1教案:总复习---高中数学必修三
- 格式:doc
- 大小:316.97 KB
- 文档页数:8
高中数学必修三概率教案
教学目标:
1. 了解概率的基本概念;
2. 掌握基本概率计算方法;
3. 能够应用概率论解决实际问题。
教学重点:
1. 概率的基本概念;
2. 概率计算方法。
教学难点:
1. 复杂事件的概率计算。
教学准备:
1. 课件、教材;
2. 题目及答案;
3. 实验材料。
教学过程:
一、导入(5分钟)
老师可以通过提问引导学生回顾概率的基本概念,如事件、样本空间等。
二、概率的基本概念(15分钟)
1. 介绍概率的基本概念和性质;
2. 讨论概率的计算方法;
3. 举例说明概率的应用。
三、概率计算方法(20分钟)
1. 介绍概率计算方法:古典概率、几何概率、条件概率等;
2. 演示如何计算简单事件的概率;
3. 练习题练习。
四、复杂事件的概率计算(20分钟)
1. 介绍复杂事件的概率计算方法;
2. 分析实际案例,解决复杂事件的概率计算问题;
3. 练习题练习。
五、实验环节(15分钟)
老师设计简单的实验活动,让学生通过实验了解概率的概念和计算方法。
六、课堂总结(5分钟)
对本节课的重点内容进行总结,并提醒学生复习和巩固。
七、课后作业
布置相关作业,巩固学生所学知识。
备注:本教案仅供参考,具体教学过程还应根据实际情况进行调整。
高中数学必修三3.2教案
教学重点:椭圆的定义和性质,三要素、离心率和焦点等相关理论知识的掌握。
教学难点:椭圆方程的转化和应用、椭圆的综合应用、以及解答椭圆相关问题的思维能力。
教学准备:教学课件、教学实验装置、教学实验设备、课堂习题
教学过程:
一、导入:通过提问和展示图片等形式引导学生了解椭圆的概念和性质。
二、讲解:介绍椭圆的定义、三要素、离心率、焦点等椭圆的基本概念和性质,以及相关
定理。
三、实验:通过实验装置演示椭圆的性质和形状,帮助学生更直观地理解椭圆的特点。
四、练习:设计一些练习题,让学生灵活运用椭圆的相关知识进行计算和分析,加深对椭
圆的理解。
五、讨论:组织学生进行小组讨论,分享解题思路和方法,探讨解答椭圆问题的多种可能性。
六、总结:总结本节课的内容,强调椭圆的重要性和应用价值,激发学生学习兴趣。
七、作业:布置相关练习作业,巩固学生对椭圆的理解和掌握。
教学反思:本节课通过多种形式和方法引导学生深入了解椭圆的相关知识,激发学生学习
兴趣和解题能力,提高了学生数学素养和应用能力。
高中数学必修三试讲教案
主题:直线与平面
一、教学目标
1. 知道直线和平面的基本概念,并能够区分二者。
2. 掌握直线和平面之间的位置关系。
3. 熟练运用直线和平面的性质解决相关问题。
二、教学重点难点
1. 直线和平面的定义及相关概念。
2. 直线和平面之间的位置关系。
三、教学内容
1. 直线和平面的定义。
2. 直线和平面的交点。
3. 直线和平面的位置关系。
四、教学步骤
1. 导入:通过问题引入直线和平面的相关知识。
2. 概念讲解:介绍直线和平面的定义及性质。
3. 实例分析:通过实例演示直线和平面之间的位置关系。
4. 训练演练:让学生进行练习,巩固所学知识。
5. 拓展训练:组织学生进行一些拓展性的训练,提高学生的综合运用能力。
6. 提问答疑:对学生提出的问题进行解答。
7. 作业布置:布置相关作业,巩固所学知识。
五、教学方法
1. 讲授结合练习的方法,加强学生理解和运用能力。
2. 实例分析的方法,通过实例让学生更加直观地理解知识点。
3. 启发式教学法,引导学生主动探究和发现知识。
4. 互动式教学方法,增强学生之间的交流和合作。
六、教学手段
1. 粉笔、黑板、投影仪等教学工具。
2. 相关课件和实例题材料。
七、教学评估
1. 学生的课堂表现。
2. 练习题的完成情况。
3. 作业考核的成绩。
高中必修三数学统计教案
主题:统计学概述
目标:学生能够了解统计学的基本概念和应用,并掌握一些基本的统计方法。
一、引入
通过实例引入统计学的概念,让学生了解统计学在日常生活中的重要性。
二、概念介绍
1.统计学的定义和作用:统计学是研究数据收集、整理、分析和解释的一门学科,是现代科学和社会科学中不可或缺的工具。
2.统计学的基本概念:总体、样本、抽样、数据等。
三、常用统计方法
1.描述统计方法:平均数、中位数、众数等。
2.概率统计方法:频率分布、概率分布、期望值等。
3.推断统计方法:参数估计、假设检验等。
四、练习
1.实例分析:通过实例让学生掌握如何应用统计方法进行数据分析。
2.练习题:让学生做一些实践练习,巩固所学的统计方法。
五、总结
总结本节课的内容,强调统计学的重要性,并展望后续学习内容。
六、作业
布置相关作业,让学生进一步巩固所学知识。
七、扩展
介绍一些统计学在现代科学研究和社会应用中的具体案例,激发学生对统计学的兴趣和好奇心。
注:此为一份简单的高中必修三数学统计教案范本,具体教学内容和方法可根据教学需求进行调整和改进。
高中数学教案科三
科目:高中数学
教学内容:科三范本
教学目标:
1.了解科学计数法的概念和应用。
2.掌握科学计数法的转换方法。
3.能够熟练运用科学计数法解决实际问题。
教学重点:
1.科学计数法的概念和应用。
2.科学计数法的转换方法。
教学难点:
1.科学计数法与乘法、除法的结合运用。
2.实际问题的运用。
教学过程:
一、概念导入(5分钟)
教师向学生介绍科学计数法的概念及其应用,并通过实际例子让学生了解科学计数法在现实生活中的重要性。
二、基本知识点讲解(10分钟)
教师讲解科学计数法的转换方法,包括整数部分和小数部分的移动,并为学生提供练习的机会,确保他们掌握基本的转换方法。
三、综合运用(15分钟)
教师设计一些综合性的练习题,让学生综合运用科学计数法进行乘法、除法等运算,培养他们的解决问题能力。
四、实际问题解决(10分钟)
教师设计一些实际问题,让学生运用科学计数法解决实际生活中的问题,提高他们的应用能力。
五、总结回顾(5分钟)
教师对本节课的内容进行总结回顾,并鼓励学生继续练习和巩固所学知识。
六、作业布置(5分钟)
教师布置相关作业,要求学生复习科学计数法的知识,并解决相关练习题,以巩固所学内容。
教学反思:
通过本节课的教学,学生能够掌握科学计数法的基本概念和转换方法,能够熟练运用科学计数法解决实际问题,提高了他们的数学运算能力和解决问题能力。
在未来的教学中,可以加强实际问题的设计,帮助学生将所学知识运用到实际生活中。
高中人教版数学必修3教案
课时安排:第一课时
教学内容:函数及其性质
教学目标:通过本节课的学习,使学生能够掌握函数的基本概念,并了解函数的性质。
教学重点:函数的概念、定义和性质。
教学难点:函数的性质的应用。
教学过程:
一、导入(5分钟)
教师通过举例子引入函数的概念,让学生了解函数在生活中的应用。
二、讲解(15分钟)
1. 定义函数的概念,函数的符号表示。
2. 函数的定义及分类。
3. 函数的性质:有界性、单调性、奇偶性等。
三、练习(20分钟)
1. 练习函数的定义和性质。
2. 让学生通过练习题来巩固所学知识。
四、拓展(10分钟)
教师引导学生思考函数在现实生活中的应用,并提出相关问题让学生讨论。
五、作业布置(5分钟)
布置相关练习题作业,巩固本节课所学内容。
教学反思:
通过本节课的教学,学生对函数的概念及性质有了初步的了解,但在练习过程中发现学生对函数性质的应用理解有所欠缺,需要在后续的教学中加强相关练习。
同时,鼓励学生多思考函数在实际生活中的应用,能够更好地理解函数的概念。
