【全国百强校】河北省衡水中学2017届高三上学期四调考试物理(解析版)
- 格式:doc
- 大小:1.28 MB
- 文档页数:21
一、选择题1、在物理学的发展中,关于科学家和他们的贡献,下列说法中正确的是()A.亚里士多德首先将实验事实和逻辑推理(包括数学推演)和谐地结合起来B.牛顿总结出了万有引力定律并用实验测出了引力常量C.哥白尼通过研究行星观测记录,发现了行星运动三大定律D.笛卡尔对牛顿第一定律的建立作出了贡献2、在物理学的研究及应用过程中所用思维方法的叙述正确的是()A.在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法是猜想法B.速度的定义式xvt∆=∆,采用的是比值法,当t∆趋近于零时,xt∆∆就可以表示物体在t时刻的瞬时速度,该定义应用了理想模型法C.在探究电阻、电压和电流三者之间的关系时,先保持电压不变研究电阻与电流的关系,再保持电流不变研究电阻与电压的关系,该实验应用了类比法D.如图是三个实验装置,这三个实验都体现了放大的思想3、如图所示,两条曲线为汽车a、b在同一条平直公路上的速度时间图像,已知在2t时刻,两车相遇,下列说法正确的是()A.a车速度先减小后增大,b车速度先增大后减小B.1t时刻a车在前,b车在后C.12t t:汽车a、b的位移相同D.a车加速度先减小后增大,b车加速度先减小后增大4、如图所示,小球在水平拉力作用下,以恒定速率v沿竖直光滑圆轨道由A点运动到B点,在此过程中拉力的瞬时功率变化情况是( )A .逐渐减小B .逐渐增大C .先减小,后增大D .先增大,后减小5、如图所示,在一个边长为a 的正六边形区域内存在磁感应强度为B ,方向垂直于纸面向里的匀强磁场,三个相同带正电的粒子,比荷为qm,先后从A 点沿AD 方向以大小不等的速度射入匀强磁场区域,粒子在运动过程中只受到磁场力作用,已知编号为①的粒子恰好从F 点飞出磁场区域,编号为②的粒子恰好从E 点飞出磁场区域,编号为③的粒子从ED 边上的某一点垂直边界飞出磁场区域,则( )A .编号为①的粒子在磁场区域内运动的时间为mqB π B .编号为②的粒子在磁场区域内运动的时间为mqBπ C .三个粒子进入磁场的速度依次增加 D .三个粒子在磁场内运动的时间依次增加6、如图所示,离地面高2m 处有甲、乙两个物体,甲以初速度0v 水平射出,同时乙以初速度0v 沿倾角为045的光滑斜面滑下,已知重力加速度2/10g m s =,若甲、乙同时到达地面,则0v 的大小是( )A .5/m sB .25/m sC .10/m sD .45/m s7、每个在2016年2月11日宣布“探测到引力波的存在”,天文学家通过观察双星轨道参数的变化来间接验证引力波的存在,证实了GW150914是一个36倍太阳质量的黑洞和一个29别太阳质量的黑洞并合事件,假设这两个黑洞绕它们连线上的某点做圆周运动,且这两个黑洞的间距缓慢减小,若该黑洞系统在运动过程中各自质量不变且不受其他星系的影响,则关于这两个黑洞的运动,下列说法正确的是( ) A .这两个黑洞做圆周运动的向心加速度大小始终相等B .36倍太阳质量的黑洞轨道半径为29倍太阳质量的黑洞轨道半径小C .这两个黑洞运行的线速度大小始终相等D .随两个黑洞的间距缓慢减小,这两个黑洞运行的周期在增大8、如图,固定在水平桌面上的光滑金属导轨cd 、eg 处于方向竖直向下的匀强磁场中,金属杆ab 与导轨接触良好,在两根导轨的端点d 、e 之间连接一电阻,其他部分电阻忽略不计,现用一水平向右的恒力F 作用在金属杆ab 上,使金属杆由静止开始向右沿导轨滑动,滑动中杆ab 始终垂直于导轨,金属杆受到的安培力用安F 表示,则下列说法正确的是( )A .金属杆ab 做匀加速直线运动B .金属杆ab 运动过程回路中有顺时针方向的电流C .金属杆ab 所受到的安F 先不断增大,后保持不变D .金属杆ab 克服安培力做功的功率与时间的平方成正比9、理想变压器原、副线圈匝数之比为2:1,原线圈接入如图乙所示的正弦式交流电压,副线圈接一个55=R Ω的负载电阻,电流表、电压表均为理想电表,则下述结论正确的是( )A .副线圈中电压表的读数为110VB .副线圈中输出交流电的频率为0.02HzC .原线圈中电流表的读数为0.5AD .原线圈中的输入功率为220W10、如图所示,BC 是半径为1R m =的竖直面内的圆弧轨道,轨道末端C 在圆心O 的正下方,060BOC ∠=,将质量为1m kg =的小球,从与O 等高的A 点水平抛出,小球恰好从B 点沿圆弧切线方向进入轨道,由于小球与圆弧之间有摩擦,能够使小球从B 到C 做匀速圆周运动,重力加速度大小为2/10g m s =,则下列说法正确的是( )A .