Self-dual Chern-Simons Vortices on Riemann Surfaces
- 格式:pdf
- 大小:125.25 KB
- 文档页数:11
密度函数理论和杜比宁方程可以用来研究活性炭纤维在多段充填过程中的吸附行为。
密度函数理论是一种分子统计力学理论,它建立在分子统计学和热力学的基础上,用来研究一种系统中分子的分布。
杜比宁方程是一种描述分子吸附行为的方程,它可以用来计算吸附层的厚度、吸附速率和吸附能量等参数。
在研究活性炭纤维多段充填过程中,可以使用密度函数理论和杜比宁方程来研究纤维表面的分子结构和吸附行为。
通过分析密度函数和杜比宁方程的解,可以得出纤维表面的分子结构以及纤维吸附的分子的种类、数量和能量。
这些信息有助于更好地理解活性炭纤维的多段充填机理。
在研究活性炭纤维的多段充填机理时,还可以使用其他理论和方法来帮助我们更好地了解这一过程。
例如,可以使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)等技术来观察纤维表面的形貌和结构。
可以使用X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)等技术来确定纤维表面的化学成分和结构。
还可以使用氮气吸附(BET)和旋转氧吸附(BJH)等技术来测量纤维表面的比表面积和孔结构。
通过综合运用密度函数理论、杜比宁方程和其他理论和方法,可以更全面地了解活性炭纤维的多段充填机理,从而更好地控制和优化多段充填的过程。
在研究活性炭纤维多段充填机理时,还可以使用温度敏感性测试方法来研究充填过程中纤维表面的动力学性质。
例如,可以使用动态氧吸附(DAC)或旋转杆氧吸附(ROTA)等技术来测量温度对纤维表面吸附性能的影响。
通过对比不同温度下纤维表面的吸附性能,可以更好地了解充填过程中纤维表面的动力学性质。
此外,还可以使用分子动力学模拟方法来研究纤维表面的吸附行为。
例如,可以使用拉曼光谱或红外光谱等技术来测量纤维表面的分子吸附构型。
然后,使用分子动力学模拟方法来模拟不同分子吸附构型下的纤维表面的动力学性质,帮助我们更好地了解活性炭纤维的多段充填机理。
425 BibliographyH.A KAIKE(1974).Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes.Annals Institute Statistical Mathematics,vol.26,pp.363-387. B.D.O.A NDERSON and J.B.M OORE(1979).Optimal rmation and System Sciences Series, Prentice Hall,Englewood Cliffs,NJ.T.W.A NDERSON(1971).The Statistical Analysis of Time Series.Series in Probability and Mathematical Statistics,Wiley,New York.R.A NDRE-O BRECHT(1988).A new statistical approach for the automatic segmentation of continuous speech signals.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-36,no1,pp.29-40.R.A NDRE-O BRECHT(1990).Reconnaissance automatique de parole`a partir de segments acoustiques et de mod`e les de Markov cach´e s.Proc.Journ´e es Etude de la Parole,Montr´e al,May1990(in French).R.A NDRE-O BRECHT and H.Y.S U(1988).Three acoustic labellings for phoneme based continuous speech recognition.Proc.Speech’88,Edinburgh,UK,pp.943-950.U.A PPEL and A.VON B RANDT(1983).Adaptive sequential segmentation of piecewise stationary time rmation Sciences,vol.29,no1,pp.27-56.L.A.A ROIAN and H.L EVENE(1950).The effectiveness of quality control procedures.Jal American Statis-tical Association,vol.45,pp.520-529.K.J.A STR¨OM and B.W ITTENMARK(1984).Computer Controlled Systems:Theory and rma-tion and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.M.B AGSHAW and R.A.J OHNSON(1975a).The effect of serial correlation on the performance of CUSUM tests-Part II.Technometrics,vol.17,no1,pp.73-80.M.B AGSHAW and R.A.J OHNSON(1975b).The influence of reference values and estimated variance on the ARL of CUSUM tests.Jal Royal Statistical Society,vol.37(B),no3,pp.413-420.M.B AGSHAW and R.A.J OHNSON(1977).Sequential procedures for detecting parameter changes in a time-series model.Jal American Statistical Association,vol.72,no359,pp.593-597.R.K.B ANSAL and P.P APANTONI-K AZAKOS(1986).An algorithm for detecting a change in a stochastic process.IEEE rmation Theory,vol.IT-32,no2,pp.227-235.G.A.B ARNARD(1959).Control charts and stochastic processes.Jal Royal Statistical Society,vol.B.21, pp.239-271.A.E.B ASHARINOV andB.S.F LEISHMAN(1962).Methods of the statistical sequential analysis and their radiotechnical applications.Sovetskoe Radio,Moscow(in Russian).M.B ASSEVILLE(1978).D´e viations par rapport au maximum:formules d’arrˆe t et martingales associ´e es. Compte-rendus du S´e minaire de Probabilit´e s,Universit´e de Rennes I.M.B ASSEVILLE(1981).Edge detection using sequential methods for change in level-Part II:Sequential detection of change in mean.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-29,no1,pp.32-50.426B IBLIOGRAPHY M.B ASSEVILLE(1982).A survey of statistical failure detection techniques.In Contribution`a la D´e tectionS´e quentielle de Ruptures de Mod`e les Statistiques,Th`e se d’Etat,Universit´e de Rennes I,France(in English). M.B ASSEVILLE(1986).The two-models approach for the on-line detection of changes in AR processes. In Detection of Abrupt Changes in Signals and Dynamical Systems(M.Basseville,A.Benveniste,eds.). Lecture Notes in Control and Information Sciences,LNCIS77,Springer,New York,pp.169-215.M.B ASSEVILLE(1988).Detecting changes in signals and systems-A survey.Automatica,vol.24,pp.309-326.M.B ASSEVILLE(1989).Distance measures for signal processing and pattern recognition.Signal Process-ing,vol.18,pp.349-369.M.B ASSEVILLE and A.B ENVENISTE(1983a).Design and comparative study of some sequential jump detection algorithms for digital signals.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-31, no3,pp.521-535.M.B ASSEVILLE and A.B ENVENISTE(1983b).Sequential detection of abrupt changes in spectral charac-teristics of digital signals.IEEE rmation Theory,vol.IT-29,no5,pp.709-724.M.B ASSEVILLE and A.B ENVENISTE,eds.(1986).Detection of Abrupt Changes in Signals and Dynamical Systems.Lecture Notes in Control and Information Sciences,LNCIS77,Springer,New York.M.B ASSEVILLE and I.N IKIFOROV(1991).A unified framework for statistical change detection.Proc.30th IEEE Conference on Decision and Control,Brighton,UK.M.B ASSEVILLE,B.E SPIAU and J.G ASNIER(1981).Edge detection using sequential methods for change in level-Part I:A sequential edge detection algorithm.IEEE Trans.Acoustics,Speech,Signal Processing, vol.ASSP-29,no1,pp.24-31.M.B ASSEVILLE, A.B ENVENISTE and G.M OUSTAKIDES(1986).Detection and diagnosis of abrupt changes in modal characteristics of nonstationary digital signals.IEEE rmation Theory,vol.IT-32,no3,pp.412-417.M.B ASSEVILLE,A.B ENVENISTE,G.M OUSTAKIDES and A.R OUG´E E(1987a).Detection and diagnosis of changes in the eigenstructure of nonstationary multivariable systems.Automatica,vol.23,no3,pp.479-489. M.B ASSEVILLE,A.B ENVENISTE,G.M OUSTAKIDES and A.R OUG´E E(1987b).Optimal sensor location for detecting changes in dynamical behavior.IEEE Trans.Automatic Control,vol.AC-32,no12,pp.1067-1075.M.B ASSEVILLE,A.B ENVENISTE,B.G ACH-D EVAUCHELLE,M.G OURSAT,D.B ONNECASE,P.D OREY, M.P REVOSTO and M.O LAGNON(1993).Damage monitoring in vibration mechanics:issues in diagnos-tics and predictive