曾谨严量子力学习题解答4
- 格式:pdf
- 大小:122.68 KB
- 文档页数:14
曾谨言量子力学练习题答案曾谨言量子力学练习题答案量子力学是现代物理学的重要分支之一,其研究对象是微观粒子的行为规律。
曾谨言是一位著名的物理学家,他在量子力学领域有着杰出的贡献。
在学习量子力学的过程中,我们常常会遇到一些练习题,以下是曾谨言量子力学练习题的答案。
1. 问题:在双缝干涉实验中,光子通过两个狭缝后,在屏幕上形成干涉条纹。
如果将其中一个狭缝完全堵住,干涉条纹会发生什么变化?答案:当一个狭缝被堵住时,干涉条纹会消失,屏幕上只会出现一个单缝的衍射图样。
这是因为双缝干涉实验中,光子通过两个狭缝后会形成波的叠加,产生干涉现象。
而当一个狭缝被堵住时,只有一个光子通过,无法产生干涉。
2. 问题:在量子力学中,什么是波函数?答案:波函数是量子力学中描述微观粒子状态的数学函数。
它可以用来计算粒子在空间中的位置、动量等物理量的概率分布。
波函数的平方模的积分表示了粒子在某一位置的概率密度。
3. 问题:什么是量子纠缠?答案:量子纠缠是量子力学中一种特殊的现象,当两个或多个粒子发生相互作用后,它们的状态将无法被单独描述,而是成为一个整体系统的状态。
即使这些粒子之间距离很远,它们的状态仍然是相互关联的。
这种关联关系在量子通信和量子计算中有着重要的应用。
4. 问题:什么是量子隧穿?答案:量子隧穿是指微观粒子在经典力学中无法通过的势垒或势阱,在量子力学中却有一定概率穿越的现象。
这是由于量子力学中粒子的波粒二象性,粒子具有波动性质,可以在势垒或势阱的两侧存在一定的概率分布。
5. 问题:什么是量子比特?答案:量子比特,简称量子位或qubit,是量子计算中的基本单位。
与经典计算中的比特不同,量子比特可以同时处于多个状态的叠加态,这种叠加态可以通过量子门操作进行处理和控制,从而实现量子计算的优势。
以上是曾谨言量子力学练习题的答案。
量子力学作为一门复杂而又精密的学科,需要我们通过理论和练习来加深对其原理和应用的理解。
希望这些答案能够帮助大家更好地掌握量子力学的知识,并在学习和研究中取得更进一步的突破。
曾谨言量子力学练习题答案量子力学是物理学中描述微观粒子行为的一门基础理论,它在20世纪初由普朗克、爱因斯坦、波尔、薛定谔、海森堡等科学家共同发展起来。
曾谨言教授的量子力学练习题是帮助学生深入理解量子力学概念和计算方法的重要工具。
以下是一些练习题及其答案的示例:练习题1:波函数的归一化某粒子的波函数为 \( \psi(x) = A \sin(kx) \),其中 \( A \) 和\( k \) 是常数。
求波函数的归一化常数 \( A \)。
答案:波函数的归一化条件为 \( \int |\psi(x)|^2 dx = 1 \)。
将\( \psi(x) \) 代入归一化条件中,得到:\[ \int |A \sin(kx)|^2 dx = 1 \]\[ A^2 \int \sin^2(kx) dx = 1 \]利用三角恒等式 \( \sin^2(kx) = \frac{1 - \cos(2kx)}{2} \),积分变为:\[ A^2 \int \frac{1 - \cos(2kx)}{2} dx = 1 \]\[ A^2 \left[ \frac{x}{2} - \frac{\sin(2kx)}{4k} \right] = 1 \]由于波函数在 \( x = 0 \) 到 \( x = \frac{\pi}{k} \) 之间归一化,所以:\[ A^2 \left[ \frac{\pi}{2k} - 0 \right] = 1 \]\[ A = \sqrt{\frac{2k}{\pi}} \]练习题2:薛定谔方程的解考虑一个一维无限深势阱,其势能 \( V(x) = 0 \) 当 \( 0 < x < a \),\( V(x) = \infty \) 其他情况下。
求粒子的能级。
答案:在无限深势阱中,薛定谔方程为:\[ -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} = E\psi(x) \]设 \( \psi(x) = \sin(kx) \),其中 \( k = \frac{n\pi}{a} \),\( n \) 为正整数。
