中考数学方程(组)和不等式(组)试题解析
- 格式:doc
- 大小:51.00 KB
- 文档页数:19
中考数学试题分类分析汇编(12专题) 专题3:方程(组)和不定式(组)一.选择题1. (2001年福建福州4分)随着计算机技术的迅猛发展,电脑价格不断降低。
某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为【 】 A. 4(n m )5+元B. 5(n m )4+元 C. (5m n)+元D. (5n m)+元【答案】B 。
【考点】一元一次方程的应用。
【分析】设电脑的原售价为x 元,则()()x m 120%n --=,∴x=5n m 4+。
故选B 。
2. (2003年福建福州4分)不等式组2x 4x 30≥⎧⎨+>⎩的解集是【 】(A ) x>-3 (B )x≥2 (C )-3<x≤2 (D ) x<-3 【答案】B 。
【考点】解一元一次不等式组。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
因此,2x 4x 2x 2x 30x 2≥≥⎧⎧⇒⇒≥⎨⎨+>>-⎩⎩。
故选B 。
3.(2003年福建福州4分)已知α、β满足α+β=5,且αβ=6,则以α、β为两根的一元二次方程是【 】(A )2x 5x 60++= (B )2x 5x 60-+= (C )2x 5x 60--= (D )2x 5x 60+-=【答案】B 。
【考点】一元二次方程根与系数的关系。
【分析】∵所求一元二次方程的两根是α、β,且α、β满足α+β=5、αβ=6,∴这个方程的系数应满足两根之和是b 5a-=,两根之积是c 6a =。
当二次项系数a=1时,一次项系数b=-5,常数项c=6。
故选B 。
4. (2005年福建福州大纲卷3分)如图,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为【 】A 、x+y=180x=y+10⎧⎨⎩错误!未找到引用源。
中考数学压轴题---《方程(组)+不等式(组)二次函数模型》例题讲解【典例3】(2021•遂宁)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?【解答】解:(1)设T恤的销售单价提高x元,由题意列方程得:(x+40﹣30)(300﹣10x)=3360,解得:x1=2或x2=18,∵要尽可能减少库存,∴x2=18不合题意,应舍去.∴T恤的销售单价应提高2元,答:T恤的销售单价应提高2元;(2)设利润为M元,由题意可得:M=(x+40﹣30)(300﹣10x),=﹣10x2+200x+3000,=﹣10(x﹣10)2+4000,∴当x=10时,M最大值=4000元,∴销售单价:40+10=50(元),答:当服装店将销售单价定为50元时,得到最大利润是4000元.【变式3-1】(2023•蜀山区校级一模)随着我国经济、科技的进一步发展,我国的农业生产的机械化程度越来越高,过去的包产到户就不太适合机械化的种植,现在很多地区就出现了一种新的生产模式,很多农民把自己的承包地转租给种粮大户或者新型农村合作社,出现了大农田,这些农民则成为合作社里的工人,这样更有利于机械化种植.某地某种粮大户,去年种植优质水稻200亩,平均每亩收益480元.计划今年多承包一些土地,已知每增加一亩,每亩平均收益比去年每亩平均收益减少2元.(1)该大户今年应承租多少亩土地,才能使今年总收益达到96600元?(2)该大户今年应承租多少亩土地,可以使今年总收益最大,最大收益是多少?【解答】解:(1)设该大户今年应承租x亩土地,才能使今年总收益达到96600元,由题意得x[480﹣2(x﹣200)]=96600,解得x2﹣440x+48300=0,解得x=230或x=210,∴该大户今年应承租210亩或230亩土地,才能使今年总收益达到96600元;(2)设该大户今年应承租m亩土地,收益为W元,由题意得W=m[480﹣2(m﹣200)]=﹣2m2+880m=﹣2(m﹣220)2+96800,∵﹣2<0,∴当m=220时,W最大,最大为96800,∴大户今年应承租220亩土地,可以使今年总收益最大,最大收益是96800元.【变式3-2】某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:(1)求A,B两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;①直接写出B款纪念册每天的销售量(用含m的代数式表示);②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?【解答】解:(1)设A款纪念册每本的进价为a元,B款纪念册每本的进价为b元,根据题意得:,解得,答:A款纪念册每本的进价为20元,B款纪念册每本的进价为14元;(2)①根据题意,A款纪念册每本降价m元,可多售出2m本A款纪念册,∵两款纪念册每天销售总数不变,∴B款纪念册每天的销售量为(80﹣2m)本;②设B款纪念册每天的销售量与售价之间满足的一次函数关系是y=kx+b',根据表格可得:,解得,∴y=﹣2x+124,当y=80﹣2m时,x=22+m,即B款纪念册每天的销售量为(80﹣2m)本时,每本售价是(22+m)元,设该店每天所获利润是w元,由已知可得w=(32﹣m﹣20)(40+2m)+(22+m﹣14)(80﹣2m)=﹣4m2+48m+1120=﹣4(m﹣6)2+1264,∵﹣4<0,∴m=6时,w取最大值,最大值为1264元,此时A款纪念册售价为32﹣m=32﹣6=26(元),答:当A款纪念册售价为26元时,该店每天所获利润最大,最大利润是1264元.