maintenance.Mechanical Systems and Signal Processing,vol.7,no5,pp.401-423.R.V.B EARD(1971).Failure Accommodation in Linear Systems through Self-reorganization.Ph.D.Thesis, Dept.Aeronautics and Astronautics,MIT,Cambridge,MA.A.B ENVENISTE and J.J.F UCHS(1985).Single sample modal identification of a nonstationary stochastic process.IEEE Trans.Automatic Control,vol.AC-30,no1,pp.66-74.A.B ENVENISTE,M.B ASSEVILLE and G.M OUSTAKIDES(1987).The asymptotic local approach to change detection and model validation.IEEE Trans.Automatic Control,vol.AC-32,no7,pp.583-592.A.B ENVENISTE,M.M ETIVIER and P.P RIOURET(1990).Adaptive Algorithms and Stochastic Approxima-tions.Series on Applications of Mathematics,(A.V.Balakrishnan,I.Karatzas,M.Yor,eds.).Springer,New York.A.B ENVENISTE,M.B ASSEVILLE,L.E L G HAOUI,R.N IKOUKHAH and A.S.W ILLSKY(1992).An optimum robust approach to statistical failure detection and identification.IFAC World Conference,Sydney, July1993.B IBLIOGRAPHY427 R.H.B ERK(1973).Some asymptotic aspects of sequential analysis.Annals Statistics,vol.1,no6,pp.1126-1138.R.H.B ERK(1975).Locally most powerful sequential test.Annals Statistics,vol.3,no2,pp.373-381.P.B ILLINGSLEY(1968).Convergence of Probability Measures.Wiley,New York.A.F.B ISSELL(1969).Cusum techniques for quality control.Applied Statistics,vol.18,pp.1-30.M.E.B IVAIKOV(1991).Control of the sample size for recursive estimation of parameters subject to abrupt changes.Automation and Remote Control,no9,pp.96-103.R.E.B LAHUT(1987).Principles and Practice of Information Theory.Addison-Wesley,Reading,MA.I.F.B LAKE and W.C.L INDSEY(1973).Level-crossing problems for random processes.IEEE r-mation Theory,vol.IT-19,no3,pp.295-315.G.B ODENSTEIN and H.M.P RAETORIUS(1977).Feature extraction from the encephalogram by adaptive segmentation.Proc.IEEE,vol.65,pp.642-652.T.B OHLIN(1977).Analysis of EEG signals with changing spectra using a short word Kalman estimator. Mathematical Biosciences,vol.35,pp.221-259.W.B¨OHM and P.H ACKL(1990).Improved bounds for the average run length of control charts based on finite weighted sums.Annals Statistics,vol.18,no4,pp.1895-1899.T.B OJDECKI and J.H OSZA(1984).On a generalized disorder problem.Stochastic Processes and their Applications,vol.18,pp.349-359.L.I.B ORODKIN and V.V.M OTTL’(1976).Algorithm forfinding the jump times of random process equation parameters.Automation and Remote Control,vol.37,no6,Part1,pp.23-32.A.A.B OROVKOV(1984).Theory of Mathematical Statistics-Estimation and Hypotheses Testing,Naouka, Moscow(in Russian).Translated in French under the title Statistique Math´e matique-Estimation et Tests d’Hypoth`e ses,Mir,Paris,1987.G.E.P.B OX and G.M.J ENKINS(1970).Time Series Analysis,Forecasting and Control.Series in Time Series Analysis,Holden-Day,San Francisco.A.VON B RANDT(1983).Detecting and estimating parameters jumps using ladder algorithms and likelihood ratio test.Proc.ICASSP,Boston,MA,pp.1017-1020.A.VON B RANDT(1984).Modellierung von Signalen mit Sprunghaft Ver¨a nderlichem Leistungsspektrum durch Adaptive Segmentierung.Doctor-Engineer Dissertation,M¨u nchen,RFA(in German).S.B RAUN,ed.(1986).Mechanical Signature Analysis-Theory and Applications.Academic Press,London. L.B REIMAN(1968).Probability.Series in Statistics,Addison-Wesley,Reading,MA.G.S.B RITOV and L.A.M IRONOVSKI(1972).Diagnostics of linear systems of automatic regulation.Tekh. Kibernetics,vol.1,pp.76-83.B.E.B RODSKIY and B.S.D ARKHOVSKIY(1992).Nonparametric Methods in Change-point Problems. Kluwer Academic,Boston.L.D.B ROEMELING(1982).Jal Econometrics,vol.19,Special issue on structural change in Econometrics. L.D.B ROEMELING and H.T SURUMI(1987).Econometrics and Structural Change.Dekker,New York. D.B ROOK and D.A.E VANS(1972).An approach to the probability distribution of Cusum run length. Biometrika,vol.59,pp.539-550.J.B RUNET,D.J AUME,M.L ABARR`E RE,A.R AULT and M.V ERG´E(1990).D´e tection et Diagnostic de Pannes.Trait´e des Nouvelles Technologies,S´e rie Diagnostic et Maintenance,Herm`e s,Paris(in French).428B IBLIOGRAPHY S.P.B RUZZONE and M.K AVEH(1984).Information tradeoffs in using the sample autocorrelation function in ARMA parameter estimation.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-32,no4, pp.701-715.A.K.C AGLAYAN(1980).Necessary and sufficient conditions for detectability of jumps in linear systems. IEEE Trans.Automatic Control,vol.AC-25,no4,pp.833-834.A.K.C AGLAYAN and R.E.L ANCRAFT(1983).Reinitialization issues in fault tolerant systems.Proc.Amer-ican Control Conf.,pp.952-955.A.K.C AGLAYAN,S.M.A LLEN and K.W EHMULLER(1988).Evaluation of a second generation reconfigu-ration strategy for aircraftflight control systems subjected to actuator failure/surface damage.Proc.National Aerospace and Electronic Conference,Dayton,OH.P.E.C AINES(1988).Linear Stochastic Systems.Series in Probability and Mathematical Statistics,Wiley, New York.M.J.C HEN and J.P.N ORTON(1987).Estimation techniques for tracking rapid parameter changes.Intern. Jal Control,vol.45,no4,pp.1387-1398.W.K.C HIU(1974).The economic design of cusum charts for controlling normal mean.Applied Statistics, vol.23,no3,pp.420-433.E.Y.C HOW(1980).A Failure Detection System Design Methodology.Ph.D.Thesis,M.I.T.,L.I.D.S.,Cam-bridge,MA.E.Y.C HOW and A.S.W ILLSKY(1984).Analytical redundancy and the design of robust failure detection systems.IEEE Trans.Automatic Control,vol.AC-29,no3,pp.689-691.Y.S.C HOW,H.R OBBINS and D.S IEGMUND(1971).Great Expectations:The Theory of Optimal Stop-ping.Houghton-Mifflin,Boston.R.N.C LARK,D.C.F OSTH and V.M.W ALTON(1975).Detection of instrument malfunctions in control systems.IEEE Trans.Aerospace Electronic Systems,vol.AES-11,pp.465-473.A.C OHEN(1987).Biomedical Signal Processing-vol.1:Time and Frequency Domain Analysis;vol.2: Compression and Automatic Recognition.CRC Press,Boca Raton,FL.J.C ORGE and F.P UECH(1986).Analyse du rythme cardiaque foetal par des m´e thodes de d´e tection de ruptures.Proc.7th INRIA