高中人教数学必修三教案
第一课:函数的概念及表示
一、教学目标:
1.了解函数的基本概念和定义;
2.掌握函数的表示方法;
3.能够应用函数的概念进行问题的解决。
二、教学内容:
1.函数的定义和表示;
2.自变量、因变量和定义域、值域;
3.函数的图像和性质。
三、教学重点和难点:
1.函数的定义和表示;
2.函数的图像和性质。
四、教学过程:
1.导入:通过实际生活中的例子引入函数的概念;
2.讲解:介绍函数的定义、表示方法以及自变量、因变量的概念;
3.练习:让学生做一些简单的函数表示和定义域、值域的练习;
4.拓展:给出一些函数的图像让学生分析函数的性质;
5.归纳总结:总结函数的概念、表示方法和性质。
五、课堂作业:请同学们完成课后习题,巩固所学知识。
六、教学反思:通过本节课的教学,学生能够初步了解函数的基本概念和表达方式,为以后学习更复杂的函数打下基础。
以上为《高中人教数学必修三教案范本》,希望对您有所帮助。
高中必修三数学知识点总结必看学习必须与实干相结合。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。
下面是小编给大家整理的一些高中必修三数学知识点的学习资料,希望对大家有所帮助。
高一数学必修三知识点总结1.一些基本概念:(1)向量:既有大小,又有方向的量.(2)数量:只有大小,没有方向的量.(3)有向线段的三要素:起点、方向、长度.(4)零向量:长度为0的向量.(5)单位向量:长度等于1个单位的向量.(6)平行向量(共线向量):方向相同或相反的非零向量.※零向量与任一向量平行.(7)相等向量:长度相等且方向相同的向量.2.向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点高一数学必修三知识点总结一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N.或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
本册综合-人教A版高中数学选择性必修第三册(2019版)教案一、教材简介《本册综合-人教A版高中数学选择性必修第三册(2019版)》是人民教育出版社出版的一本高中数学教材,适合高中三年级学生使用,主要包括以下内容:•函数及三角函数•导数与微分•不等式与极值•平面向量•空间向量•平面解析几何•空间解析几何•推理与证明教材全面、系统性强,涉及到大量的数学概念和知识点,便于学生深入理解数学原理,并能在应用中灵活运用,提升数学水平。
二、教学目标本教案旨在使学生掌握本册综合教材中重要的数学概念和知识点,提高学生数学解决问题的能力和实际应用能力,具体包括以下目标:1.掌握函数的概念,具有根据函数图像和性质解决实际问题的能力。
2.了解导数的概念和几何意义,掌握常用函数的导数公式及其在实际问题中的应用。
3.掌握解不等式的基本方法,了解函数中极值、最值的概念,通过实际问题的应用,培养思维能力和判断能力。
4.掌握平面向量和空间向量的基本概念、数量表示法和运算法则,熟悉向量的几何意义及其在实际问题中的应用。
5.理解平面解析几何和空间解析几何的基本思想和方法,掌握重要公式和定理,熟悉解析几何应用题的解法。
6.培养逻辑思维能力,掌握推理和证明方法,能够进行简单的数学证明。
三、教学内容与方法1. 函数与三角函数内容•函数概念•函数性质(奇偶性、单调性、周期性等)•常用函数(幂函数、指数函数、对数函数、三角函数等)•函数图像和应用方法•教师讲解+学生思考•教师示范+学生练习•学生小组合作完成练习题和应用题2. 导数与微分内容•导数的概念和含义•常用函数的导数公式(标准函数、初等函数、反三角函数等)•函数的微分及其应用方法•教师讲解+学生思考•教师示范+学生练习•学生小组合作完成练习题和应用题3. 不等式与极值内容•不等式的基本性质和解法•函数极值和最值的概念•常用不等式及其应用(比如柯西-施瓦茨不等式、均值不等式等)方法•教师讲解+学生思考•教师示范+学生练习•学生小组合作完成练习题和应用题4. 平面向量和空间向量内容•向量的基本概念和数量表示法•向量的加减法和数量积、向量积运算•向量的几何意义及其在空间几何中的应用(平行四边形定理、共面向量定理等)•向量的坐标表示和平面向量在平面直角坐标系下的应用(平面向量共线、垂直等问题)方法•教师讲解+学生思考•教师示范+学生练习•学生小组合作完成练习题和应用题5. 平面解析几何和空间解析几何内容•平面解析几何基本思想和方法(点、线、圆等的方程及其特殊情况的处理)•空间解析几何基本思想和方法(点、直线、平面等的方程和参数式)方法•教师讲解+学生思考•教师示范+学生练习•学生小组合作完成练习题和应用题6. 推理与证明内容•命题概念和表示方法•命题的逻辑运算和关系•常见的逻辑命题和其真值表•数学证明方法和技巧方法•教师讲解+学生思考•教师示范+学生练习•学生小组合作完成练习题和应用题四、教学评价与反馈本教学计划采用阶段性、多元化的评价方式,包括课堂测验、作业评查、小组合作成果评价等。
高中数学教案必修三课题:必修三第一章矩阵学习目标:1. 了解矩阵的基本概念和运算规则;2. 掌握矩阵的加法、减法和数乘运算;3. 掌握矩阵的乘法规则;4. 掌握矩阵的转置和逆矩阵;5. 能够解决实际问题中的矩阵运算。
教学步骤:1. 引入矩阵的概念,让学生了解什么是矩阵及其表示方法;2. 理解矩阵的基本运算规则,包括加法、减法和数乘;3. 学习矩阵的乘法规则,重点讲解矩阵乘法的定义和运算规则;4. 探讨矩阵的转置和逆矩阵的概念及运算方法;5. 练习矩阵运算的相关题目,让学生熟练掌握矩阵的基本运算;6. 结合实际问题,让学生应用矩阵运算解决实际问题,提高学生的问题解决能力。
教学重点和难点:重点:矩阵的乘法规则,矩阵的逆矩阵;难点:矩阵的乘法规则的理解和运用。
教学辅助手段:1. 教科书内容;2. 讲义、习题及答案;3. 多媒体教学辅助设施。
教学方式:1. 教师讲解;2. 学生主动学习;3. 小组合作学习;4. 讨论和解答疑难问题。
课堂设计:1. 通过实例引入矩阵的概念;2. 讲解矩阵的基本运算;3. 练习矩阵的加法、减法和数乘运算;4. 讲解矩阵的乘法规则;5. 练习矩阵乘法的相关题目;6. 讲解矩阵的转置和逆矩阵;7. 练习矩阵逆矩阵的计算;8. 结合实际问题进行矩阵应用练习。
作业布置:1. 完成课堂练习题;2. 自主探究相关知识,并总结提炼;3. 解决实际问题,并用矩阵方法解答。
课后反思:1. 教学效果如何,学生的掌握情况如何;2. 学生对矩阵的理解程度及问题;3. 改进的方法和措施。
历年教资高中数学科三教案
教学内容:概率与统计
教学目标:学生能够掌握概率与统计相关知识,能够应用这些知识解决实际问题。
教学重点:概率、统计
教学难点:条件概率、统计推断
教学过程:
一、导入(5分钟)
首先,通过一个生活中常见的例子引入概率与统计的概念,让学生了解到概率与统计在我们日常生活中的重要性。
二、概率部分(20分钟)
1.讲解基本概率概念,包括样本空间、事件、概率等。
2.讲解条件概率的概念及计算方法。
3.通过实例讲解概率计算的方法,让学生掌握概率计算的基本技巧。
三、统计部分(20分钟)
1.介绍统计的基本概念,包括数据的收集、整理、描述等。
2.讲解描述性统计方法,包括均值、中位数、众数等。
3.引导学生通过实际数据进行统计分析,让他们掌握统计分析方法。
四、综合练习(15分钟)
为学生提供一些练习题,让他们巩固所学知识,并能够灵活应用到实际问题中。