【变式3-3】(2022秋•中原区校级期中)党的“二十大”期间,某网店直接从工厂购进A、B两款纪念“二十大”的钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)(1)网店第一次用8500元购进A、B两款钥匙扣共300件,求两款钥匙扣分别购进的件数;(2)第一次购进的两款钥匙扣售完后,该网店计划再次购进A、B两款钥匙扣共800件(进货价和销售价都不变),且进货总价不高于22000元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)“二十大”临近结束时,B款钥匙扣还有大量剩余,网店打算把B款钥匙扣调价销售.如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,为了尽快减少库存,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?【解答】解:(1)设购进A款钥匙扣x件,B款钥匙扣y件,根据题意得:,解得:.答:购进A款钥匙扣200件,B款钥匙扣100件.(2)设购进m件A款钥匙扣,则购进(800﹣m)件B款钥匙扣,根据题意得:30m+25(800﹣m)≤22000,解得:m≤400.设再次购进的A、B两款钥匙扣全部售出后获得的总利润为w元,则w=(45﹣30)m+(37﹣25)(800﹣m)=3m+9600.∵3>0,∴w随m的增大而增大,∴当m=400时,w取得最大值,最大值=3×400+9600=10800,此时800﹣m=800﹣400=400.答:当购进400件A款钥匙扣,400件B款钥匙扣时,才能获得最大销售利润,最大销售利润是10800元.(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出4+2(37﹣a)=(78﹣2a)件,根据题意得:(a﹣25)(78﹣2a)=90,整理得:a2﹣64a+1020=0,解得:a1=30,a2=34.又∵要尽快减少库存,∴a=30.答:B款钥匙扣的售价应定为30元.【变式3-4】(2020•鄂州)一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元/件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:(1)求y与x的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠m元(1≤m≤6),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m的取值范围.【解答】解:(1)设y与x的函数关系式为:y=kx+b(k≠0),把x=4,y=10000和x=5,y=9500代入得,,解得,,∴y=﹣500x+12000;(2)根据“在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,”得,,解得,3≤x≤12,设利润为w元,根据题意得,w=(x﹣3)y=(x﹣3)(﹣500x+12000)=﹣500x2+13500x﹣36000=﹣500(x﹣13.5)2+55125,∵﹣500<0,∴当x<13.5时,w随x的增大而增大,∵3≤x≤12,且x为正整数∴当x=12时,w取最大值为:﹣500×(12﹣13.5)2+55125=54000,答:这一周该商场销售这种商品获得的最大利润为54000元,售价为12元;(3)根据题意得,w=(x﹣3﹣m)(﹣500x+12000)=﹣500x2+(13500+500m)x﹣36000﹣12000m,∴对称轴为x=﹣=13.5+0.5m,∵﹣500<0,∴当x<13.5+0.5m时,w随x的增大而增大,∵该商场这种商品售价不大于15元/件时,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.又∵x为整数,∴对称轴在x=14.5的右侧时,当x≤15(x为整数)时,w都随x的增大而增大,∴14.5<13.5+0.5m,解得m>2,∵1≤m≤6,∴2<m≤6。
不等式(组)一、选择题1.(•湖南衡阳,第7题3分)不等式组的解集在数轴上表示为()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围.解答:解:不等式组由①得,x>1,由②得,x≥2,故不等式组的解集为:x≥2,在数轴上可表示为:故选:A.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.2. (•随州,第12题3分)不等式组的解集是﹣1<x≤2.考点:解一元一次不等式组分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得x≤1,由②得x>﹣1,故此不等式的解集为:﹣1<x≤2.故答案为:﹣1<x≤2.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、(衡阳,第7题3分)不等式组10840xx-⎧⎨-⎩>≤的解集在数轴上表示为【】A .B .C .D .4、(•江西,第4题3分)直线y=x+1与y=-2x+a的交点在第一象限,则a的取值可以是().A.-1 B.0 C.1 D.2【答案】 D.【考点】两条直线相交问题,一次函数图像和性质、一元一次不等式组的解法,考生的直觉判断能力.【分析】解法一:一次函数y=kx+b,当k>0,b>0 时,直线经过一、三、二象限,截距在y的正半轴上当;k>0,b<0时,图解经过一、三、四象限,截距在y的负半轴上。