Int.Conf.Analysis and optimization of Systems.Antibes,FR(in French).D.R.C OX and D.V.H INKLEY(1986).Theoretical Statistics.Chapman and Hall,New York.D.R.C OX and H.D.M ILLER(1965).The Theory of Stochastic Processes.Wiley,New York.S.V.C ROWDER(1987).A simple method for studying run-length distributions of exponentially weighted moving average charts.Technometrics,vol.29,no4,pp.401-407.H.C S¨ORG¨O and L.H ORV´ATH(1988).Nonparametric methods for change point problems.In Handbook of Statistics(P.R.Krishnaiah,C.R.Rao,eds.),vol.7,Elsevier,New York,pp.403-425.R.B.D AVIES(1973).Asymptotic inference in stationary gaussian time series.Advances Applied Probability, vol.5,no3,pp.469-497.J.C.D ECKERT,M.N.D ESAI,J.J.D EYST and A.S.W ILLSKY(1977).F-8DFBW sensor failure identification using analytical redundancy.IEEE Trans.Automatic Control,vol.AC-22,no5,pp.795-803.M.H.D E G ROOT(1970).Optimal Statistical Decisions.Series in Probability and Statistics,McGraw-Hill, New York.J.D ESHAYES and D.P ICARD(1979).Tests de ruptures dans un mod`e pte-Rendus de l’Acad´e mie des Sciences,vol.288,Ser.A,pp.563-566(in French).B IBLIOGRAPHY429 J.D ESHAYES and D.P ICARD(1983).Ruptures de Mod`e les en Statistique.Th`e ses d’Etat,Universit´e deParis-Sud,Orsay,France(in French).J.D ESHAYES and D.P ICARD(1986).Off-line statistical analysis of change-point models using non para-metric and likelihood methods.In Detection of Abrupt Changes in Signals and Dynamical Systems(M. Basseville,A.Benveniste,eds.).Lecture Notes in Control and Information Sciences,LNCIS77,Springer, New York,pp.103-168.B.D EVAUCHELLE-G ACH(1991).Diagnostic M´e canique des Fatigues sur les Structures Soumises`a des Vibrations en Ambiance de Travail.Th`e se de l’Universit´e Paris IX Dauphine(in French).B.D EVAUCHELLE-G ACH,M.B ASSEVILLE and A.B ENVENISTE(1991).Diagnosing mechanical changes in vibrating systems.Proc.SAFEPROCESS’91,Baden-Baden,FRG,pp.85-89.R.D I F RANCESCO(1990).Real-time speech segmentation using pitch and convexity jump models:applica-tion to variable rate speech coding.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-38,no5, pp.741-748.X.D ING and P.M.F RANK(1990).Fault detection via factorization approach.Systems and Control Letters, vol.14,pp.431-436.J.L.D OOB(1953).Stochastic Processes.Wiley,New York.V.D RAGALIN(1988).Asymptotic solutions in detecting a change in distribution under an unknown param-eter.Statistical Problems of Control,Issue83,Vilnius,pp.45-52.B.D UBUISSON(1990).Diagnostic et Reconnaissance des Formes.Trait´e des Nouvelles Technologies,S´e rie Diagnostic et Maintenance,Herm`e s,Paris(in French).A.J.D UNCAN(1986).Quality Control and Industrial Statistics,5th edition.Richard D.Irwin,Inc.,Home-wood,IL.J.D URBIN(1971).Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test.Jal Applied Probability,vol.8,pp.431-453.J.D URBIN(1985).Thefirst passage density of the crossing of a continuous Gaussian process to a general boundary.Jal Applied Probability,vol.22,no1,pp.99-122.A.E MAMI-N AEINI,M.M.A KHTER and S.M.R OCK(1988).Effect of model uncertainty on failure detec-tion:the threshold selector.IEEE Trans.Automatic Control,vol.AC-33,no12,pp.1106-1115.J.D.E SARY,F.P ROSCHAN and D.W.W ALKUP(1967).Association of random variables with applications. Annals Mathematical Statistics,vol.38,pp.1466-1474.W.D.E WAN and K.W.K EMP(1960).Sampling inspection of continuous processes with no autocorrelation between successive results.Biometrika,vol.47,pp.263-280.G.F AVIER and A.S MOLDERS(1984).Adaptive smoother-predictors for tracking maneuvering targets.Proc. 23rd Conf.Decision and Control,Las Vegas,NV,pp.831-836.W.F ELLER(1966).An Introduction to Probability Theory and Its Applications,vol.2.Series in Probability and Mathematical Statistics,Wiley,New York.R.A.F ISHER(1925).Theory of statistical estimation.Proc.Cambridge Philosophical Society,vol.22, pp.700-725.M.F ISHMAN(1988).Optimization of the algorithm for the detection of a disorder,based on the statistic of exponential smoothing.In Statistical Problems of Control,Issue83,Vilnius,pp.146-151.R.F LETCHER(1980).Practical Methods of Optimization,2volumes.Wiley,New York.P.M.F RANK(1990).Fault diagnosis in dynamic systems using analytical and knowledge based redundancy -A survey and new results.Automatica,vol.26,pp.459-474.430B IBLIOGRAPHY P.M.F RANK(1991).Enhancement of robustness in observer-based fault detection.Proc.SAFEPRO-CESS’91,Baden-Baden,FRG,pp.275-287.P.M.F RANK and J.W¨UNNENBERG(1989).Robust fault diagnosis using unknown input observer schemes. In Fault Diagnosis in Dynamic Systems-Theory and Application(R.Patton,P.Frank,R.Clark,eds.). International Series in Systems and Control Engineering,Prentice Hall International,London,UK,pp.47-98.K.F UKUNAGA(1990).Introduction to Statistical Pattern Recognition,2d ed.Academic Press,New York. S.I.G ASS(1958).Linear Programming:Methods and Applications.McGraw Hill,New York.W.G E and C.Z.F ANG(1989).Extended robust observation approach for failure isolation.Int.Jal Control, vol.49,no5,pp.1537-1553.W.G ERSCH(1986).Two applications of parametric time series modeling methods.In Mechanical Signature Analysis-Theory and Applications(S.Braun,ed.),chap.10.Academic Press,London.J.J.G ERTLER(1988).Survey of model-based failure detection and isolation in complex plants.IEEE Control Systems Magazine,vol.8,no6,pp.3-11.J.J.G ERTLER(1991).Analytical redundancy methods in fault detection and isolation.Proc.SAFEPRO-CESS’91,Baden-Baden,FRG,pp.9-22.B.K.G HOSH(1970).Sequential Tests of Statistical Hypotheses.Addison-Wesley,Cambridge,MA.I.N.G IBRA(1975).Recent developments in control charts techniques.Jal Quality Technology,vol.7, pp.183-192.J.P.G ILMORE and R.A.M C K ERN(1972).A redundant strapdown inertial reference unit(SIRU).Jal Space-craft,vol.9,pp.39-47.M.A.G IRSHICK and H.R UBIN(1952).A Bayes approach to a quality control model.Annals Mathematical Statistics,vol.23,pp.114-125.A.L.G OEL and S.M.W U(1971).Determination of the ARL and a contour nomogram