17.1.2勾股定理的应用.利用勾股定理解决平面问题
- 格式:docx
- 大小:57.21 KB
- 文档页数:4
勾股定理的应用及方法勾股定理是数学中的一个重要定理,它描述了直角三角形中,直角边的平方和等于斜边的平方。
具体表述为:在一个直角三角形中,设直角边的长度分别为a 和b,斜边的长度为c,则有a²+ b²= c²。
勾股定理的应用非常广泛,在几何学、物理学和工程学等领域都有重要的应用。
下面我将介绍一些常见的勾股定理的应用及解题方法。
1. 求解三角形的边长和角度:勾股定理可以用于求解三角形的边长和角度。
当我们已知两条边长,可以利用勾股定理计算出第三条边长。
而已知两边长和夹角时,可以利用勾股定理计算出第三边长或者求解夹角的大小。
例如,已知直角三角形的斜边长为5,一条直角边长为3,我们可以利用勾股定理计算出另一条直角边的长度:3²+ b²= 5²9 + b²= 25b²= 16b = 4同样地,已知直角三角形的两条直角边长度为3和4,可以利用勾股定理计算斜边的长度:3²+ 4²= c²9 + 16 = c²c²= 25c = 52. 解决实际问题:勾股定理也可以应用于解决实际问题。
例如,在测量中,我们经常需要通过已知的边长计算其他未知边长的问题。
有一道经典的应用题是“房子问题”:如果一个房子的两堵墙的长度分别为6米和8米,房子的对角线长度是多少?根据勾股定理可知,对角线的长度即斜边的长度c,可以通过勾股定理求解:6²+ 8²= c²36 + 64 = c²c²= 100c = 10因此,房子的对角线长度为10米。
3. 判断三角形的形状:勾股定理还可以用来判断三角形的形状。
根据勾股定理,如果一个三角形的三条边满足a²+ b²= c²,那么这个三角形就是直角三角形。
例如,如果一个三角形的三条边长分别为3、4和5,我们可以通过勾股定理验证这个三角形是否为直角三角形:3²+ 4²= 5²9 + 16 = 2525 = 25由此可见,三角形的三条边满足勾股定理,所以这个三角形是一个直角三角形。
17.1 勾股定理第2课时勾股定理的应用课前预习1.应用勾股定理的前提条件是在直角三角形中.如果三角形不是直角三角形,要先构建直角三角形,再利用勾股定理求未知边的长.2.利用勾股定理可以解决与直角三角形有关的计算和证明,其主要应用如下:(1)已知直角三角形的任意两边求第三边;(2)已知直角三角形的任意一边,确定另外两边的关系;(3)证明包含平方关系的几何问题;(4)构造方程(或方程组)计算有关线段的长.3.一般地,n为正整数),通常是利用勾股定理作图.课堂练习知识点1 勾股定理的实际应用1.如图,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=___2___.2.【核心素养·数学抽象】如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要___7___米.3.(教材改编)如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑___0.5___米.【解析】在Rt△ACB中,根据勾股定理,得AC=22-=2.在2.5 1.5AB CB-=22Rt△ECD中,根据勾股定理,得CE=22-=1.5.∴AE=AC -ED CD2.52-=22CE=2-1.5=0.5.即滑竿顶端A下滑0.5米.故答案为0.5.4.如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度﹒于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线未端刚好接触地面.请你帮小旭求出风筝距离地面的高度AB.解:根据题意,得AC=AB+1,BC=5米.在Rt△ABC中,BC2+AB2=(1+AB)2.解得AB=12(米).答:风筝距离地面的高度AB 为12米.5.放学以后,小东和晓晓从学校分手,分别沿东南方向和西南方向回家,若小东和晓晓行走的速度都是40米/分钟,小东用15分钟到家,晓晓用20分钟到家,求小东和晓晓家的直线距离.解:根据题意作图,由图可知△ABO是直角三角形,OA=40×20=800(米),OB=40×15=600(米).在Rt△OAB中,根据勾股定理,得(米).答:小东和晓晓家的直线距离为1 000米.知识点2 在数轴上表示无理数6.(2020玉溪红塔区期末)如图,数轴上的点A表示的数是-2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为(C).7.用直尺和圆规在如图所示的数轴上作出表示解:∵32+22=13,3和2的直角三角形的斜边长.∴课时作业练基础1.如图是由4个边长为1的正方形构成的“田字格”,只用没有刻度的直尺在这___8___条.30°,则以它的腰长为边2.