当k<0,b>0 时,直线经过二、四、一象限,截距在y的正半轴上;当 k<0,b<0时,直线经过二、四、三象限,截距在y的负半轴上。
可以根据一次函数图象的特点,逐一代入a的值,画出图形进行判断。
解法二:两直线相交,说明由这两条直线的解析式组成的二元一次方程组有解,解出关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.【解答】解法一:直线y=x+1经过一、三、四象限,截距1,在y的正半轴;直线y=-2x+a经过二、四象限,如果a=1,则经过第一象限,与前面直线交于y的正半轴上。
26.如图1,数轴上,O点与C点对应的数分别是0,单位:单位长度,将一根质地均匀的直尺AB放在数轴上在B的左边,若将直尺在数轴上水平移动,当A点移动到B点的位置时,B点与C点重合,当B点移动到A点的位置时,A点与O点重合.请直接写出直尺的长为______个单位长度;如图2,直尺AB在数轴上移动,有,求此时A点所对应的数;如图3,以OC为边搭一个横截面为长方形的不透明的篷子,将直尺放入篷内的数轴上的某处看不到直尺的任何部分,A在B的左边,将直尺AB沿数轴以4个单位长度秒的速度分别向左、右移动,直到完全看到直尺,所经历的时间分别为、,若秒,求直尺放入篷内时,A点所对应的数为多少?【答案】(1)20;(2)或10;(3)A点在蓬内所对应的数为38.当直尺AB在数轴上移动时,符合的情况如下所示:设BO为x:,所对应的数为设OA为x:,所对应的数为10综上所述,A在数轴上所对应的数分别为或10.设,如下图,根据题意,解得所以A点在蓬内所对应的数为38【关键点拨】本题通过直尺两端相对固定的两个点在数轴上移动时和数轴上固定的点之间长度关系的变化来确定移动点的位置,根据已知条件来分析移动点的可能性是解题的关键.月使用费主叫限定时间(分钟) 主叫超时费(元/分钟) 被叫方式一65 160 0.20 免费方式二100 380 0.25 免费被叫免费)(1)若张聪某月主叫通话时间为200分钟,则他按方式一计费需____元,按方式二计费需____ 元;李华某月按方式二计费需107元,则李华该月主叫通话时间为_____分钟;(2)是否存在某主叫通话时间(分钟),按方式一和方式二的计费相等?若存在,请求出的值;若不存在,请说明理由。
(3)直接写出当月主叫通话时间(分钟)满足什么条件时,选择方式一省钱。
【答案】(1)73,100,408;(2)存在某主叫通话时间t=300或560分钟,按方式一和方式二的计费相等;(3)当每月通话时间大于560分钟时,选择方式一省钱.(2)①当t≤160时,不存在;②当160<t≤380时,设每月通话时间为t分钟时,两种计费方式收费一样多,65+0.20×(t-160)=100,解得t=335,符合题意;③当t>380时,设每月通话时间为t分钟时,两种计费方式收费一样多,65+0.20×(t-160)=100+0.25(t-380),解得t=560,符合题意.故存在某主叫通话时间t=300或560分钟,按方式一和方式二的计费相等;(3)由(2)可得,当每月通话时间大于560分钟时,选择方式一省钱.【关键点拨】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.同学们,今天我们来学习一个新知识,形如的式子叫做二阶行列式,它的运算法则用公式表示为:利用此法则解决以下问题:(1)仿照上面的解释,计算出的结果;(2)依此法则化简的结果;(3)如果那么的值为多少?【答案】(1)11;(2)5a−b−ab;(3).(3)∴5x-3(x+1)=4∴5x−3x−3=4∴2x=7∴x=【关键点拨】[来源:]此题考查了解一元一次方程,以及有理数的混合运算,理解题中的新定义是解题的关键. 29.阅读探索知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即所以此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:(2)能力运用已知关于x,y的方程组的解为,直接写出关于m、n的方程组的解为_____________.【答案】(1)(2)解得:,故答案为:【关键点拨】二元一次方程组解法的拓展是本题的考点,熟练掌握基础知识进行换元是解题的关键. 30.如图,在数轴上,点O为原点,点A表示的数为a,点B表示的数为b,且a,b满足,B两点对应的数分别为______,______;若将数轴折叠,使得A点与B点重合,则原点O与数______表示的点重合;若点A、B分别以4个单位秒和3个单位秒的速度相向而行,则几秒后A、B两点相距1个单位长度?若点A、B以中的速度同时向右运动,点P从原点O以7个单位秒的速度向右运动,是否存在常数m,使得为定值,若存在,请求出m值以及这个定值;若不存在,请说明理由.【答案】(1)-10;5; (2)-5;(3)2或秒;(4)存在,当m=3时,4AP+3OB-mOP为定值55.(2)∵|AB|=5-(-10)=15,=7.5,∴点A、点B距离折叠点都是7.5个单位所以折叠点上的数为-2.5.所以与点O重合的点表示的数为:-2.5×2=-5.