for CUSUM charts to control normal mean.Technometrics,vol.13,no2,pp.221-230.P.L.G OLDSMITH and H.W HITFIELD(1961).Average run lengths in cumulative chart quality control schemes.Technometrics,vol.3,pp.11-20.G.C.G OODWIN and K.S.S IN(1984).Adaptive Filtering,Prediction and rmation and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.R.M.G RAY and L.D.D AVISSON(1986).Random Processes:a Mathematical Approach for Engineers. Information and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.C.G UEGUEN and L.L.S CHARF(1980).Exact maximum likelihood identification for ARMA models:a signal processing perspective.Proc.1st EUSIPCO,Lausanne.D.E.G USTAFSON, A.S.W ILLSKY,J.Y.W ANG,M.C.L ANCASTER and J.H.T RIEBWASSER(1978). ECG/VCG rhythm diagnosis using statistical signal analysis.Part I:Identification of persistent rhythms. Part II:Identification of transient rhythms.IEEE Trans.Biomedical Engineering,vol.BME-25,pp.344-353 and353-361.F.G USTAFSSON(1991).Optimal segmentation of linear regression parameters.Proc.IFAC/IFORS Symp. Identification and System Parameter Estimation,Budapest,pp.225-229.T.H¨AGGLUND(1983).New Estimation Techniques for Adaptive Control.Ph.D.Thesis,Lund Institute of Technology,Lund,Sweden.T.H¨AGGLUND(1984).Adaptive control of systems subject to large parameter changes.Proc.IFAC9th World Congress,Budapest.B IBLIOGRAPHY431 P.H ALL and C.C.H EYDE(1980).Martingale Limit Theory and its Application.Probability and Mathemat-ical Statistics,a Series of Monographs and Textbooks,Academic Press,New York.W.J.H ALL,R.A.W IJSMAN and J.K.G HOSH(1965).The relationship between sufficiency and invariance with applications in sequential analysis.Ann.Math.Statist.,vol.36,pp.576-614.E.J.H ANNAN and M.D EISTLER(1988).The Statistical Theory of Linear Systems.Series in Probability and Mathematical Statistics,Wiley,New York.J.D.H EALY(1987).A note on multivariate CuSum procedures.Technometrics,vol.29,pp.402-412.D.M.H IMMELBLAU(1970).Process Analysis by Statistical Methods.Wiley,New York.D.M.H IMMELBLAU(1978).Fault Detection and Diagnosis in Chemical and Petrochemical Processes. Chemical Engineering Monographs,vol.8,Elsevier,Amsterdam.W.G.S.H INES(1976a).A simple monitor of a system with sudden parameter changes.IEEE r-mation Theory,vol.IT-22,no2,pp.210-216.W.G.S.H INES(1976b).Improving a simple monitor of a system with sudden parameter changes.IEEE rmation Theory,vol.IT-22,no4,pp.496-499.D.V.H INKLEY(1969).Inference about the intersection in two-phase regression.Biometrika,vol.56,no3, pp.495-504.D.V.H INKLEY(1970).Inference about the change point in a sequence of random variables.Biometrika, vol.57,no1,pp.1-17.D.V.H INKLEY(1971).Inference about the change point from cumulative sum-tests.Biometrika,vol.58, no3,pp.509-523.D.V.H INKLEY(1971).Inference in two-phase regression.Jal American Statistical Association,vol.66, no336,pp.736-743.J.R.H UDDLE(1983).Inertial navigation system error-model considerations in Kalmanfiltering applica-tions.In Control and Dynamic Systems(C.T.Leondes,ed.),Academic Press,New York,pp.293-339.J.S.H UNTER(1986).The exponentially weighted moving average.Jal Quality Technology,vol.18,pp.203-210.I.A.I BRAGIMOV and R.Z.K HASMINSKII(1981).Statistical Estimation-Asymptotic Theory.Applications of Mathematics Series,vol.16.Springer,New York.R.I SERMANN(1984).Process fault detection based on modeling and estimation methods-A survey.Auto-matica,vol.20,pp.387-404.N.I SHII,A.I WATA and N.S UZUMURA(1979).Segmentation of nonstationary time series.Int.Jal Systems Sciences,vol.10,pp.883-894.J.E.J ACKSON and R.A.B RADLEY(1961).Sequential and tests.Annals Mathematical Statistics, vol.32,pp.1063-1077.B.J AMES,K.L.J AMES and D.S IEGMUND(1988).Conditional boundary crossing probabilities with appli-cations to change-point problems.Annals Probability,vol.16,pp.825-839.M.K.J EERAGE(1990).Reliability analysis of fault-tolerant IMU architectures with redundant inertial sen-sors.IEEE Trans.Aerospace and Electronic Systems,vol.AES-5,no.7,pp.23-27.N.L.J OHNSON(1961).A simple theoretical approach to cumulative sum control charts.Jal American Sta-tistical Association,vol.56,pp.835-840.N.L.J OHNSON and F.C.L EONE(1962).Cumulative sum control charts:mathematical principles applied to their construction and use.Parts I,II,III.Industrial Quality Control,vol.18,pp.15-21;vol.19,pp.29-36; vol.20,pp.22-28.432B IBLIOGRAPHY R.A.J OHNSON and M.B AGSHAW(1974).The effect of serial correlation on the performance of CUSUM tests-Part I.Technometrics,vol.16,no.1,pp.103-112.H.L.J ONES(1973).Failure Detection in Linear Systems.Ph.D.Thesis,Dept.Aeronautics and Astronautics, MIT,Cambridge,MA.R.H.J ONES,D.H.C ROWELL and L.E.K APUNIAI(1970).Change detection model for serially correlated multivariate data.Biometrics,vol.26,no2,pp.269-280.M.J URGUTIS(1984).Comparison of the statistical properties of the estimates of the change times in an autoregressive process.In Statistical Problems of Control,Issue65,Vilnius,pp.234-243(in Russian).T.K AILATH(1980).Linear rmation and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.L.V.K ANTOROVICH and V.I.K RILOV(1958).Approximate Methods of Higher Analysis.Interscience,New York.S.K ARLIN and H.M.T AYLOR(1975).A First Course in Stochastic Processes,2d ed.Academic Press,New York.S.K ARLIN and H.M.T AYLOR(1981).A Second Course in Stochastic Processes.Academic Press,New York.D.K AZAKOS and P.P APANTONI-K AZAKOS(1980).Spectral distance measures between gaussian pro-cesses.IEEE Trans.Automatic Control,vol.AC-25,no5,pp.950-959.K.W.K EMP(1958).Formula for calculating the operating characteristic and average sample number of some sequential tests.Jal Royal Statistical Society,vol.B-20,no2,pp.379-386.K.W.K EMP(1961).The average run length of the cumulative sum chart when a V-mask is used.Jal Royal Statistical Society,vol.B-23,pp.149-153.K.W.K EMP(1967a).Formal expressions which can be used for the determination of operating character-istics and average sample number of a simple