五、课堂小结(5分钟)
对本节课所学内容进行总结,并提出下节课的预习内容。
教学反思:通过这堂课的教学,学生们基本掌握了概率与统计的相关知识,能够初步应用到实际问题中。
但在教学过程中,需要加强引入例子的实际性,让学生更好地理解和运用所学知识。
总复习数学教案高中
主题:高中数学总复习
时间:2周
教学目标:
1. 复习高中数学的重点知识点
2. 提高学生解题能力和思维逻辑
3. 为高考做好最后一次综合性的复习
教学内容:
第一周:
1. 复习代数与方程部分:包括多项式、一元二次方程、不等式、函数等
2. 复习几何部分:包括平面几何和立体几何的知识点
3. 复习概率与统计部分:包括概率的基本概念、排列组合、统计图表等
第二周:
1. 复习三角函数部分:包括三角函数的基本概念、常用公式等
2. 复习数列与数学归纳法:包括等差数列、等比数列、数学归纳法的应用等
3. 复习解析几何部分:包括直线、平面、圆的方程、三角形的性质等
教学方法:
1. 教师讲解复习重点知识点,引导学生理清思路,掌握解题方法
2. 组织学生进行针对性的练习,加强对知识点的巩固
3. 布置作业,督促学生独立思考、解题
4. 定期组织模拟考试,检验学生学习效果
教学资源:
1. 教材、课外辅导书等书籍
2. 论坛、网络资源等
3. 模拟试题、习题等
评价方式:
1. 平时作业的表现
2. 模拟考试成绩
3. 课堂表现和参与度
注意事项:
1. 保持良好的学习状态,认真对待每一堂课
2. 积极主动地找老师请教问题
3. 涉及重要知识点的内容要重点掌握
以上是本次高中数学总复习教案的大体框架,希望同学们在此次复习中能够全力以赴,取得优异的成绩。
祝愿大家高考顺利,取得理想的成绩!。
高中数学必修3课教案
教学内容:高中数学必修3 快速算法
教学目标:
1. 了解快速算法的概念和原理。
2. 学会使用快速算法快速求解数学问题。
3. 提高计算速度和准确性。
教学重点:
1. 了解快速算法的基本原理。
2. 掌握快速算法的具体操作步骤。
3. 练习运用快速算法解决数学问题。
教学难点:
1. 理解快速算法中的各项操作步骤。
2. 在解题过程中灵活运用快速算法。
教学准备:
1. 讲桌上摆放清晰的教学板书。
2. 准备好黑板、彩色粉笔和计算器。
3. 备有足够的练习题供学生练习。
教学过程:
一、引入:
教师通过举例介绍快速算法的概念,并引导学生思考如何能够更快速地完成数学运算。
二、讲解:
1. 讲解快速算法的原理和基本概念。
2. 示范快速算法的操作步骤。
3. 举例说明快速算法在解题中的应用。
三、练习:
1. 学生跟随教师操作快速算法,并进行练习。
2. 学生自主进行练习题目,巩固所学知识。
四、总结:
教师总结本节课所学内容,强调快速算法的重要性和实用性。
五、作业:
布置相关作业,要求学生练习使用快速算法解决数学问题。
教学反思:
教师应根据学生的学习情况和反馈及时调整教学过程,并根据学生的实际情况适时添加适合的练习题目,确保学生能够掌握和运用快速算法。
复习课(三) 概率古典概型是学习及高考考查的重点,考查形式以填空题为主,试题难度属容易或中等,处理的关键在于用枚举法找出试验的所有可能的基本事件及所求事件所包含的基本事件.还要注意理解事件间关系,准确判断两事件是否互斥,是否对立,合理利用概率加法公式及对立事件概率公式.[考点精要]1.事件(1)基本事件在一次试验中可能出现的每一个可能结果.(2)等可能事件假设在一次试验中,每个基本事件发生的可能性都相同,那么称这些基本事件为等可能基本事件.(3)互斥事件①定义:不能同时发生的两个事件称为互斥事件.如果事件A1,A2,…,A n中的任何两个都是互斥事件,就说事件A1,A2,…,A n彼此互斥.②规定:设A,B为互斥事件,假设事件A,B至少有一个发生,我们把这个事件记作A+B.(4)对立事件两个互斥事件必有一个发生,那么称这两个事件为对立事件,事件A的对立事件记作A.2.概率的计算公式(1)古典概型①特点:有限性,等可能性.②计算公式:P(A)=事件A包含的基本事件数试验的基本事件总数.(2)互斥事件的概率加法公式①假设事件A,B互斥,那么事件A+B发生的概率等于事件A,B分别发生的概率的和即P(A+B)=P(A)+P(B).②假设事件A1,A2,…,A n两两互斥.那么古典概型P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ). (3)对立事件计算公式:P (A )=1-P (A ).[典例](1)5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为________.(2)将2本不同的数学书和1本语文书在书架上随机排成一行,那么2本数学书相邻的概率为________.(3)随机掷两枚骰子,它们向上的点数之和不超过5的概率记为p 1 ,点数之和大于5的概率记为p 2 ,点数之和为偶数的概率记为p 3 ,那么p 1,p 2,p 3从小到大依次为________.(4)(某某高考)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.①应从这三个协会中分别抽取的运动员的人数为________.②将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.从这6名运动员中随机抽取2人参加双打比赛.那么编号为A 5和A 6的两名运动员中至少有1人被抽到概率为________.[解](1)记3件合格品为a 1,a 2,a 3,2件次品为b 1,b 2,那么任取2件构成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)},共10个基本事件.记“恰有1件次品〞为事件A ,那么A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2)},共6个基本事件.故其概率为P (A )=610=0.6.(2)设2本数学书分别为A ,B ,语文书为C ,那么所有的排放顺序有ABC ,ACB ,BAC ,BCA ,CAB ,CBA ,共6种情况,其中数学书相邻的有ABC ,BAC ,CAB ,CBA ,共4种情况,故2本数学书相邻的概率P =46=23.(3)总的基本事件个数为36,向上的点数之和不超过5的有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1),共10个,那么向上的点数之和不超过5的概率p 1=1036=518;向上的点数之和大于5的概率p 2=1-518=1318;向上的点数之和为偶数与向上的点数之和为奇数的个数相等,故向上的点数之和为偶数的概率p 3=12.即p 1<p 3<p 2.(4)①应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.②从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35.[答案](1)0.6 (2)23 (3)p 1<p 3<p 2 (4)①3,1,2 ②35[类题通法]解决与古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算[题组训练]1.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,那么这2只球颜色不同的概率为________.