即原点O与数-5表示的点重合.故答案为:-5.(3)设x秒后A、B相距1个单位长度,当点A在点B的左侧时,4x+3x=15-1,解得,x=2,当点A在点B的右侧时,4x+3x=15+1,解得,x=答:2或秒后A、B相距1个单位长度;【关键点拨】本题考查一元一次方程的应用,非负数的性质及数轴上两点间的距离.题目综合性较强,难度较大.解决(1)需利用非负数的性质,解决(3)注意分类思想的运用,解决(4)利用数轴上两点间的距离公式.31.(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴我们发现有许多重要的规律:例如,若数轴上点、点表示的数分别为、,则、两点之间的距离,线段的中点表示的数为.(问题情境)在数轴上,点表示的数为-20,点表示的数为10,动点从点出发沿数轴正方向运动,同时,动点也从点出发沿数轴负方向运动,已知运动到4秒钟时,、两点相遇,且动点、运动的速度之比是(速度单位:单位长度/秒).备用图(综合运用)(1)点的运动速度为______单位长度/秒,点的运动速度为______单位长度/秒;(2)当时,求运动时间;(3)若点、在相遇后继续以原来的速度在数轴上运动,但运动的方向不限,我们发现:随着动点、的运动,线段的中点也随着运动.问点能否与原点重合?若能,求出从、相遇起经过的运动时间,并直接写出点的运动方向和运动速度;若不能,请说明理由.【答案】(1)动点P运动的速度为4.5单位长度/秒,动点Q运动的速度为3单位长度/秒;(2)运动时间为或秒;(3)点M能与原点重合,它沿数轴正方向运动,运动速度为或沿数轴正方向运动,运动速度为,理由见解析(2)设运动时间为t秒.由题意知:点P表示的数为-20+4.5t,点Q表示的数为10-3t,根据题意得:|(-20+4.5t)-(10-3t)|=×|(-20)-10|整理得:|7.5t-30|=107.5t-30=10或7.5t-30=-10解得:t=或t=.答:运动时间为或秒.(3)P、Q相遇点表示的数为-20+4×4.5=-2(注:当P、Q两点重合时,线段PQ的中点M也与P、Q两点重合)设从P、Q相遇起经过的运动时间为t秒时,点M与原点重合.①点P、Q均沿数轴正方向运动,则:解得:t=.此时点M能与原点重合,它沿数轴正方向运动,运动速度为2÷(单位长度/秒);②点P沿数轴正方向运动,点Q沿数轴负方向运动,则:解得:t=.此时点M能与原点重合,它沿数轴正方向运动,运动速度为2÷=(单位长度/秒);③点P沿数轴负方向运动,点Q沿数轴正方向运动,则:解得:t=-(舍去).此时点M不能与原点重合;④点P沿数轴负方向运动,点Q沿数轴负方向运动,则:解得:t=-(舍去).此时点M不能与原点重合.综上所述:点M能与原点重合,它沿数轴正方向运动,运动速度为或沿数轴正方向运动,运动速度为.【关键点拨】本题考查了一元一次方程的应用应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程,再求解.32.小明每隔一小时记录某服装专营店8:00~18:00的客流量(每一时段以200人为标时段8:00~9:00 10:00~11:00 12:00~13:0014:00~15:0016:00~17:00客流量(人)-21 +33 -12 +21 +54(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位)(2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?【答案】(1)1.51×104人;(2)这一天卖出男装25套,女装110套.(3) 此店一周的营业额约为82600元.(2)设这一天卖出女装x套,男装(135-x)套,根据题意得,15x+20(135-x)=2150,解得,x=110,135-x=135-110=25.故这一天卖出男装25套,女装110套.(3)因为第二问中某一天出售男装25套,女装110套,每套女装的售价为80元,每套男装的售价为120元所以此店一周的营业额约为:[(25×120)+(110×80)]×7=[3000+8800]×7=11800×7=82600(元)故此店一周的营业额约为82600元.【关键点拨】本题考查正数和负数的加法、解方程组、数据的估算,注意第一问中精确到百位.33.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给予优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.【答案】(1)甲超市实付款352元,乙超市实付款360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.(3)设购物总额是x元,购物总额刚好500元时,在乙超市应付款为:500×0.9=450(元),482>450,故购物总额超过500元.根据题意得:500×0.9+0.8(x-500)=482∴x=540∴0.88x=475.2<482∴该顾客选择不划算.【关键点拨】本题考查了一元一次方程的应用,解题的关键是:(1)根据两超市的促销方案,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)求出购物总额.34.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?