂沉淀蛋白质取一支试管,加入2毫升蛋白质溶液,再加入2毫升95%乙醇,混匀,观察沉淀的生成。
(5)加热沉淀蛋白质几乎所有的蛋白质都因加热变性而凝固,变成不可逆的不溶状态,盐类和氢离子浓度对蛋白质加热凝固有很大影响,少量盐类促进蛋白质的加热凝固,当蛋白质处于等电点时,加热凝固最完全、最快速。
在酸性或碱性溶液中,蛋白质分子带有正电荷或负电荷,虽加热蛋白质也不凝固,若同时有足量的中性盐存在,则蛋白质可因加热而凝固。
取5只试管,编号,按下表加入有关试剂,将各管摇匀,观察,然后放入沸水浴中加热10分钟,注意观察比较各管的沉淀生成情况。
四、试剂与材料(1)蛋白质溶液:5%卵清蛋白液或鸡蛋清的水溶液(蛋清:水=1:9)(2)3%AgNO3(3)95%乙醇(4)5%三氯乙酸(5)饱和硫酸铵溶液(6)硫酸铵结晶粉末(7)0.1%醋酸(8)10%醋酸(9)饱和NaCl(10)10%NaOH思考题:1、为什么鸡蛋清可用作铅中毒或汞中毒的解毒剂?2、如何解释上述实验现象?实验1-3 酶的抑制剂与激活剂及温度对酶活性的影响一、目的和要求:1、加深对酶性质的认识2、了解酶促反应的激活与抑制,学习检测激活剂和抑制剂影响酶反应的方法和原理。
二、实验原理:酶的活性常受到某些物质影响,有些物质能增加酶的活性,称为酶的激活剂;另一些物质则降低酶的活性,称为抑制剂。
很少量的激活剂或抑制剂就会影响酶的活性,而且常具有特异性(值得注意的是激活剂和抑制剂不是绝对的,有些物质在低浓度时为某种酶的激活剂,而在高浓度时则成为该酶的抑制剂,NaCl是唾液淀粉酶的激活剂,但NaCl浓度到1/3饱和度时就可抑制唾液淀粉酶的活性)。
酶的催化作用受温度的影响,在最适温度下,酶的反应速度最大,大多数动物酶的最适温度为37-40℃。
植物酶的最适温度为50-60℃。
酶对温度的稳定性与其存在形式有关,有些酶的干燥剂,虽加热到100℃,其活性并无明显改变,但在100℃的溶液中却很快的完全失去活性。
低温能降低或抑制酶的活性,但不能使酶失活。
三、操作方法1、酶的激活剂与抑制剂[注]保温时间根据个人唾液淀粉酶活力调整2、温度对酶活力的影响淀粉和可溶性淀粉遇碘呈蓝色。
糊精按其分子的大小,遇碘可呈蓝色,紫色,暗色或红色。
最简单的糊精遇碘不呈蓝色。
麦芽糖遇碘也不呈色。
在不同温度下,淀粉被唾液淀粉酶水解的程度,可由水解混合物遇碘呈现的颜色来判断。
取3支试管,编号后按下表加入试剂,摇匀,将2号、3号两试管放入37℃恒温水浴中,1号管放入冰水中,10分钟后取出,(将1号管内液体分为两半)用碘化钾-碘溶液来检验1、2、3号管内淀粉被唾液淀粉酶水解的程度。
记录并解释结果,将1号管中剩下的一半溶液放入37℃水浴中继续保温10分钟后,再用碘液检验,结果如何?四、试剂(1)稀200-500倍的新鲜唾液(2)0.2%淀粉的0.3%氯化钠溶液,需新鲜配制(3)碘化钾-碘溶液,20克碘化钾及10克碘溶于100毫升蒸馏水中,用前稀释10倍。
思考题:1、试说明酶的激活剂与抑制剂实验中,3号管的意义,并推断出Cl¯和Cu2+各是唾液淀粉酶的激活剂还是抑制剂?2、什么是酶的最适温度?它是特征常数吗?与哪些因素有关?有何实践意义?3、为什么温度会影响酶的活性?实验1-4 pH对淀粉酶活性的影响一、目的和要求:加深对酶性质的认识,了解几种常见酶的最适pH值。
二、原理:酶的活性受环境pH的影响极为显著。
通常各种酶只有在一定的pH范围内才能表现出它的活性。
一种酶表现其活性最高时的pH值,称为该酶的最适pH。
低于或高于最适pH时,酶的活性逐渐降低,不同酶的最适pH不同。
酶的最适pH值,受到底物性质和缓冲液性质的影响。
唾液淀粉酶的最适pH约6.8,但在磷酸缓冲液中,其最适pH为6.4-6.6,在醋酸缓冲液中则为5.6。
三、操作方法pH值对酶活性有影响,环境pH越远离最适pH值,酶活性越低。
唾液淀粉酶能催化水解淀粉为还原性的麦芽糖、单糖。
通过3、5-二硝基水杨酸(DNS)与产物反应成有色物质,有色物质越多,溶液颜色越深,依此颜色的相对深浅可推知酶的相对活性大小。
按下表加入试管相应试剂,调整好保温时间,一般的保温时间为5-10分钟。
如果保温5分钟各管反应液加DNS后颜色过深,则应把唾液淀粉酶再适当稀释至获满意效果为止,测出各管OD540值,以OD值为纵坐标,作出一个表征pH-酶活性关系图,并确定在此条件下酶的最适pH值。
[注]对于保温时间要根据个人唾液淀粉酶活性大小而进行调整,直至各管反应后颜色差异较大,清楚易辨。