解析:利用列举法可求出基本事件总数为6种,其中符合要求的有5种,故P =56.答案:562.假设某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,那么甲或乙被录用的概率为________.解析:所有基本事件为(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中符合“甲与乙均未被录用〞的结果只有(丙,丁,戊).故所求概率P =1-110=910.答案:9103.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,那么他们选择相同颜色运动服的概率为________.解析:甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为P =39=13.答案:13几何概型是各类考查的重点,考查形式以填空题为主,试题难度比古典概型稍大.[考点精要]1.几何概型的特征(1)无限性:即试验结果有无限多个. (2)等可能性:即每个结果出现是等可能的. 2.几何概型的概率公式在几何概型中,事件A 的概率的计算公式如下: P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)[典例](1)在区间[0,5]上随机选择一个数p ,那么方程x 2+2px +3p -2=0有两个负根的概率为________.(2)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.(3)事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB 〞发生的概几何概型率为12,那么AD AB =________.[解析](1)设方程x 2+2px +3p -2=0有两个负根分别为x 1,x 2,∴⎩⎪⎨⎪⎧Δ=4p 2-4(3p -2)≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝⎛⎭⎫1-23+(5-2)5=23.(2)依题意,得S 阴影S 正方形=1801 000,所以S 阴影1×1=1801 000,解得S 阴影=0.18.(3)由,点P 的分界点恰好是边CD 的四等分点,由勾股定理可得 AB 2=⎝⎛⎭⎫34AB 2+AD 2,解得⎝⎛⎭⎫AD AB 2=716, 即AD AB =74. [答案](1)23 (2)0.18 (3)74[类题通法](1)几何概型概率的大小与随机事件所在区域的形状位置无关,只和该区域的大小有关. (2)在解题时要准确把握,要把实际问题作合理的转化;要注意古典概型和几何概型的区别,正确地选用几何概型的类型解题.[题组训练]1.(某某高考)在区间[0,2]上随机地取一个数x ,那么事件“-1≤log 12⎝⎛⎭⎫x +12≤1〞发生的概率为________.解析:不等式-1≤log 12⎝⎛⎭⎫x +12≤1可化为log 122≤log 12⎝⎛⎭⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.42.(某某高考)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上. 假设在矩形ABCD 内随机取一点,那么此点取自阴影部分的概率等于________.解析:因为f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0,B 点坐标为(1,0),所以C 点坐标为(1,2),D 点坐标为(-2,2),A 点坐标为(-2,0),故矩形ABCD 的面积为2×3=6,阴影部分的面积为12×3×1=32, 故P =326=14.答案:143.在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,那么三棱锥S -APC 的体积大于V3的概率是________. 解析:由题意可知V S -APCV S -ABC >13,三棱锥S -ABC 的高与三棱锥S -APC 的高相同.作PM ⊥AC 交于点M ,BN ⊥AC 交于点N , 那么PM ,BN 分别为△APC 与△ABC 的高, 所以V S -APCV S -ABC =S △APC S △ABC =PM BN >13,又PM BN =APAB , 所以AP AB >13,故所求的概率为23(即为长度之比).3概率和统计综合应用[考点精要]对于给定的随机事件A.由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此各类考试常常结合统计的知识考查概率.考查形式一般以解答题为主,难度中等.解决此类考题要注意:①正确利用数形结合的思想.②充分利用概率是频率的稳定值,用频率估计概率.③准确地处理所给数据.[典例]某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.图①B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100] 频数281410 6(1)在图②中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.[解](1)如下图.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意〞;C B表示事件:“B地区用户的满意度等级为不满意〞.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.[类题通法]解决概率和统计综合题,首先要明确频率、概率、频率分布表、频率分布直方图、概率的计算方法等基本知识,要充分利用频率估计概率及数形结合等基本思想,正确处理各种数据.[题组训练]1.随机抽取某中学高三年级甲、乙两班各10名同学,测量出他们的身高(单位:cm),获得身高数据的茎叶图如图,其中甲班有一个数据被污损.(1)假设甲班同学身高的平均数为170 cm ,求污损处的数据;(2)现从乙班这10名同学中随机抽取2名身高不低于173 cm 的同学,求身高176 cm 的同学被抽中的概率.解:(1)设被污损的数字为a ,由题意知,甲班同学身高的平均数为x =158+162+163+168+168+170+171+179+170+a +18210=170,解得 a =9.(2)设“身高176 cm 的同学被抽中〞的事件为A ,从乙班10名同学中抽取2名身高不低于173 cm 的同学有:{181,173},{181,176},{181,178},{181,179},{179,173},{179,176},{179,178},{178,173},{178,176},{176,173},共10个基本事件,而事件A 含有4个基本事件,所以P (A )=410=25.2.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如下图),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率. 解:(1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A 1,A 2,A 3;受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B 1,B 2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为110.