sequential test.Jal Royal Statistical Society,vol.B-29,no2, pp.248-262.K.W.K EMP(1967b).A simple procedure for determining upper and lower limits for the average sample run length of a cumulative sum scheme.Jal Royal Statistical Society,vol.B-29,no2,pp.263-265.D.P.K ENNEDY(1976).Some martingales related to cumulative sum tests and single server queues.Stochas-tic Processes and Appl.,vol.4,pp.261-269.T.H.K ERR(1980).Statistical analysis of two-ellipsoid overlap test for real time failure detection.IEEE Trans.Automatic Control,vol.AC-25,no4,pp.762-772.T.H.K ERR(1982).False alarm and correct detection probabilities over a time interval for restricted classes of failure detection algorithms.IEEE rmation Theory,vol.IT-24,pp.619-631.T.H.K ERR(1987).Decentralizedfiltering and redundancy management for multisensor navigation.IEEE Trans.Aerospace and Electronic systems,vol.AES-23,pp.83-119.Minor corrections on p.412and p.599 (May and July issues,respectively).R.A.K HAN(1978).Wald’s approximations to the average run length in cusum procedures.Jal Statistical Planning and Inference,vol.2,no1,pp.63-77.R.A.K HAN(1979).Somefirst passage problems related to cusum procedures.Stochastic Processes and Applications,vol.9,no2,pp.207-215.R.A.K HAN(1981).A note on Page’s two-sided cumulative sum procedures.Biometrika,vol.68,no3, pp.717-719.B IBLIOGRAPHY433 V.K IREICHIKOV,V.M ANGUSHEV and I.N IKIFOROV(1990).Investigation and application of CUSUM algorithms to monitoring of sensors.In Statistical Problems of Control,Issue89,Vilnius,pp.124-130(in Russian).G.K ITAGAWA and W.G ERSCH(1985).A smoothness prior time-varying AR coefficient modeling of non-stationary covariance time series.IEEE Trans.Automatic Control,vol.AC-30,no1,pp.48-56.N.K LIGIENE(1980).Probabilities of deviations of the change point estimate in statistical models.In Sta-tistical Problems of Control,Issue83,Vilnius,pp.80-86(in Russian).N.K LIGIENE and L.T ELKSNYS(1983).Methods of detecting instants of change of random process prop-erties.Automation and Remote Control,vol.44,no10,Part II,pp.1241-1283.J.K ORN,S.W.G ULLY and A.S.W ILLSKY(1982).Application of the generalized likelihood ratio algorithm to maneuver detection and estimation.Proc.American Control Conf.,Arlington,V A,pp.792-798.P.R.K RISHNAIAH and B.Q.M IAO(1988).Review about estimation of change points.In Handbook of Statistics(P.R.Krishnaiah,C.R.Rao,eds.),vol.7,Elsevier,New York,pp.375-402.P.K UDVA,N.V ISWANADHAM and A.R AMAKRISHNAN(1980).Observers for linear systems with unknown inputs.IEEE Trans.Automatic Control,vol.AC-25,no1,pp.113-115.S.K ULLBACK(1959).Information Theory and Statistics.Wiley,New York(also Dover,New York,1968). K.K UMAMARU,S.S AGARA and T.S¨ODERSTR¨OM(1989).Some statistical methods for fault diagnosis for dynamical systems.In Fault Diagnosis in Dynamic Systems-Theory and Application(R.Patton,P.Frank,R. Clark,eds.).International Series in Systems and Control Engineering,Prentice Hall International,London, UK,pp.439-476.A.K USHNIR,I.N IKIFOROV and I.S AVIN(1983).Statistical adaptive algorithms for automatic detection of seismic signals-Part I:One-dimensional case.In Earthquake Prediction and the Study of the Earth Structure,Naouka,Moscow(Computational Seismology,vol.15),pp.154-159(in Russian).L.L ADELLI(1990).Diffusion approximation for a pseudo-likelihood test process with application to de-tection of change in stochastic system.Stochastics and Stochastics Reports,vol.32,pp.1-25.T.L.L A¨I(1974).Control charts based on weighted sums.Annals Statistics,vol.2,no1,pp.134-147.T.L.L A¨I(1981).Asymptotic optimality of invariant sequential probability ratio tests.Annals Statistics, vol.9,no2,pp.318-333.D.G.L AINIOTIS(1971).Joint detection,estimation,and system identifirmation and Control, vol.19,pp.75-92.M.R.L EADBETTER,G.L INDGREN and H.R OOTZEN(1983).Extremes and Related Properties of Random Sequences and Processes.Series in Statistics,Springer,New York.L.L E C AM(1960).Locally asymptotically normal families of distributions.Univ.California Publications in Statistics,vol.3,pp.37-98.L.L E C AM(1986).Asymptotic Methods in Statistical Decision Theory.Series in Statistics,Springer,New York.E.L.L EHMANN(1986).Testing Statistical Hypotheses,2d ed.Wiley,New York.J.P.L EHOCZKY(1977).Formulas for stopped diffusion processes with stopping times based on the maxi-mum.Annals Probability,vol.5,no4,pp.601-607.H.R.L ERCHE(1980).Boundary Crossing of Brownian Motion.Lecture Notes in Statistics,vol.40,Springer, New York.L.L JUNG(1987).System Identification-Theory for the rmation and System Sciences Series, Prentice Hall,Englewood Cliffs,NJ.。
分子动力学中的非平衡态研究分子动力学是一种运用计算机模拟系统的方法,研究分子尺度上的物理运动规律的学科。
通过分子动力学模拟,可以更好地解释和预测分子的行为,有助于发展新型材料和探索新的生物医学领域。
然而,通常情况下分子在非平衡态下的运动规律并不容易研究。
非平衡态通常是指分子系统处于一个不稳定或动态变化的状态,例如外部施加强制、化学反应、热力学不平衡等等,这些不同的场景也会在不同的尺度上展示出不同的行为。
为了更好地研究分子在非平衡态下的运动规律,有学者针对不同场景提出了不同的分子动力学模拟方法。
以下将介绍几种常见的方法。
1. 基于广义热力学的非平衡分子动力学 (NAMD)非平衡分子动力学 (NAMD),是一种基于广义热力学的非平衡分子动力学方法,由 John Eastwood 和 Peter Winn 于 2013 年首次提出并发表,旨在模拟非平衡状态下的分子运动。
该方法在传统分子动力学基础上加入了一些广义热力学理论,可以更准确地模拟能量交换,从而更好地研究分子在非平衡态下的行为。
2. 最大熵方法最大熵方法是另一种常见的非平衡态研究方法,起源于热力学中的最大熵原理。
该方法旨在从分子系统的部分坐标或其他限制条件中推导出整个分子系统的热力学性质,从而更好地描述非平衡态下的分子运动。
最大熵方法可用于模拟混合物、高粘度溶液和生物体系等复杂环境的非平衡态动力学行为。
在遇到高耗散能力或复杂协同机制的情况时,最大熵方法往往比传统方法更加准确。
3. 非平衡态界面动力学 (NIDS)非平衡态界面动力学 (NIDS) 是用于模拟非平衡态界面的分子动力学模拟方法。
在NIDS方法中,模拟系统通常包括两个或更多不同的相,例如气/液界面、液/液界面等等。
该方法可以模拟各种不同类型的非平衡态现象,如张力、相互作用能等,为化学、环境和物理领域中的大量系统提供了一种基本的分子动力学模拟方法。
总之,非平衡态分子动力学是一个快速发展的领域,其应用范围十分广泛。
自演化分子动力学蒙特卡罗方法自演化分子动力学蒙特卡罗方法(Self-Evolving Molecular Dynamics Monte Carlo,简称SEMDMC)是一种用于模拟复杂多体系统的计算方法。
该方法结合了分子动力学(MD)和蒙特卡罗(MC)方法的优势,能够在较低的计算成本下获得更准确的模拟结果。
一、SEMDMC方法的基本原理SEMDMC方法的基本原理是将模拟系统分为两部分:演化部分和非演化部分。
演化部分由一组有限数量的粒子组成,这些粒子相互作用并遵循牛顿运动定律。
非演化部分由系统的其余部分组成,被视为静态背景。
在模拟过程中,演化部分的粒子会根据牛顿运动定律进行运动。
同时,会使用MC方法对非演化部分进行采样。
通过不断迭代演化部分和非演化部分,可以获得系统的完整配置空间信息。
二、SEMDMC方法的优势SEMDMC方法具有以下优势:1.能够模拟复杂多体系统:SEMDMC方法可以模拟包含大量粒子的复杂系统,例如生物大分子、材料等。
2.计算效率高:SEMDMC方法结合了MD和MC方法的优势,在较低的计算成本下获得更准确的模拟结果。
3.具有良好的可扩展性:SEMDMC方法可以并行化,从而提高计算效率。