【答案】(1) 有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.【关键点拨】本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.解题的关键是:(1)根据数量关系列出关于x的一元一次不等式;(2)求出三种购买方案的日租金35.如图是某景区的环形游览路线ABCDA,已知从景点C到出口A的两条道路CBA和CDA 均为1600米,现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形道路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车的速度均为200米/分,每一个游客的步行速度均为50米/分.(1)探究(填空):①当两车行驶分钟时,1、2号车第一次相遇,此相遇点到出口A的路程为米;②当1号车第二次恰好经过点C,此时两车行驶了分钟,这一段时间内1号车与2号车相遇了次.(2)发现:若游客甲在BC上K处(不与点C、B重合)候车,准备乘车到出口A,在下面两种情况下,请问哪种情况用时较少(含候车时间)?请说明理由.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.(3)决策:①若游客乙在DA上从D向出口A走去,游客乙从D出发时恰好2号车在C处,当步行到DA上一点P(不与A,D重合)时,刚好与2号车相遇,经计算他发现:此时原地(P点)等候乘1号车到出口与直接从P步行到达出口A这两种方式,所花时间相等,请求出D点到出口A的路程.②当游客丙逛完景点C后准备到出口A,此时2号车刚好在B点,已知BC路程为600米,请你帮助游客丙做一下决策,怎样到出口A所花时间最少,并说明理由.【答案】(1)①4,800;②24,3;(2)情况一所用时间比较少,理由详见解析;(3)①D到A的路程为800 米;②丙应该选择乘坐1 号车所需时间最少.412分钟,第三次相遇时间为1220分钟,第四次相遇时间为2028分钟,∴这一段时间内1号车与2号车相遇了3次.故答案为:24,3;(2)情况一所用时间比较少,设CK=x米,由题意知,情况一需要时间为:16,情况二需要的时间为:16,∴情况一所用时间比较少;(3)①设P到A的路程为a米,则2号车从C→B→A→P的时间为分钟,∴D到P的路程为50,由题意知,,解得:a=320,∴D到P的路程为50=480米,∴D到A的路程为320+480=800米;②若丙选择乘坐1号车,所需时间为13分钟,若丙选择乘坐2号车,所需时间为21分钟,若丙选择步行到出口A,所需时间为32分钟,所以丙应该选择乘坐1号车所需时间最少.【关键点拨】本题考查了一元一次方程的应用,理解题意仔细剖析每种情形下路程的变化是解题的关键.36.已知一个四位自然数M的千、百、十、个位上的数字分别是、、、,若,且,则称自然数M是“关联数”,且规定.例如5326,因为,所以5326是“关联数”,且现已知式子(、、都是整数,,,)的值表示四位自然数,且是“关联数”,的各位数字之和是8的倍数.(1)当时,求;(2)当时,求的和.【答案】(1)3544,(2)-72.∴,,.∴.(2)当时,的千、百、十、个位上的数字分别是3、、、.∵是“关联数”,∴,∴.∴的各位数字之和为.由题意,知是8的倍数,且,,,∴,,,或,,.∴,或3562.[来源]∴,.当时,的千、百、十、个位上的数字分别是3、、、.∵是“关联数”,∴,∴.∴的各位数字之和为.由题意,知是8的倍数,且,,,∴,,,或,,.∴,或3984.∴,.∴.∴的和是-72.【关键点拨】此题主要考察不等式的应用,正确理解题意,再列出相应的式子,但是要注意分开来求解. 37.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.【答案】(1) 甲内存卡每个20元,乙内存卡每个50元;(2) 有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低;(3) 共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.(2)解:设小亮准备购买A甲内存卡a个,则购买乙内存卡(10﹣a)个,则解得5≤a≤6,根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元;方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元;∵350>320∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低[来源:(3)解:设老板一上午卖了c个甲内存卡,d个乙内存卡,则10c+15d=100.整理,得2c+3d=20.∵c、d都是正整数,∴当c=10时,d=0;当c=7时,d=2;当c=4时,d=4;当c=1时,d=6.综上所述,共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.【关键点拨】此题考查二元一次方程组及一元一次不等式方程组的应用,解题关键是读懂题意,找到关键描述语,找到所求的量的大小关系.38.三亚市某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生(2)如果该工厂生产一件A产品可获利80元,生产一件B产品可获利120元,那么该工厂应该怎样安排生产可获得最大利润?【答案】(1)见解析;(2)见解析.