[对应配套卷P105]1.从1,2,3,4这四个数中一次随机地取两个数,那么其中一个数是另一个数的两倍的概率是________.解析:基本事件的总数为6,满足条件的有{1,2},{2,4},2个,故P =26=13.答案:132.盒子里共有大小相同的3只白球,1只黑球.假设从中随机摸出两只球,那么它们颜色不同的概率是________.解析:基本事件总数有6个,满足条件的有3个,故P =12.答案:123.如下图,阴影部分是一个等腰三角形ABC ,其中一边过圆心O ,现在向圆面上随机撒一粒豆子,那么这粒豆子落到阴影部分的概率是________.解析:向圆面上随机撒一粒豆子,其结果有无限个,属于几何概型.设圆的半径为r ,全部结果构成的区域面积是圆面积πr 2,阴影部分的面积是等腰直角三角形ABC 的面积r 2,那么这粒豆子落到阴影部分的概率是r 2πr 2=1π. 答案:1π4.在区间[0,3]上任取一点,那么此点落在区间[2,3]上的概率是________. 解析:设这个事件为A ,所考查的区域D 为一线段,S D =3,又S A =1,∴P (A )=13.答案:135.现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,那么m ,n 都取到奇数的概率为________.解析:基本事件总数为N =7×9=63,其中m ,n 都为奇数的事件个数为M =4×5=20,所以所求概率P =M N =2063.答案:20636.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,假设此点到圆心的距离大于12,那么周末去看电影;假设此点到圆心的距离小于14,那么去打篮球;否那么,在家看书.那么小波周末不在家看书的概率为________.解析:去看电影的概率P 1=π×12-π×⎝⎛⎭⎫122π×12=34,去打篮球的概率P 2=π×⎝⎛⎭⎫142π×12=116, 故不在家看书的概率为P =34+116=1316.答案:13167.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.解析:从五个数中任意取出两个数的可能结果有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,其中“和为5〞的结果有(1,4),(2,3),故所求概率为210=15. 答案:158.假设a ,b ∈{-1,0,1,2},那么使关于x 的方程ax 2+2x +b =0有实数解的概率为________.解析:要使方程有实数解,那么a =0或ab ≤1,所有可能的结果为(-1,-1),(-1,0),(-1,1),(-1,2),(0,-1),(0,0),(0,1),(0,2),(1,-1),(1,0),(1,1),(1,2),(2,-1),(2,0),(2,1),(2,2),共16个,其中符合要求的有13个, 故所求概率P =1316.答案:13169.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,假设选到男教师的概率为920,那么参加联欢会的教师共有________人.解析:设男教师为x 人,那么女教师为(x +12)人. 依题意有: x2x +12=920.∴x =54. ∴共有教师2×54+12=120(人). 答案:12010.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12〞的概率,p 2为事件“xy ≤12〞的概率,那么p 1,p 2,12按从小到大排列为________.解析:如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12〞对应的图形为阴影△ODE ,其面积为12×12×12=18,故p 1=18<12;事件“xy ≤12〞对应的图形为斜线表示部分,其面积显然大于12,故p 2>12,那么p 1<12<p 2.答案:p 1<12<p 211.(某某高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团 8 5 未参加演讲社团230(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.解:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人, 故至少参加上述一个社团的共有45-30=15(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3},共15个.根据题意,这些基本事件的出现是等可能的.事件“A 1被选中且B 1未被选中〞所包含的基本事件有: {A 1,B 2},{A 1,B 3},共2个.因此A 1被选中且B 1未被选中的概率为P =215.12.编号分别为A 1,A 2,…,A 16的16名篮球运动员在某次训练比赛中的得分记录如下:(1)将得分在对应区间内的人数填入相应的空格:(2)从得分在区间[20,30)内的运动员中随机抽取2人,①用运动员编号列出所有可能的抽取结果; ②求这2人得分之和大于50的概率. 解:(1)4,6,6.(2)①得分在区间[20,30)内的运动员编号为A 3,A 4,A 5,A 10,A 11,A 13,从中随机抽取2人,所有可能的抽取结果有:{A 3,A 4},{A 3,A 5},{A 3,A 10},{A 3,A 11},{A 3,A 13},{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 4,A 13},{A 5,A 10},{A 5,A 11},{A 5,A 13},{A 10,A 11},{A 10,A 13},{A 11,A 13}共15种.②“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50〞(记为事件B )的所有可能结果有{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 5,A 10},{A 10,A 11}共5种.所以P (B )=515=13.13.在某次测验中,有6位同学的平均成绩为75分.用x n 表示编号为n (n =1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:(1)求第6位同学的成绩x 6,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. 解:(1)∵这6位同学的平均成绩为75分, ∴16(70+76+72+70+72+x 6)=75,解得x 6=90. 这6位同学成绩的方差s 2=16×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49,∴标准差s =7.(2)从前5位同学中,随机地选出2位同学的选法有:(70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70,72),共10种,恰有1位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4种,10514.