三、SEMDMC方法的应用SEMDMC方法已被广泛应用于材料科学、生物物理、化学等领域。
例如,SEMDMC方法已被用于模拟蛋白质折叠、纳米材料的结构和性能等。
四、以下是一些SEMDMC方法的应用实例:1.模拟蛋白质折叠:SEMDMC方法已被用于模拟蛋白质折叠过程。
通过模拟,可以获得蛋白质折叠的自由能景观,从而了解蛋白质折叠的机制。
2.模拟纳米材料的结构和性能:SEMDMC方法已被用于模拟纳米材料的结构和性能。
通过模拟,可以获得纳米材料的原子结构、电子结构、力学性能等信息。
五、总结SEMDMC方法是一种用于模拟复杂多体系统的计算方法。
该方法具有计算效率高、可扩展性好等优势,已被广泛应用于材料科学、生物物理、化学等领域。
Tomas MikolovGoogle Inc.Mountain View mikolov@Ilya SutskeverGoogle Inc.Mountain Viewilyasu@Kai ChenGoogle Inc.Mountain Viewkai@Greg CorradoGoogle Inc.Mountain View gcorrado@Jeffrey DeanGoogle Inc.Mountain View jeff@AbstractThe recently introduced continuous Skip-gram model is an efficient method forlearning high-quality distributed vector representations that capture a large num-ber of precise syntactic and semantic word relationships.In this paper we presentseveral extensions that improve both the quality of the vectors and the trainingspeed.By subsampling of the frequent words we obtain significant speedup andalso learn more regular word representations.We also describe a simple alterna-tive to the hierarchical softmax called negative sampling.An inherent limitation of word representations is their indifference to word orderand their inability to represent idiomatic phrases.For example,the meanings of“Canada”and“Air”cannot be easily combined to obtain“Air Canada”.Motivatedby this example,we present a simple method forfinding phrases in text,and showthat learning good vector representations for millions of phrases is possible.1IntroductionDistributed representations of words in a vector space help learning algorithms to achieve better performance in natural language processing tasks by grouping similar words.One of the earliest use of word representations dates back to1986due to Rumelhart,Hinton,and Williams[13].This idea has since been applied to statistical language modeling with considerable success[1].The follow up work includes applications to automatic speech recognition and machine translation[14,7],and a wide range of NLP tasks[2,20,15,3,18,19,9].Recently,Mikolov et al.[8]introduced the Skip-gram model,an efficient method for learning high-quality vector representations of words from large amounts of unstructured text data.Unlike most of the previously used neural network architectures for learning word vectors,training of the Skip-gram model(see Figure1)does not involve dense matrix multiplications.This makes the training extremely efficient:an optimized single-machine implementation can train on more than100billion words in one day.The word representations computed using neural networks are very interesting because the learned vectors explicitly encode many linguistic regularities and patterns.Somewhat surprisingly,many of these patterns can be represented as linear translations.For example,the result of a vector calcula-tion vec(“Madrid”)-vec(“Spain”)+vec(“France”)is closer to vec(“Paris”)than to any other word vector[9,8].Figure1:The Skip-gram vector representations that are good at predictingIn this paper we We show that sub-sampling of frequent(around2x-10x),and improves accuracy of we present a simpli-fied variant of Noise model that results in faster training and better vector representations for frequent words,compared to more complex hierarchical softmax that was used in the prior work[8].Word representations are limited by their inability to represent idiomatic phrases that are not com-positions of the individual words.For example,“Boston Globe”is a newspaper,and so it is not a natural combination of the meanings of“Boston”and“Globe”.Therefore,using vectors to repre-sent the whole phrases makes the Skip-gram model considerably more expressive.Other techniques that aim to represent meaning of sentences by composing the word vectors,such as the recursive autoencoders[15],would also benefit from using phrase vectors instead of the word vectors.The extension from word based to phrase based models is relatively simple.First we identify a large number of phrases using a data-driven approach,and then we treat the phrases as individual tokens during the training.To evaluate the quality of the phrase vectors,we developed a test set of analogi-cal reasoning tasks that contains both words and phrases.A typical analogy pair from our test set is “Montreal”:“Montreal Canadiens”::“Toronto”:“Toronto Maple Leafs”.It is considered to have been answered correctly if the nearest representation to vec(“Montreal Canadiens”)-vec(“Montreal”)+ vec(“Toronto”)is vec(“Toronto Maple Leafs”).Finally,we describe another interesting property of the Skip-gram model.We found that simple vector addition can often produce meaningful results.For example,vec(“Russia”)+vec(“river”)is close to vec(“V olga River”),and vec(“Germany”)+vec(“capital”)is close to vec(“Berlin”).This compositionality suggests that a non-obvious degree of language understanding can be obtained by using basic mathematical operations on the word vector representations.2The Skip-gram ModelThe training objective of the Skip-gram model is tofind word representations that are useful for predicting the surrounding words in a sentence or a document.More formally,given a sequence of training words w1,w2,w3,...,w T,the objective of the Skip-gram model is to maximize the average log probability1training time.The basic Skip-gram formulation defines p(w t+j|w t)using the softmax function:exp v′w O⊤v w Ip(w O|w I)=-2-1.5-1-0.5 0 0.511.5 2-2-1.5-1-0.5 0 0.5 1 1.5 2Country and Capital Vectors Projected by PCAChinaJapanFranceRussiaGermanyItalySpainGreece TurkeyBeijingParis Tokyo PolandMoscow Portugal Berlin Rome Athens MadridAnkara Warsaw LisbonFigure 2:Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their capital cities.The figure illustrates ability of the model to automatically organize concepts and learn implicitly the relationships between them,as during the training we did not provide any supervised information about what a capital city means.which is used to replace every log P (w O |w I )term in the Skip-gram