(2)方案(一)A,30件,B,20件时,20×120+30×80=4800(元).方案(二)A,31件,B,19件时,19×120+31×80=4760(元).方案(三)A,32件,B,18件时,18×120+32×80=4720(元).故方案(一)A,30件,B,20件利润最大【关键点拨】本题主要考查一元一次不等式组的应用.39.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?【答案】(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60-x)分.则生产甲种产品件,生产乙种产品件.∴w总额=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x[来源]=-0.04x+1680,又≥60,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【关键点拨】本题考查了用一元二次方程组的实际应用,一次函数的实际应用问题,建立函数模型是解题关键.40.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.【答案】(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=OF•AE=(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,8﹣t),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△ODH﹣S四边形DBGH﹣S△OBG,=OH•DH﹣(BG+DH)•GH﹣OG•BG,【关键点拨】本题考查四边形综合题、矩形的性质、三角形的面积、一元一次方程等知识,解题关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.。
2001-2012年江苏南通中考数学试题分类解析汇编(12专题)专题3:方程(组)和不等式(组)锦元数学工作室 编辑一、选择题1. (江苏省南通市2002年3分)用换元法解方程2220x 3x 8x 3x=+-+,若设x 2+3x=y ,则原方程可化为【 】A .20y 2+8y -1=0 B .8y 2-20y +1=0 C .y 2+8y -20=0 D .y 2-8y -20=0 【答案】D 。
【考点】换元法解分式方程。
【分析】根据原方程的特点,把x 2+3x 看作整体,用y 代替,转化为关于y 的分式方程20y 8y=-,去分母并整理得一元二次方程y 2-8y -20=0。
故选D 。
2. (江苏省南通市2002年3分)某厂今年3月份的产值为50万元,5月份上升到72万元,这两个月平均每月上升的百分率是多少?若设4、5月份平均每月上升的百分率为x ,则列出的方程是【 】A .50(1+x )=72B .50(1+x )+50(1+x )2 = 72C .50(1+x )×2=72 D.50(1+x )2 = 72【答案】D 。
【考点】由实际问题抽象出一元二次方程(增长率问题)【分析】设4、5月份平均每月上升的百分率为x ,4月份的产值为50(1+x),则5月份的产值为50(1+x) (1+x) =50(1+x)2。
据此列出方程50(1+x)2=72。
故选D 。
3. (江苏省南通市2004年3分)一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是【 】A 、126312312=--x x B 、131226312=-+xxC 、126312312=+-x x D 、131226312=--xx【答案】C 。
【考点】由实际问题抽象出分式方程【分析】关键描述语为:“现在该列车从甲站到乙站用的时间比原来减少了1h .”;等量关系为:提速前所用的时间-提速后用的时间=1。
广东中考数学试题分类解析汇编专题3:方程(组)和不等式(组)一、选择题1. (广东佛山3分)用配方法解一元二次方程x2-2x-3=0时,方程变形正确的是【】A.(x-1)2=2 B.(x-1)2=4 C.(x-1)2=1 D.(x-1)2=7【答案】B。
【考点】用配方法解一元二次方程。
【分析】由x2-2x-3=0移项得:x2-2x=3,两边都加上1得:x2-2x+1=3+1,即(x-1)2=4。
则用配方法解一元二次方程x2-2x-3=0时,方程变形正确的是(x-1)2=4。
故选B。
2. (广东广州3分)已知a>b,若c是任意实数,则下列不等式中总是成立的是【】A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc【答案】B。
【考点】不等式的性质。
【分析】根据不等式的性质,应用排除法分别将个选项分析求解即可求得答案:A、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误;B、∵a>b,c是任意实数,∴a﹣c>b﹣c,故本选项正确;C、当a>b,c<0时,ac<bc,而此题c是任意实数,故本选项错误;D、当a>b,c>0时,ac>bc,而此题c是任意实数,故本选项错误.故选B。
3. (广东湛江4分)湛江市平均房价为每平方米4000元.连续两年增长后,平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是【】A.5500(1+x)2=4000 B.5500(1﹣x)2=4000 C.4000(1﹣x)2=5500 D.4000(1+x)2=5500【答案】D。