第4章 力学量随时间的演化与对称性4.1 复习笔记一、力学量随时间的演化1.守恒量对于力学量A ,其平均值随时间变化关系式如下A tH A i dt A d ˆ]ˆ,ˆ[1∂∂+=η 故对于Hamilton 量H 不含时的量子体系,如果力学量A 与H 对易,力学量A 对应算符不显含时间t ,则无论体系处于什么状态(定态或非定态),A 的平均值及其测值的概率分布均不随时间改变.则把A 称为量子体系的一个守恒量.2.能级简并与守恒量的关系(1)守恒量与简并关系的定理定理 设体系有两个彼此不对易的守恒量F 和G ,即[F ,H]=0,[G ,H]=0,但[F ,G ]≠0,则体系能级一般是简并的.推论 如果体系有一个守恒量F ,而体系的某条能级部简并(即对应于某能量本征值E 只有一个本征态E ψ),则E ψ必为F 的本征态.(2)位力(virial )定理当体系处于定态下,关于平均值随时间的变化,有一个有用的定理,即位力virial )定理.设粒子处于势场V (r )中,Hamilton 量为)(2p 2r V mH += 则位力定理表述如下位力定理推论:若势场函数V(r)为r 的n 次齐次式,则有推论V T 2n =二、波包的运动,Ehrenfest 定理设质量为m 的粒子在势场V (r )中运动,用波包ψ(r ,t )描述.设粒子的Hamilton 量为)(2p 2r V mH += 作如下定义:则Ehrenfest 定理表述如下:三、Schr ödinger 图像与Heisenberg 图像(1)(1)式这种描述方式称为Schrödinger 图像(picture ).亦称Schrödinger 表象. 在Schtodlnger 图像中,态矢随时间演化,遵守Schrödinger 方程,而算符则不随时间的变化;与此相反,在Heisenberg 图像中,则让体系的态矢本身不随时间的变化而算符切随时间的变化,遵守Heisenberg方程.四、守恒量与对称性的关系1.对称性变换[Q,H]=0 (2)凡满足式(2)的变换,称为体系的对称性变换.物理学中的体系的对称性变换,总是构成一个群,称为体系的对称性群(symmetrygroup).2.对称性对应守恒量体系在Q变换下的不变性[Q,H]=0,应用到无穷小变换,就导致F就是体系的一个守恒量.这充分说明对称性变换Q必定对应一个守恒量F.典型的两个例子是:平移不变性对应动量守恒,空间旋转不变性对应角动量守恒.五、全同粒子体系与波函数的交换对称性1.全同粒子体系的交换对称性(1)全同性原理全同性原理:任何可观测到,特别是Hamilton量,对于任何两个粒子交换是不变的,即交换对称性.凡满足P ijψ=ψ的.称为对称(symmetric)波函数;满足P ijψ=-ψ的称为反对称(anti—symmetrle)波函数.(2)玻色子与费米子凡自旋为 整数倍(s=0,1,2,…)的粒子,波函数对于两个粒子交换总是对称的,如π介子(s=0).光子(s=1).在统计方法上,它们遵守Bose统计,故称为Bose 子.凡自旋为h的半奇数倍(s=1/2,3/2,…)的粒子,波函数对于两粒子交换总是反对称的,如电子,质子,中子等.它们遵守Fermi统计,故称为Fermi子.2.两个全同粒子组成的体系Pauli不相容原理:不允许有两个全同的Fermi子处于同一个单粒子态.Pauli原理是一个极为重要的自然规律,后来从量子力学波函数的反对称性来说明Pauli原理的是Heisenberg,Fermi和Dirac的贡献.3.N个全同Fermi子组成的体系设N个Fermi子分别处于k2<k z<…<k N态下,则反对称波函数可如下构成(3)P代表N个粒子的一个置换(permutation).式(3)常称为slater行列式,是归一化因子.4.N个全同Bose子组成的体系Bose子不受Pauli原理限制,可以有任意数目的Bose子处于相同的单粒子态.设有n i个Bose子处于k,态上(i=1,2,…,N),则该体系的归一化的对称波函数可表为4.2 课后习题详解4.1 判断下列提法的正误:(正确○,错误×)(a)在非定态下,力学量的平均值随时间变化;(×)(b)设体系处于定态,则不含时力学量的测值的概率分布不随时间变化;(○)(c)设Hamilton量为守恒量,则体系处于定态;(×)(d)中心力场中的粒子,处于定态,则角动量取确定值;(×)(e)自由粒子处于定态,则动量取确定值;(×)(f)一维粒子的能量本征态无简并;(×)(g)中心力场中的粒子能级的简并度至少为(2ι/+1),ι=0,1,2,….