设f (x )和 g (x )都是定义在同一区间上的两个函数,假设对任意x ∈[1,2],都有|f (x )+g (x )|≤8,那么称f (x )和g (x )是“友好函数〞,设f (x )=ax ,g (x )=bx.(1)假设a ∈{1,4},b ∈{-1,1,4},求f (x )和g (x )是“友好函数〞的概率; (2)假设a ∈[1,4],b ∈[1,4],求f (x )和g (x )是“友好函数〞的概率. 解:(1)设事件A 表示f (x )和g (x )是“友好函数〞, 那么|f (x )+g (x )|(x ∈[1,2])所有的情况有: x -1x ,x +1x ,x +4x ,4x -1x ,4x +1x ,4x +4x , 共6种且每种情况被取到的可能性相同. 又当a >0,b >0时,ax +b x 在⎝⎛⎭⎫0,b a 上递减,在⎝⎛⎭⎫b a ,+∞上递增;x -1x 和4x -1x 在(0,+∞)上递增,所以对x ∈[1,2]可使|f (x )+g (x )|≤8恒成立的有x -1x ,x +1x ,x +4x ,4x -1x , 故事件A 包含的基本事件有4种, 所以P (A )=46=23,故所求概率是23.(2)设事件B 表示f (x )和g (x )是“友好函数〞,因为a 是从区间[1,4]中任取的数,b 是从区间[1,4]中任取的数,所以点(a ,b )所在区域是长为3,宽为3的矩形区域.要使x ∈[1,2]时,|f (x )+g (x )|≤8恒成立, 需f (1)+g (1)=a +b ≤8且f (2)+g (2)=2a +b2≤8,所以事件B 表示的点的区域是如下图的阴影部分.所以P (B )=12×⎝⎛⎭⎫2+114×33×3=1924,24(时间120分钟 总分值160分)一、填空题(本大题共14小题,每题5分,共70分,请把答案填写在题中横线上) 1.从一箱产品中随机抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且P (A )=0.65,P (B )=0.2,P (C )=0.1.那么事件“抽到的不是一等品〞的概率为________.解析:设事件“抽到的不是一等品〞为D ,那么A 与D 对立, ∴P (D )=1-P (A )=0.35. 答案:0.352.甲、乙、丙三人在3天节日中值班,每人值班1天,那么甲紧接着排在乙前面值班的概率是________.解析:甲、乙、丙三人在3天中值班的情况为:甲、乙、丙;甲、丙、乙;丙、甲、乙;丙、乙、甲;乙、甲、丙;乙、丙、甲共6种,其中符合题意的有2种,故所求概率为13.答案:133.根据以下算法语句,当输入x 为60时,输出y 的值为________. Read xIf x ≤50 Then y ←0.5 x Else y ←25+0.6×(x -50)End If Print y解析:由题意知,该算法语句的功能是求分段函数y =⎩⎪⎨⎪⎧0.5x ,x ≤50,25+0.6(x -50),x >50的值,所以当x =60时,输出y 的值为25+0.6×(60-50)=31.答案:314.从1,2,3,6这4个数中一次随机地取2个数,那么所取2个数的乘积为6的概率是________.解析:取两个数的所有情况有:(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),共6种情况.乘积为6的有:(1,6),(2,3)共2种情况.所求事件概率为26=13.答案:135.执行如下图的程序框图,那么输出S 的值为________.解析:由程序框图与循环结束的条件“k >4〞可知,最后输出的S =log 255=12.答案:126.(某某高考)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,那么应抽取的男生人数为________.解析:设男生抽取x 人,那么有45900=x 900-400,解得x =25.答案:257.(某某高考)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如下图.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.解析:(1)由(1.5+2.5+a +2.0+0.8+0.2)×0.1=1, 解得a =3.(2)区间[0.3,0.5]内频率为0.1×(1.5+2.5)=0.4, 故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000. 答案:(1)3 (2)6 0008.(某某高考)某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10 ,其均值和方差分别为x 和s 2,假设从下月起每位员工的月工资增加100元,那么这10位员工下月工资的均值和方差分别为________.解析:对平均数和方差的意义深入理解可巧解.因为每个数据都加上了100,故平均数也增加100,而离散程度应保持不变.答案:100+x s 29.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,且a ,b ∈{1,2,3,4},假设|a -b |≤1,那么称甲、乙“心有灵犀〞.现任意找两人玩这个游戏,得出他们“心有灵犀〞的概率为________.解析:甲、乙所猜数字的基本事件有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个,其中满足|a -b |≤1的基本事件有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10个,故所求概率为1016=58.答案:5810.正方形ABCD 面积为S ,在正方形内任取一点M ,△AMB 面积大于或等于13S 的概率为________.解析:如图,设正方形ABCD 的边长为a ,那么S =a 2,△ABM 的高为h ,由题知,12h ·a ≥13S =13a 2,∴h ≥23a ,∴P =13.答案:1311.如以下图是CBA 篮球联赛中,甲、乙两名运动员某赛季一些场次得分的茎叶图,那么平均得分高的运动员是________.解析:x 甲=44+30+100+3010=20.4,x 乙=63+50+8010=19.3,∴x甲>x 乙.答案:甲12.如图,A 是圆O 上固定的一点,在圆上其他位置任取一点A ′,连接AA ′,它是一条弦,它的长度小于或等于半径长度的概率为________.解析:如图,当AA ′的长度等于半径长度时,∠AOA ′=60°,由圆的对称性及几何概型得P =120360=13.答案:1313.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.样本平均数为7,样本方差为4,且样本数据互不相同,那么样本数据中的最大值为________.解析:设5个班级的数据分别为0<a <b <c <d <e .由平均数及方差的公式得a +b +c +d +e 5=7,(a -7)2+(b -7)2+(c -7)2+(d -7)2+(e -7)25=4.设a -7,b -7,c -7,d -7,e -7分别为p ,q ,r ,s ,t ,那么p ,q ,r ,s ,t 均为整数,那么⎩⎪⎨⎪⎧p +q +r +s +t =0,p 2+q 2+r 2+s 2+t 2=20.