objective.Thus the task is to distinguish the target word w O from draws from the noise distribution P n (w )using logistic regres-sion,where there are k negative samples for each data sample.Our experiments indicate that values of k in the range 5–20are useful for small training datasets,while for large datasets the k can be as small as 2–5.The main difference between the Negative sampling and NCE is that NCE needs both samples and the numerical probabilities of the noise distribution,while Negative sampling uses only samples.And while NCE approximately maximizes the log probability of the softmax,this property is not important for our application.Both NCE and NEG have the noise distribution P n (w )as a free parameter.We investigated a number of choices for P n (w )and found that the unigram distribution U (w )raised to the 3/4rd power (i.e.,U (w )3/4/Z )outperformed significantly the unigram and the uniform distributions,for both NCE and NEG on every task we tried including language modeling (not reported here).2.3Subsampling of Frequent WordsIn very large corpora,the most frequent words can easily occur hundreds of millions of times (e.g.,“in”,“the”,and “a”).Such words usually provide less information value than the rare words.For example,while the Skip-gram model benefits from observing the co-occurrences of “France”and “Paris”,it benefits much less from observing the frequent co-occurrences of “France”and “the”,as nearly every word co-occurs frequently within a sentence with “the”.This idea can also be applied in the opposite direction;the vector representations of frequent words do not change significantly after training on several million examples.To counter the imbalance between the rare and frequent words,we used a simple subsampling ap-proach:each word w i in the training set is discarded with probability computed by the formulaP (w i )=1− f (w i )(5)Method Syntactic[%]Semantic[%]NEG-563549761 HS-Huffman53403853NEG-561583661 HS-Huffman5259/p/word2vec/source/browse/trunk/questions-words.txtNewspapersNHL TeamsNBA TeamsAirlinesCompany executives.(6)count(w i)×count(w j)Theδis used as a discounting coefficient and prevents too many phrases consisting of very infre-quent words to be formed.The bigrams with score above the chosen threshold are then used as phrases.Typically,we run2-4passes over the training data with decreasing threshold value,allow-ing longer phrases that consists of several words to be formed.We evaluate the quality of the phrase representations using a new analogical reasoning task that involves phrases.Table2shows examples of thefive categories of analogies used in this task.This dataset is publicly available on the web2.4.1Phrase Skip-Gram ResultsStarting with the same news data as in the previous experiments,wefirst constructed the phrase based training corpus and then we trained several Skip-gram models using different hyper-parameters.As before,we used vector dimensionality300and context size5.This setting already achieves good performance on the phrase dataset,and allowed us to quickly compare the Negative Sampling and the Hierarchical Softmax,both with and without subsampling of the frequent tokens. The results are summarized in Table3.The results show that while Negative Sampling achieves a respectable accuracy even with k=5, using k=15achieves considerably better performance.Surprisingly,while we found the Hierar-chical Softmax to achieve lower performance when trained without subsampling,it became the best performing method when we downsampled the frequent words.This shows that the subsampling can result in faster training and can also improve accuracy,at least in some cases.Dimensionality10−5subsampling[%]30027NEG-152730047Table3:Accuracies of the Skip-gram models on the phrase analogy dataset.The models were trained on approximately one billion words from the news dataset.HS with10−5subsamplingLingsugurGreat Rift ValleyRebbeca NaomiRuegenchess grandmasterVietnam+capital Russian+riverkoruna airline Lufthansa Juliette Binoche Check crown carrier Lufthansa Vanessa Paradis Polish zoltyflag carrier Lufthansa Charlotte Gainsbourg CTK Lufthansa Cecile De Table5:Vector compositionality using element-wise addition.Four closest tokens to the sum of two vectors are shown,using the best Skip-gram model.To maximize the accuracy on the phrase analogy task,we increased the amount of the training data by using a dataset with about33billion words.We used the hierarchical softmax,dimensionality of1000,and the entire sentence for the context.This resulted in a model that reached an accuracy of72%.We achieved lower accuracy66%when we reduced the size of the training dataset to6B words,which suggests that the large amount of the training data is crucial.To gain further insight into how different the representations learned by different models are,we did inspect manually the nearest neighbours of infrequent phrases using various models.In Table4,we show a sample of such comparison.Consistently with the previous results,it seems that the best representations of phrases are learned by a model with the hierarchical softmax and subsampling. 