有一个面积为的正方形的面积为___20___.3.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树顶飞到另一棵树的树顶,小鸟至少飞行(B)A.8米B.10米C.12米D.14米4.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1,图2,推开双门,双门间隙C,D的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10 寸),则AB的长是(C)A.50.5寸B.52寸C.101寸D.104寸5.(2020盘龙区期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为 1.5米,则小巷的宽为(C)A.2.5米B.2.6米C.2.7米D.2.8米【解析】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B2,∴BD2+1.52=6.25.∴BD2=4.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.故选C.6.如图,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标在(B)A.-3和-2之间B.-4和-3之间C.-5和-4之间D.-6和-5之间7.如图,在边长为1的正方形网格中,△ABC的三边a,b,c的大小关系是(B)A.c<b<aB.c<a<bC.a<c<bD.a<b<c8.(教材改编)小明拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿的长和门的高. 解:根据题意作图,由图可知AD=4尺.设门高AB为x尺,则竹竿的长BD为(x+1)尺.在Rt△ABD中,由勾股定理得AB2+AD2=BD2,即x2+42=(x+1)2,解得x=7.5.则x+1=8.5.答:竹竿的长为8.5尺,门高为7.5尺.9.【核心素养·数学抽象】一根直立的旗杆AB长 8 m,一阵大风吹过,旗杆从C点处折断,顶部(B)着地,离杆脚(A)4 m,如图.工人在修复的过程中,发现在折断点C的下面1.25 m 的D处,有一明显伤痕,如果下次大风将旗杆从D 处刮断,则杆脚周围多大范围内有被砸伤的危险?解:在Rt △ABC 中,设AC 的长为x m ,则BC 的长为(8-x )m.根据勾股定理,得AC 2+AB 2=BC 2,即x 2+42=(8-x )2.解得x=3,即AC=3.当从点D 处折断时,AD=AC-CD=3-1.25=1.75,∴BD=8-1.75=6.25.∴AB=3675.125.62222=-=-AD BD =6 (m ).答:杆脚周围6 m 范围内有被砸伤的危险.10.如图,铁路上A ,B 两站(视为直线上的两点)相距25 km ,DA ⊥AB 于点A ,CB ⊥AB 于点B ,DA=15 km ,CB=10 km ,现要在铁路上建设一个土特产收购站E ,使得C ,D 两村到收购站E 的距离相等,则收购站E 应建在距离A 站多少km 处?解:∵C ,D 两村到E 点的距离相等,∴CE=DE.在Rt △DAE 和Rt △CBE 中,根据勾股定理,得DE 2=AD 2+AE 2,CE 2=BE 2+BC 2,∴AD 2+AE 2=BE 2+BC 2.设AE=x km ,则BE=(25-x )km.x 2+152=(25-x)2+102.解得x=10.答:收购站E 应建在距离A 站10 km 处.提能力11.如图,小正方形的边长为1,连接小正方形的三个顶点,可得△ABC ,则BC 边上的高是( A )A.223 B.1055 C.553 D.554【解析】由图形,根据勾股定理可得ABC 的面积为2×2-12×1×1-12×1×2-12×1×2=4-12-2=32,再根据△ABC 面积的不同计算方法得32=12BC 边上的高.故选A. 12.有一辆装满货物的卡车,高5 m ,宽3.2 m (货物的顶部是水平的),要通过如图所示的截面的上半部分是半圆,下半部分是长方形的隧道,已知半圆的直径为4 m ,长方形竖直的一条边长是4.6 m.这辆卡车能否通过此隧道?请说明理由.解:能通过. 理由如下:如图,设O 为半圆的圆心,AB 为半圆的直径,在OB 上截取OE=3.2÷2=1.6(m ),过点E 作EF ⊥AB 交半圆于点F ,连接OF.在Rt △OEF 中,OF 2=OE 2+EF 2,即22=1.62+EF 2,解得EF=1.2 m.因为1.2+4.6=5.8(m )>5 m ,所以这辆卡车能通过此隧道.。
应用勾股定理解实际问题勾股定理是数学中最基础的定理之一,它描述了直角三角形边长之间的关系。
在实际生活中,勾股定理可以应用于多种场景,解决实际问题。
本文将探讨勾股定理在几个具体问题中的应用。