设f (x )=(x -p )2+(x -q )2+(x -r )2+(x -s )2=4x 2-2(p +q +r +s )x +(p 2+q 2+r 2+s 2)=4x 2+2tx +20-t 2,由(x -p )2,(x -q )2,(x -r )2,(x -s )2不能完全相同知f (x )>0,那么判别式Δ<0,解得-4<t <4,所以-3≤t ≤3,所以最大值为10. 答案:1014.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上〞为事件(2≤n ≤5,n ∈N),假设事件的概率最大,那么n 的所有可能值为________.解析:事件的总事件数为6.只要求出当n =2,3,4,5时的基本事件个数即可. 当n =2时,落在直线x +y =2上的点为(1,1); 当n =3时,落在直线x +y =3上的点为(1,2),(2,1); 当n =4时,落在直线x +y =4上的点为(1,3),(2,2); 当n =5时,落在直线x +y =5上的点为(2,3); 显然当n =3或4时,事件的概率最大为13.答案:3或4二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题总分值14分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)解:(1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为:x =8+8+9+104=354;方差为:s 2=14×⎝⎛⎭⎫8-3542+⎝⎛⎭⎫8-3542+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4), (A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4), (A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4), (A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),用C 表示“选出的两名同学的植树总棵数为19〞这一事件,那么C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2).故所求概率为P (C )=416=14.16.(本小题总分值14分)(某某高考)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.解:(1)由题意知苹果的样本总数n=50,在[90,95)的频数是20,∴苹果的重量在[90,95)频率是2050=0.4.(2)设从重量在[80,85)的苹果中抽取x个,那么从重量在[95,100)的苹果中抽取(4-x)个.∵表格中[80,85),[95,100)的频数分别是5,15,∴5∶15=x∶(4-x),解得x=1.即重量在[80,85)的有1个.(3)在(2)中抽出的4个苹果中,重量在[80,85)的有1个,记为a,重量在[95,100)的有3个,记为b1,b2,b3,任取2个,有ab1,ab2,ab3,b1b2,b1b3,b2b3共6种不同方法.记基本事件总数为n,那么n=6,其中重量在[80,85)和[95,100)中各有1个的事件记为A,事件A包含的基本事件为ab1,ab2,ab3,共3个,由古典概型的概率计算公式得P(A)=36=1 2.17.(本小题总分值14分)为庆祝国庆,某中学团委组织了“歌颂祖国,爱我中华〞知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(成绩均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图的部分频率分布直方图,观察图形的信息,回答以下问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分.解:(1)设第i组的频率为f i(i=1,2,3,4,5,6),因为各组的频率和等于1,故第四组的频率:f4=1-(0.025+0.015×2+0.01+0.005)×10=0.3.频率分布直方图如下图.(2)由题意知,及格以上的分数所在的第三、四、五、六组的频率之和为(0.015+0.03+0.025+0.005)×10=0.75,抽样学生成绩的合格率是75%.故估计这次考试的及格率为75%.利用组中值估算抽样学生的平均分:45·f1+55·f2+65·f3+75·f4+85·f5+95·f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.从而估计这次考试的平均分是71分.18.(本小题总分值16分)某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:学历35岁以下35~50岁50岁以上本科803020研究生x 20y(1)5的样本,将该样本看成一个总体,从中任取2人,求至少有1人的学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x,y的值.解:(1)用分层抽样的方法在35~50岁的人中抽取一个容量为5的样本,设抽取学历为本科的人数为m,∴30 50=m5,解得m=3.∴抽取了学历为研究生的有2人,学历为本科的有3人,分别记作S1,S2;B1,B2,B3. 从中任取2人的所有基本事件共10个:(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 2,B 3),(B 1,B 3).其中至少有1人的学历为研究生的基本事件有7个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2).∴从中任取2人,至少有1人的学历为研究生的概率为710.(2)依题意,得10N =539,解得N =78.∴35~50岁中被抽取的人数为78-48-10=20. ∴4880+x =2050=1020+y .解得x =40,y =5. ∴x =40,y =5.19.(本小题总分值16分)某商场为吸引顾客消费推出一项优惠活动.活动规那么如下:消费每满100元可以转动如下图的圆盘一次,其中O 为圆心,且标有20元、10元、0元的三部分区域面积相等.指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券(例如:某顾客消费了218元,第一次转动获得了20元,第二次获得了10元,那么其共获得了30元优惠券).顾客甲和乙都到该商场进行了消费,并按照规那么参与了活动.(1)假设顾客甲消费了128元,求他获得优惠券金额大于0元的概率; (2)假设顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率. 解:(1)设“甲获得优惠券〞为事件A .因为指针停在任一位置都是等可能的,而题中所给的三部分的面积相等,所以指针停在20元、10元、0元区域内的概率都是13.顾客甲获得优惠券,是指指针停在20元或10元区域,且由题意知顾客甲只能转动一次圆盘.根据互斥事件的概率公式,有P (A )=13+13=23,所以顾客甲获得优惠券金额大于0元的概率是23.(2)设“乙获得优惠券金额不低于20元〞为事件B ,因为顾客乙转动了圆盘两次,设乙第一次转动圆盘获得优惠券金额为x 元,第二次获得优惠券金额为y 元,用(x ,y )表示乙两次转动圆盘获得优惠券金额的情况,那么有(20,20),(20,10),(20,0),(10,20),(10,10),(10,0),。