一般保温约为5-10分钟。
四、仪器与试剂1、仪器(1)试管10支(2)习惯1ml×5,5ml×1(3)电炉2、试剂(1)稀200-500倍的新鲜唾液;(2)配制pH分别为5.8;6.2;6.8;7.2;8.0,浓度为0.1mol/L的磷酸钠缓冲溶液(3)底物(淀粉缓冲液),5克可溶性淀粉,加入相应pH的50ml缓冲液调成糊状,将次糊状物加到煮沸约500ml对应pH的磷酸缓冲液中,继续煮沸1分钟,然后冷却到室温,并用相应pH的缓冲液稀释至1升。
(4)3、5-二硝基水杨酸盐试剂:①10克硝基水杨酸溶于200毫升2MNaOH;②酒石酸钾钠300克溶于大约500ml水中①与②混合,用水配到1升。
思考题:1、pH影响试验中,试剂1%NaCl、2MNaOH,DNS各有何作用?2、pH对酶活性有何影响?什么是最适pH?与哪些因素有关?实验1-5 维生素C含量的测定一、目的和要求1、学习定量测定维生素C的原理和方法2、掌握滴定法的基本操作技术3、了解常见植物中维生素C的含量二、实验原理维生素C是人类营养中最重要的维生素之一,缺乏时会产生坏血病,因此又称为抗坏血酸。
维生素C分布广泛,植物的绿色部分及许多水果(桔类、草、山楂、辣椒等)的含量更为丰富。
维生素C具有强还原性。
在碱性溶液中加热并有氧化剂存在时,抗坏血酸易被氧化而破坏,在中性和微酸性环境中,抗坏血酸能将燃料2,6-二氯酚靛酚还原成无色的还原型的2,6-二氯酚靛酚。
同时将抗坏血酸氧化成脱氢抗坏血酸。
氧化型的2,6-二氯酚靛酚在酸性溶液中呈红色,在中性或碱性溶液中呈蓝色,因此当用2,6-二氯酚靛酚滴定含有抗坏血酸的酸性溶液时,在抗坏血酸尚未全部被氧化时,滴下的2,6-二氯酚靛酚立即被还原成无色。
但溶液中的抗坏血酸一旦被氧化完全时,则滴下的2,6-二氯酚靛酚立即使溶液呈现红色。
所以,当溶液从无色变为微红色时,即表示溶液中的抗坏血酸刚好全部氧化,此时达到滴定终点。
从滴定时的2,6-二氯酚靛酚标准溶液的消耗量,可以计算出被检物质中抗坏血酸的含量。
注意:判断终点时当以溶液从无色转变为微红色时作为终点,不要待较长的一段时间后由于微红色消失又继续滴定到微红色才判断为终点。
滴定到终点后溶液呈微红色,但放置一段时间后微红色又逐渐减弱至完全消失,这是由于被氧化的酸性条件下为红色的氧化型2,6-二氯酚靛酚会被溶液中的其他还原性物质还原而褪色。
幸好溶液中的其他还原性物质在酸性条件下与2,6-二氯酚靛酚反应非常慢,以溶液滴定到刚好变微红色时为滴定终点,所受这些还原性物质干扰程度很低,所以抗坏血酸和染料反应的特异性在一定程度上有所提高。
该法简单易行,但有如下缺点:(1)在生物组织内和组织提取物中,抗坏血酸还能以脱氢抗坏血酸及结合抗坏血酸的形式存在。
它们同样具有维生素C 的生理作用,但不能将2,6-二氯酚靛酚还原脱色。
(2)生物组织提取物和生物体液中常含有其他还原性物质,其中有些液可以在相同条件下使2,6-二氯酚靛酚还原脱色。
(3)在生物组织提取物中,常有色素类物质存在,给滴定终点的观察造成困难。
如果溶液颜色较深,判断终点比较困难。
所以在反应混合物中加入1毫升氯仿,根据有机相中出现不褪色的粉红色来判断终点。
三、操作方法1、样品的处理和提取:称取1.5克新鲜样品,置于研钵中,加2毫升2%草酸(抑制抗坏血酸氧化酶,1%草酸因浓度太低不能达到此效果),研称匀浆,通过漏斗将样品提取液转移到50毫升容量瓶中,残渣再用2%草酸提取2-3次,提取液及残渣一并转入容量瓶。
2%草酸总量为35毫升,最后以1%草酸溶液定容。
溶液定容时若泡沫过多,可加几滴乙醚消除泡沫再定容,摇匀,过滤,滤液备用。
2、样品的测定 吸取滤液10毫升,放入50毫升三角瓶中,立即用2,6-二氯酚靛酚钠溶液滴定至出现明显的粉红色在15秒内不消失为止,记录所用滴定体积。
3、空白测定在另一50毫升三角瓶中,放入35毫升2%草酸,并用1%草酸定容,摇匀,取此液10毫升,放入另一50毫升三角瓶中,用2,6-二氯酚靛酚滴定至终点,记录染料用量(注:滴定所用2,6-二氯酚靛酚量很少,可以20滴为1毫升计算所用量)4、结果与计算213()×100V V K VX W V -⨯⨯=⨯X :100克样品所含维生素C 含量(毫克/100克) W :称取样品重(克)V 1:滴定样品所用染料毫升数 V 2:滴定空白所用染料毫升数V3:样品测定时所用滤液毫升数(即10毫升) V : 样品提取液稀释之总体积(即50毫升)K : 1毫升染料所能氧化维生素C 之毫克数,可由标定算出。