1. 应用一:测量直角三角形的边长勾股定理最常见的应用就是用来测量直角三角形的边长。
在我们日常生活中,经常会遇到需要测量一些不易直接测量的距离,比如高楼的高度、河流的宽度等等。
这时,我们可以利用勾股定理来求解。
假设我们需要测量一栋建筑物的高度,可以选择一个合适的地方A 站立,从眼睛位置向上仰望,然后测量自己与建筑物底部的距离为a。
接着,我们移动到地点B,使得站立在地点B时看到建筑物顶部,测量自己与建筑物底部的距离为b。
此时,我们可以利用勾股定理计算出建筑物的高度c,即c²=a²+b²。
2. 应用二:求解物体之间的距离在很多实际问题中,我们需要求解两个物体之间的距离。
例如,在导航软件中,我们需要确定两个地点之间的最短路径。
这时,我们可以应用勾股定理帮助我们计算出两个地点的距离。
假设有两个地点A和B,我们知道A点的横坐标为x₁,纵坐标为y₁,B点的横坐标为x₂,纵坐标为y₂。
我们可以通过计算AB两点间的距离来获得最短路径。
根据勾股定理,AB的距离可以表示为d=√((x₂-x₁)²+(y₂-y₁)²)。
3. 应用三:解决投影问题另一个常见的应用领域是求解投影问题。
在日常生活中,我们经常需要计算物体的投影长度,比如阳光下建筑物的影子长度、物体在倾斜地面上的投影长度等等。
勾股定理可以帮助我们解决这些问题。
假设有一个倾斜的平面,上面有一个物体A。
物体A的高度为h,离倾斜平面的水平距离为d。
我们可以利用勾股定理来计算物体A在倾斜平面上的投影长度l。
根据勾股定理,我们可以得到l=√(d²+h²)。
4. 应用四:解决角度问题勾股定理还可以应用于求解角度问题。
在导航、航海等领域中,经常需要精确测量物体的角度。
学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________人教版初中数学八年级下册17.1.2 勾股定理在实际生活中的应用 导学案一、学习目标:1.会运用勾股定理求线段长及解决简单的实际问题.2.能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长. 重点:熟练运用会用勾股定理解决简单实际问题. 难点:熟练运用会用勾股定理解决简单实际问题. 二、学习过程: 课前热身_______________________ ______________________ ______________________ _______________________ ______________________ ______________________如图,在△ABC 中,AD ⊥BC 于点D ,AB =3,BD =2,DC =1,求AC的长.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________典例解析例1 一个门框尺寸如图所示,一块长3m ,宽2.2m 的长方形薄木板能否从门框内穿过?为什么?【针对练习】有一根长125cm的木棒,要放入长、宽、高分别是40cm、30cm、120cm的木箱中(如图),能放进去吗?试通过计算说明理由.例2 如图,一架2.6m 长的梯子AB 斜靠在一竖直的墙AO 上,这时AO 为2.4m ,如果梯子的顶端A 沿墙下滑0.5m ,那么梯子底端B 也外移0.5m 吗?【针对练习】如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点,已知∠BAC =60°,∠DAE =45°.点D 到地面的垂直距离DE =4米,求点A到墙壁BC 的距离.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【总结提升】利用勾股定理解决实际问题的一般步骤:(1)_____________________________________________________; (2)_____________________________________________________; (3)_____________________________________________________; (4)_____________________________________________________.例3.如图,在平面直角坐标系中有两点A(-3,5),B(1,2)求A,B 两点间的距离.【针对练习】如图,在平面直角坐标系中有两点A(5,0)和B(0,4).求这两点之间的距离.例4.如图,有两棵树,一棵树高AC 是10米,另一棵树高BD 是4米,两树相距8米(即CD=8米),一只小鸟从一棵树的树梢A点处飞到另一棵树的树梢B 点处,则小鸟至少要飞行多少米?学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________例5.