数学高中教资考试科三教案
教学目标:通过本节课的学习,学生能够掌握加法与减法的运算规则和技巧,能够灵活运用加减法的方法解决实际问题。
教学重点:加法与减法的运算规则和技巧。
教学难点:灵活运用加减法的方法解决实际问题。
教学准备:教材、黑板、彩色粉笔、练习册等。
教学过程:
Step 1:导入
1. 让学生回顾上节课所学内容,复习加法与减法的基本知识。
Step 2:讲解
1. 通过一些简单的例题,引导学生理解加法与减法的运算规则和技巧。
2. 重点讲解如何进位和退位,如何借位和补位。
Step 3:练习
1. 分发练习册,让学生进行练习,巩固所学知识。
2. 学生自主练习,老师巡视指导。
Step 4:总结
1. 结合学生的练习情况,总结本节课的重点内容,强调加法与减法的应用技巧。
Step 5:作业
1. 布置作业,要求学生完成练习册上相关的练习题目。
教学反思:本节课主要围绕加法与减法展开,通过讲解、练习和总结的方式,能够有效帮助学生掌握加减法的基本运算规则和技巧。
在教学过程中要注重引导学生思考和解决问题的能力,培养他们的数学思维和应用能力。
同时,要根据学生的实际情况,灵活调整教学方法,确保教学效果。
姓名学生姓名填写时间
学科数学年级高一教材版本人教版
课题名称必修三综合复习课时计划第(1,2)课时
共(2)课时
上课时间
教学目标
同步教学知识内容回忆知识点
个性化学习问题解决将知识点有条理的教授教学重点回忆所有知识点。
教学难点做题速度,知识熟悉度的提高
教学过程
教师活动写在课前:
第一章:算法初步复习
知识点复习:
1.算法的写法:
第一步,写成数学式子;
第二步,把数学式子用自然语言表示;
第三步,按照描述顺序写流程图:
开始--》输入--》条件或者循环的固定写法--》输出--》结束。
2.流程图的写法:
开始--》输入--》条件或者循环的固定写法--》输出--》结束。
3.流程图怎么看:
顺序的流程图,有两种方法:
第一,代人特殊值法:具体带几个数进去看看它在干嘛?
第二,抽象的分析法:具体分析每个语句,看看这个程序在干嘛?
循环的题型,具体步骤:
将程序运行;
----》把每一步都写成一行(注意,除了i,k,n,m一类的计数项,其他不要算值,)----》竖直方向我们找规律
----》找结束的时候的点,做最后项。
4.流程图怎么填条件:(方法同3,只是思维模式,逻辑模式的稍变)
5.基本算法语句:
输入语句的一般格式是"";INPUT 提示内容变量;
输出语句的一般格式是"";PRINT 提示内容表达式; 赋值语句的一般格式是 变量表达式;
条件语句的一般格式是
IF THEN
END IF
条件
语句体或IF THEN
END IF
条件
语句体1
ELSE
语句体2
;
循环语句的一般格式是DO
LOOP UNTIL 循环体条件
和, WHILE
WEND
条件
循环体.
运算符号:加_+_,减-__,乘*__,除/__,乘方a^b ,整数取商\,求余数MOD.
逻辑符号:且AND ,或OR ,大于>,等于=,小于<,大于等于>=,小于等于<=,不等于<>. 常用函数:绝对值ABS ,平方根SQR ,取整INT .
6.基本算法语句怎么写:
开始--》输入--》条件或者循环的固定写法--》输出--》结束。
7.基本算法语句怎么看(方法同3,思维模式完全一样):
8.常用算法案例:
(1)辗转相除法和更相减损术
(2)秦九韶算法
(3)进位制
第二章: 统计
1.随机抽样:
总特点:
各自特点:
简单随机抽样:
系统抽样:
分层抽样:
系统抽样的算式:
分层抽样的算式:
2.频率直方图,频率折线图:
总数
频数
频率
H=组距频率
面积:
3.茎叶图:
4.平均数,众数,方差,中位数:
方差公式:
标准差公式:
方差,平均数,标准差性质:
平均数,众数,中位数的频率直方图算法:
5.线性回归方程:
为了计算更有条理,我们最好列表来计算各个值:
21
2
1x n x
y x n y
x b n
i i
n
i i
i --=
∑∑==
x b y a -=
i x x i
y y
i x i
y
∑=n
i i
i y
x 1
2i x
∑=n
i i
x
1
2
得线性回归方程:a x b y
+=ˆˆ
第三章: 概率
1.互斥事件,对立事件:
2.古典概率: P (A )=
总的基本事件个数
包含的基本事件个数
A .
分类分步思想:
3.几何概率 P (A )=
积)
的区域长度(面积或体试验的全部结果所构成积)
的区域长度(面积或体构成事件A ;
两变量的二维面积解法:
知识的综合应用:
一、选择题
(1)某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点。
公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为A;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为B.则完成A、B这两项调查宜采用的抽样方法依次是()
(A)分层抽样法,系统抽样法(B)分层抽样法,简单随机抽样法
(C)系统抽样法,分层抽样法(D)简单随机抽样法,分层抽样法
(2)某单位业务人员、管理人员、后勤服务人员人数之比依次为15∶3∶2.为了了解该单位职员的某种情况,采用分层抽样方法抽出一个容量为n的样本,样本中业务人员人数为30,则此样本的容量n 为()
(A)20 (B)30 (C)40 (D)80
(3)一个容量为10的样本数据,分组后,组距与频数如下:
组距(1,2](2,3](3,4](4,5](5,6](6,7]
频数 1 1 2 3 1 2
则样本落在区间(-∞,5]的频率是()
(A)0.70 (B)0.25 (C)0.50 (D)0.20
(4)某校为了了解学生的课外阅读情况,随机调查了 50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示.根据条形图可得这50 名学生这一天平均每人的课外阅读时间为()
(A)0.6小时(B)0.9小时
(C)1.0小时(D)1.5小时
人数
(人)
20
15
10
课后记本节课教学计划完成情况:照常完成□提前完成□延后完成□_____________________________
学生的接受程度:完全能接受□部分能接受□不能接受□________________________________
学生的课堂表现:很积极□比较积极□一般□不积极□________________________________
学生上次作业完成情况:数量____% 完成质量____分存在问题 ______________________________ 配合需求:家长___________________________________________________________________________ 学管师_________________________________________________________________________ 备
注
提交时间教研组长审批家长签名。