【考点】由实际问题抽象出一元二次方程(增长率问题)。
【分析】设年平均增长率为x,那么的房价为:4000(1+x),的房价为:4000(1+x)2=5500。
故选D。
二、填空题1.(广东省4分)不等式3x﹣9>0的解集是▲ .【答案】x>3。
【考点】解一元一次不等式。
【分析】移项得,3x>9,系数化为1得,x>3。
2019年中考数学方程(组)和不等式(组)试题解析以下是查字典数学网为您推荐的2019年中考数学方程(组)和不等式(组)试题解析,希望本篇文章对您学习有所帮助。
2019年中考数学方程(组)和不等式(组)试题解析一、选择题1. (2019江苏常州2分)已知a、b、c、d都是正实数,且,给出下列四个不等式:其中不等式正确的是【】A. ①③B. ①④C. ②④D. ②③【答案】A。
【考点】不等式的性质。
【分析】根据不等式的性质,计算后作出判断:∵a、b、c、d都是正实数,且,,即。
,即,③正确,④不正确。
∵a、b、c、d都是正实数,且,。
,即。
①正确,②不正确。
不等式正确的是①③。
故选A。
2. (2019江苏淮安3分)方程的解为【】源:]A、B、C、D、【答案】D。
【考点】方程的解,因式分解法解一元二次方程。
【分析】解出方程与所给选项比较即可:。
故选D。
3. (2019江苏泰州3分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是【】A. B.C. D.【答案】C。
【考点】一元二次方程的应用(增长率问题)。
【分析】平均每次降价的百分率为x,第一次降价后售价为36(1-x),第二次降价后售价为36(1-x) (1-x)=36(1-x)2。
据此列出方程:。
故选C。
4. (2019江苏镇江3分)二元一次方程组的解是【】A. B. C. D.【答案】B。
【考点】解二元一次方程组。
【分析】。
故选B。
二、填空题1. (2019江苏常州2分)已知关于x的方程的一个根是2,则m= ▲ ,另一根为【答案】1,。
【考点】方程根的意义,解一元二次方程。
【分析】∵关于x的方程的一个根是2,,解得m=1。
方程为,解得另一根为。
【本题或用根与系数的关系求解】2. (2019江苏连云港3分)方程组的解为▲ .【答案】。
【考点】解二元一次方程组。
【分析】利用①+②可消除y,从而可求出x,再把x的值代入①,易求出y。
①+②,得3x=9,解得x=3。
把x=3代入①,得3+y=3,解得y=0。
原方程组的解是。
3. (2019江苏连云港3分)今年6月1日起,国家实施了中央财政补贴条例支持高效节能电器的推广使用,某款定速空调在条例实施后,每购买一台,客户可获财政补贴200元,若同样用11万元所购买的此款空调数台,条例实施后比实施前多10%,则条例实施前此款空调的售价为▲ 元.【答案】2200。
【考点】分式方程的应用。
【分析】设条例实施前此款空调的售价为x元,根据题意得出:解得:x=2200,经检验得出:x=2200是原方程的解,则条例实施前此款空调的售价为2200元。
4. (2019江苏南京2分)方程的解是▲【答案】x=6。
【考点】解分式方程。
【分析】方程最简公分母为:。
故方程两边乘以,化为整式方程后求解,并代入检验即可得出方程的根:去分母得:3(x-2)-2x=0,去括号得:3x-6-2x=0,整理得:x=6,经检验得x=6是方程的根。
5. (2019江苏南通3分)甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了▲ 张.【答案】20。
【考点】一元一次方程的应用。
【分析】设购买甲电影票x张,乙电影票40-x张,由题意得,20x+15(40-x)=700 ,解得,x=20 。
即甲电影票买了20张。
6. (2019江苏南通3分)设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n= ▲ .【答案】4。
【考点】求代数式的值,一元二次方程的解,一元二次方程根与系数的关系。
【分析】∵m、n是一元二次方程x2+3x-7=0的两个根,m 2+3 m-7=0,即m 2+3 m=7;m+n=-3。
m2+4m+n=(m 2+3 m)+(m+n)=7-3=4。
7. (2019江苏宿迁3分)不等式组的解集是▲ .【答案】1考点】解一元一次不等式组。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
因此,由x-10得,x由得x2。
原不等式组的解集是18. (2019江苏无锡2分)方程的解为▲ .【答案】8。
【考点】解分式方程。
【分析】首先去掉分母,观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为一元一次方程求解,然后解一元一次方程,最后检验即可求解:方程的两边同乘x(x﹣2),得:4(x﹣2)﹣3x=0,解得:x=8. 检验:把x=8代入x(x﹣2)=480,即x=8是原分式方程的解。
故原方程的解为:x=8。
三、解答题1. (2019江苏常州5分)解方程组:;【答案】解:,②3-①,得11y=22,y=2;将y=1代入②,得x+6=9,x=3。
方程组的解为。
【考点】解二元一次方程组。
【分析】解二元一次方程组的解题思想是消元,方法有加减消元法和代入消元法。
本题可用加减消元法,也可将②化为x=9-3 y代入①,消元求解。