如图,甲乙两船同时从A 港出发,甲船沿北偏东35°的方向,航速是12海里/时,2小时后,两船同时到达了目的地.若C 、B 两岛的距离为30海里,问乙船的航速是多少?例6.有一个圆柱形油罐,要以A 点环绕油罐建梯子,正好建在A 点的正上方点B 处,问梯子最短需多少米(已知油罐的底面半径是2m,高AB 是5m,π取3)?【针对练习】如图,是一个边长为1的正方体硬纸盒,现在A 处有一只蚂蚁,想沿着正方体的外表面到达B 处吃食物,求蚂蚁爬行的最短距离是多少.达标检测1.如图,书架上放了四个文件夹,已知∠ACB =90°,AC=24cm , BC=7cm , 则AB 的长为( )A.20cmB.23cmC. 25cmD.√47cm学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.如图,一根12米高的电线杆CD 垂直于地面,在其两侧各用15米的铁丝固定,两个固定点A, B(点A 、D 、B 在同一直线上)之间的距离是( ) A.13米 B.9米 C.10米 D.18米3.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( ) A.0.7米 B.1.5米 C.2.2米 D.2.4米4.如图,长方体的长为3,宽为2,高为4,则从点A 1到C 点(沿着长方体表面)的最短距离是( )A.√41B.√53C.9D.3√55.如图是一个育苗棚,棚宽a=6m,棚高h=2.5m,棚长d=10m ,则覆盖在棚斜面上的塑料薄膜的面积为______m 2.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________6.如果将一根细长木棒放进长为3cm 、宽为2cm 、 高为6cm 的长方体有盖盒子中,那么细木棒最长可以是_____cm.7.暑假中,小明和同学们到某海岛去探宝旅游,按照如图所示的路线探宝.他们登陆后先往东走8km ,又往北走2km ,遇到障碍后又往西走3km ,再折向北走6km 处往东拐,仅走1km 就找到了宝藏,则登陆点到埋宝藏点的直线距离为______km.8.如图,池塘边有两点A 、B ,点C 是与BA 方向成直角的AC 方向上一点,测得CB=60m ,AC=20m.求A 、B 两点间的距离(结果取整数).9.如图,铁路上A 、B 两点相距25km ,C 、D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA =15km,CB =10km,现在要在铁路AB 上建一个土特产品收购站E ,使得C 、D 两村到E 站的距离相等,则E 站应建在距A站多少千米处?学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________10.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D 的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)11.如图,有一个圆柱体,它的高为12厘米,底面半径为3厘米,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 点相对的B 处的食物,需要爬行的最短路程是多少?(π的值取3)12.如图,铁路MN 和公路PQ 在点O 处交汇.公路PQ 上距离O 点240m的A 处与铁路MN 的距离是120m.如果火车行驶时,周围200m以内会受到噪音的影响,那么火车在铁路MN 上沿ON 方向以72km/h的速度行驶时,A处受噪音影响的时间是多少?学习笔记记录区___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________。
学习主题:《勾股定理》
-------运用数形结合思想解决数学问题
单元主题
1、学情分析
2、课程标准要求
数学思想是蕴含在知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象和概括。
学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟到数形结合思想在解决问题时的真实存在。
3、教材的地位和作用
勾股定理把形的特征(三角形中一个角是直角)转化成数量关系(a²+b²=c²),它把形和数密切联系了起来。
由于直角图形的普遍性,勾股定理在实际应用中极其重要。
对于勾股定理的证明将直角三角形三边关系的探究放置网格中(探究),使数据比较准确,符合学生的认知规律,侧重于利用几何图形引导学生自己去发现这种数量关系,即渗透数形结合思想在解决问题中的重要作用。
1
(一)学习目标
(二)学习过程和持续性评价
:借助图形比较
2
请自己重新设计一个符合结构特征的网格3
怎样构造
4。