(○)4.2 设体系有两个粒子,每个粒子可处于三个单粒子态φ 1、φ 2、φ 3中的任何一个态.试求体系可能态的数目,分三种情况讨论:(a)两个全同Bose子;(b)两个全同Fermi 子;(c)两个不同粒子.【解答与分析见《量子力学习题精选与剖析》[下],7.1题.】7.1 考虑由两个全同粒子组成的体系.设可能的单粒子态为φ1、φ2、φ3,试求体系的可能态数目.分三种情况讨论:(a)粒子为Bose子(Bose统计);(b)粒子为Fermi子(Fermi统计);(c)粒子为经典粒子(Boltzmann统计).解:以符号△、○、口分别表示φ1、φ2、φ3态.Bose子体系的量子态对于两个粒子的交换必须是对称的,Fermi子体系则必须是反对称的,经典粒子被认为是可区分的,体系状态没有对称性的限制.当两个粒子处于相同的单粒子态时,体系的状态必然是交换对称的,这种状态只能出现于Bose子体系和经典粒子体系,体系波函数的构造方式为当两个粒子处于不同的单粒子态(φi和φj,i≠j)时,如果是经典粒子,有两种体系态,即由单粒子态φi和φj可以构成对称和反对称的体系态各一种,即对称态适用于Bose子体系,反对称态适用于Fermi子体系.对于两粒子体系来说,Bose子体系的可能态总数与Fermi子体系的可能态总数之和,显然正好等于经典粒子(可区分粒子)体系的可能态总数.如可能的单粒子态为k个,则三种两粒子体系的可能态数目如下:经典粒子N=k2本题k=3,Fermi子、Bose子、经典粒子体系的可能态数目分别为3、6、9.体系态。
第四章 力学量用算符表达与表象变换 4.1)设A 与B 为厄米算符,则()BA AB +21和()BA AB i-21也是厄米算符。
由此证明,任何一个算符F 均可分解为-++=iF F F ,+F 与-F 均为厄米算符,且()()+++-=+=F F iF F F F 21 ,21 证:ⅰ)()()()()BA AB AB BA B A A B BA AB +=+=+=⎥⎦⎤⎢⎣⎡++++++21212121()BA AB +∴21为厄米算符。
ⅱ)()()()()BA AB i AB BA i B A A B i BA AB i -=--=--=⎥⎦⎤⎢⎣⎡-+++++21212121()BA AB i-∴21也为厄米算符。
ⅲ)令AB F =,则()BA A B AB F ===++++,且定义 ()()+++-=+=F F iF F F F 21 ,21 (1) 由ⅰ),ⅱ)得-+-+++==F F F F ,,即+F 和-F 皆为厄米算符。
则由(1)式,不难解得 -++=iF F F4.2)设),(p x F 是p x ,的整函数,证明[][]F ,F,,pi F x x i F p ∂∂=∂∂-=整函数是指),(p x F 可以展开成∑∞==,),(n m n m mnp x Cp x F 。
证: (1)先证[][]11, ,,--=-=n n m mp ni p x xmi xp 。
[][][][][][][][]()()[]()111111331332312221111,1,3,,2,,,,,------------------=---=+--==+-=++-=++-=+=m m m m m m m m m m m m m m m m m mx m i x i x i m xxp x i m x x p x i x x p x x p x x i x x p x x p x x i xx p x p x x p同理,[][][][][][]1221222111,2,,,,,--------==+=++=+=n n n n n n n n np ni ppx pi p p x p p x p p i pp x p x p p x现在,[][]()∑∑∑∞=-∞=∞=-==⎥⎦⎤⎢⎣⎡=0,1,0,,,,n m nm mnn m n m mn n m n m mn px m i C p x p C p x C p F p而 ()∑∞=--=∂∂-0,1n m n m mn p x mi C x Fi 。