5Additive CompositionalityWe demonstrated that the word and phrase representations learned by the Skip-gram model exhibit a linear structure that makes it possible to perform precise analogical reasoning using simple vector arithmetics.Interestingly,we found that the Skip-gram representations exhibit another kind of linear structure that makes it possible to meaningfully combine words by an element-wise addition of their vector representations.This phenomenon is illustrated in Table5.The additive property of the vectors can be explained by inspecting the training objective.The word vectors are in a linear relationship with the inputs to the softmax nonlinearity.As the word vectors are trained to predict the surrounding words in the sentence,the vectors can be seen as representing the distribution of the context in which a word appears.These values are related logarithmically to the probabilities computed by the output layer,so the sum of two word vectors is related to the product of the two context distributions.The product works here as the AND function:words that are assigned high probabilities by both word vectors will have high probability,and the other words will have low probability.Thus,if“V olga River”appears frequently in the same sentence together with the words“Russian”and“river”,the sum of these two word vectors will result in such a feature vector that is close to the vector of“V olga River”.6Comparison to Published Word RepresentationsMany authors who previously worked on the neural network based representations of words have published their resulting models for further use and comparison:amongst the most well known au-thors are Collobert and Weston[2],Turian et al.[17],and Mnih and Hinton[10].We downloaded their word vectors from the web3.Mikolov et al.[8]have already evaluated these word representa-tions on the word analogy task,where the Skip-gram models achieved the best performance with a huge margin.Model Redmond ninjutsu capitulate (training time)Collobert(50d)conyers reiki abdicate (2months)lubbock kohona accedekeene karate rearmJewell gunfireArzu emotionOvitz impunityMnih(100d)Podhurst-Mavericks (7days)Harlang-planning Agarwal-hesitatedVaclav Havel spray paintpresident Vaclav Havel grafittiVelvet Revolution taggers/p/word2vecReferences[1]Yoshua Bengio,R´e jean Ducharme,Pascal Vincent,and Christian Janvin.A neural probabilistic languagemodel.The Journal of Machine Learning Research,3:1137–1155,2003.[2]Ronan Collobert and Jason Weston.A unified architecture for natural language processing:deep neu-ral networks with multitask learning.In Proceedings of the25th international conference on Machine learning,pages160–167.ACM,2008.[3]Xavier Glorot,Antoine Bordes,and Yoshua Bengio.Domain adaptation for large-scale sentiment classi-fication:A deep learning approach.In ICML,513–520,2011.[4]Michael U Gutmann and Aapo Hyv¨a rinen.Noise-contrastive estimation of unnormalized statistical mod-els,with applications to natural image statistics.The Journal of Machine Learning Research,13:307–361, 2012.[5]Tomas Mikolov,Stefan Kombrink,Lukas Burget,Jan Cernocky,and Sanjeev Khudanpur.Extensions ofrecurrent neural network language model.In Acoustics,Speech and Signal Processing(ICASSP),2011 IEEE International Conference on,pages5528–5531.IEEE,2011.[6]Tomas Mikolov,Anoop Deoras,Daniel Povey,Lukas Burget and Jan Cernocky.Strategies for TrainingLarge Scale Neural Network Language Models.In Proc.Automatic Speech Recognition and Understand-ing,2011.[7]Tomas Mikolov.Statistical Language Models Based on Neural Networks.PhD thesis,PhD Thesis,BrnoUniversity of Technology,2012.[8]Tomas Mikolov,Kai Chen,Greg Corrado,and Jeffrey Dean.Efficient estimation of word representationsin vector space.ICLR Workshop,2013.[9]Tomas Mikolov,Wen-tau Yih and Geoffrey Zweig.Linguistic Regularities in Continuous Space WordRepresentations.In Proceedings of NAACL HLT,2013.[10]Andriy Mnih and Geoffrey E Hinton.A scalable hierarchical distributed language model.Advances inneural information processing systems,21:1081–1088,2009.[11]Andriy Mnih and Yee Whye Teh.A fast and simple algorithm for training neural probabilistic languagemodels.arXiv preprint arXiv:1206.6426,2012.[12]Frederic Morin and Yoshua Bengio.Hierarchical probabilistic neural network language model.In Pro-ceedings of the international workshop on artificial intelligence and statistics,pages246–252,2005. [13]David E Rumelhart,Geoffrey E Hintont,and Ronald J Williams.Learning representations by back-propagating errors.Nature,323(6088):533–536,1986.[14]Holger Schwenk.Continuous space language puter Speech and Language,vol.21,2007.[15]Richard Socher,Cliff C.Lin,Andrew Y.Ng,and Christopher D.Manning.Parsing natural scenes andnatural language with recursive neural networks.In Proceedings of the26th International Conference on Machine Learning(ICML),volume2,2011.[16]Richard Socher,Brody Huval,Christopher D.Manning,and Andrew Y.Ng.Semantic CompositionalityThrough Recursive Matrix-Vector Spaces.In Proceedings of the2012Conference on Empirical Methods in Natural Language Processing(EMNLP),2012.[17]Joseph Turian,Lev Ratinov,and Yoshua Bengio.Word representations:a simple and general method forsemi-supervised learning.In Proceedings of the48th Annual Meeting of the Association for Computa-tional Linguistics,pages384–394.Association for Computational Linguistics,2010.[18]Peter D.Turney and Patrick Pantel.From frequency to meaning:Vector space models of semantics.InJournal of Artificial Intelligence Research,37:141-188,2010.[19]Peter D.Turney.Distributional semantics beyond words:Supervised learning of analogy and paraphrase.In Transactions of the Association for Computational Linguistics(TACL),353–366,2013.[20]Jason Weston,Samy Bengio,and Nicolas Usunier.Wsabie:Scaling up to large vocabulary image annota-tion.In Proceedings of the Twenty-Second international joint conference on Artificial Intelligence-Volume Volume Three,pages2764–2770.AAAI Press,2011.。
Maxwell-Chern-Simons模型拓扑解的存在性的开题报告1. 摘要Maxwell-Chern-Simons(MCS)模型是一种描述电磁波和规范场相互作用的场论模型。
该模型有许多有趣的数学性质,包括非平庸拓扑解的存在性。
本文将探讨MCS模型拓扑解的存在性问题,并针对该问题提出一些研究思路和方法。
2. 研究背景和意义MCS模型在凝聚态物理、高能物理和数学物理等领域有广泛的应用。
该模型可以用来描述拓扑绝缘体、拓扑序等物理现象,也可以用来研究拓扑场论的数学性质。
在这些研究中,拓扑解的存在性是一个关键问题。
拓扑解是指场论模型中的一类非平庸解,具有拓扑结构的性质。
例如,这类解可以被表示为曲率形式,也可以建立在拓扑内的不变量上。
拓扑解在物理学和数学中都有广泛的应用,它们可以解释许多复杂的物理现象和几何现象。
在MCS模型中,拓扑解是指具有非零拓扑荷的局域化解。
这些解可以被认为是拓扑缺陷或拓扑激发。
它们具有有趣的性质,并且在拓扑序和凝聚态物理中有广泛的应用。
目前,对于MCS模型拓扑解的存在性问题仍存在许多挑战。
本文将尝试探讨这一问题,并提出一些可能的研究思路和方法。
3. 研究内容和方法在本文中,我们将从以下几个方面研究MCS模型拓扑解的存在性问题:(1)理论分析。
我们将从场论的角度出发,探讨MCS模型的基本性质和数学结构。
通过理论推导,我们可以研究MCS模型中拓扑解的物理和数学性质,并探寻拓扑解的存在性条件。
(2)数值模拟。
我们将借助数值模拟的方法探究MCS模型中的拓扑解。
通过数值模拟,我们可以生成MCS模型的非平庸解,并分析它们的拓扑荷和局域性质。
(3)掺杂材料的制备和实验研究。
我们将尝试通过掺杂材料的制备和实验测量,验证MCS模型的拓扑解。
通过实验数据的分析,我们可以研究MCS模型中拓扑解的影响和性质。
4. 预期结果我们预期将会得到以下结果:(1)理论推导MCS模型拓扑解的存在性条件,并分析拓扑解的拓扑荷和局域性质。