2.(2019江苏常州5分)解不等式组:。
【答案】解:,解①,得x-3,解②,得x5。
不等式组的解为-3【考点】解一元一次不等式组。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
3. (2019江苏淮安6分)解不等式组:。
【答案】解:解得,,解得,。
不等式组的解为。
【考点】解一元一次不等式组。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
4. (2019江苏淮安10分)某省公布的居民用电阶梯电价听证方案如下:第一档电量第二档电量第三档电量月用电量210度以下,每度价格0.52元月用电量210至350度,每度比第一档提价0.05元月用电量350度以上,每度电比第一档提价0.30元例:若某户月用电量400度,则需缴电费为2100.52+(350-210)(0.52+0.05)+(400-350)(0.52+0.30)=230元(1)如果按此方案计算,小华家5月份电费为138.84元,请你求出小华家5月份的用电量;(2)依此方案请你回答:若小华家某月的电费为a元,则小华家该月用量属于第几档?5. (2019江苏连云港6分)解不等式x-12x,并把解集在数轴上表示出来【答案】解:移项得:x-2x1,合并同类项得:- x1,不等式的两边都乘以-2得:x-2。
原不等式的解集为x-2。
在数轴上表示为:【考点】解一元一次不等式,在数轴上表示不等式的解集。
【分析】移项后合并同类项得出- x1,不等式的两边都乘以-2即可得出答案。
不等式的解集在数轴上表示的方法:向右画;向左画,在表示解集时,要用实心圆点表示;,要用空心圆点表示。
6. (2019江苏南京6分)解方程组【答案】解:,由①得x=-3y-1③,将③代入②,得3(-3y-1)-2y=8,解得:y=-1。
将y=-1代入③,得x=2。
原方程组的解是。
【考点】解二元一次方程组。
【分析】解二元一次方程组的解题思想是用代入法或加减法消元,化为一元一次方程求解。
本题易用代入法求解。
先由①表示出x,然后将x的值代入②,可得出y的值,再代入①可得出x的值,继而得出了方程组的解。
7. (2019江苏南京8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部。
月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元。
①若该公司当月卖出3部汽车,则每部汽车的进价为万元;②如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利) 【答案】解:(1)26.8。
(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:28-[27-0.1(x-1)]=(0.1x+0.9)(万元),当010,根据题意,得x(0.1x+0.9)+0.5x=12,整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=6。
当x10时,根据题意,得x(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=5。
∵510,x2=5舍去。
答:要卖出6部汽车。
【考点】一元二次方程的应用。
【分析】(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.12=26.8。
,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当010,以及当x10时,分别讨论得出即可。
8. ((2019江苏南京9分)?的思考下框中是小明对一道题目的解答以及老师的批阅。
我的结果也正确小明发现他解答的结果是正确的,但是老师却在他的解答中划了一条横线,并打开了一个?结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样(2)如图,矩形ABCD在矩形ABCD的内部,AB∥AB,AD∥AD,且AD:AB=2:1,设AB与AB、BC与BC、CD 与CD、DA与DA之间的距离分别为a、b、c、d,要使矩形ABCD∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.【答案】解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由。
在设矩形蔬菜种植区域的宽为xm,则长为2xm.前补充以下过程:设温室的宽为ym,则长为2ym。
则矩形蔬菜种植区域的宽为(y-1-1)m,长为(2y-3-1)m。
∵,矩形蔬菜种植区域的长与宽之比为2:1。
(2)a+c b+d =2。
理由如下:要使矩形ABCD∽矩形ABCD,就要,即,即,即a+c b+d =2。
【考点】一元二次方程的应用(几何问题),相似多边形的性质,比例的性质。
【分析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以由已知条件求出矩形蔬菜种植区域的长与宽的关系即可。
(2)由使矩形ABCD∽矩形ABCD,利用相似多边形的性质,可得,然后利用比例的性质。
9. (2019江苏苏州5分)解不等式组:。
【答案】解:由不等式①得,x2,由不等式②得,x-2,不等式组的解集为-22。
【考点】解一元一次不等式组。