从B 到C ,小球与轨道之间的动摩擦因数可能保持不变 B .从B 到C ,小球克服摩擦力做功为5J C .A 、B 两点间的距离为712m D .小球从B 到C 的全过程中,小球对轨道的压力不变11、已知一足够长的传送带与水平面的倾角为θ,以一定的速度匀速运动,某时刻在传送带适当的位置放上具有一定初速度的物块(如图a 所示),以此时为0t =时刻记录了小物块之后在传送带上运动的速度随时间的变化关系,如图b 所示(图中取沿斜面向上的运动方向为正方向,其中两坐标大小12v v >),已知传送带的速度保持不变,则下列判断正确的是( )A .10t :内,物块对传送带做正功B .物块与传送带间的动摩擦因数tan μθ>C .20t :内,传送带对物块做功为22211122m m v v - D .系统产生的热量一定比物块动能的减少量大12、如图所示,水平桌面上有三个相同的物体a 、b 、c 叠放在一起,a 的左端通过一根轻绳与质量为1m kg =的小球相连,绳与水平方向的夹角为060,小球静止在光滑的半圆形器皿中,水平向右的力30F N =作用在b 上,三个物体保持静止状态,g 取210/m s ,下列说法正确的是( )A .物体c 受到向右的静摩擦力B .物体b 受到一个摩擦力,方向向左C .桌面对物体a 的静摩擦力方向水平向左D .撤去力F 的瞬间,三个物体将获得向左的加速度 二、非选择题 (一)必考题13、如图为“验证牛顿第二定律”的实验装置示意图,盘和重物的总质量为m ,小车和砝码的总质量为M ,实验中用盘和重物总重力的大小作为细线对小车拉力的大小。
二、选择题:共8小题,每小题6分,在每小题给出的四个选项中,第14~17题只有一项符合题目要求,第18~21题有多项符合题目要求,全部选对得6分,选对但不全的得3分,有选错的得0分14.在物理学发展的发展过程中,许多物理学家的科学研究推动了人类文明的进程,在对以下几位物理学家所作科学贡献的叙述中,正确的是A .在对自由落体运动的研究中,伽利略猜想运动速度与下落时间成正比,并直接用实验进行了验证B .牛顿应用“理想斜面实验”推翻了亚里士多德的“力是维持物体运动的原因”的观点C .胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比D .亚里士多德认为两个从同一高度自由落下的物体,重物体与轻物体下落一样快15.由一对完全相同的强力理想弹簧构成的可垂直弹射装置如图所示,设重力加速度为g ,弹簧的劲度系数为k ,现将质量为m 的物体置于质量可忽略的弹射底盘上,欲将物体以5g 的起始加速度垂直射向空中,需将底盘连同物体下拉至弹簧与竖直方向成 =60°角处,则每个弹簧的伸长量为A .5mg 2k B .3mg k C .5mg k D .6mgk16.2016年10月19日3时31分,“神舟十一号”载人飞船与“天宫二号”空间实验室成功实现自动交会对接,形成一个组合体,组合体在距离地面393千米高的圆形轨道绕地球做匀速圆周运动,航天员景海鹏,陈冬随后进入“太空二号”空间实验室,两人将在“太空二号”空间实验室中进行科学实验和科普活动,下列说法中正确的是A .对接前,飞船欲追上空间实验室,可以在同一轨道上点火加速B .飞船先在比空间实验室半径小的轨道上加速,加速后飞出逐渐靠近空间实验室,两者速度接近时实现对接C .在组合体中工作的宇航员受到平衡力作用而在舱中悬浮或静止D .两位航天员可以在“天宫二号”空间实验室中借助重锤和打点计时器为全国中学生演示“验证机械能守恒定律”实验17.一颗子弹以水平速度0v 穿透一块在光滑水平面上迎面滑来的木块后,二者运动方向均不变,设子弹与木块间相互作用力恒定,木块最后速度为v ,则 A .0v 越大,v 越大 B .0v 越小,v 越大C.子弹质量越大,v越小D.木块质量越小,v越大18.如图所示,倾角为α的等腰三角形斜面固定在水平面上,一足够长的轻质绸带跨过斜面的顶端铺放在斜面的两侧,绸带与斜面间无摩擦,现将质量分别为M、m(M>m)的小物块同时放在斜面两侧的绸带上,两物块与绸带间的动摩擦因数相等,其最大静摩擦力与滑动摩擦力大小相等,在α角取不同值的情况下,下列说法正确的是A.两物块所受摩擦力的大小总是相等B.两物块不可能同时相对绸带静止C.M不可能相对绸带发生滑动D.m不可能相对斜面向上滑动19.如图所示,真空空间中四点O、A、B、C恰为一棱长为L的正四面体的四个顶点,其中A、B、C三点在水平面内,'O为三角形ABC的几何中点,已知静电力场力为k,重力加速度为g,下列说法正确的是A.若A、B、C三点各固定一电荷量为Q的正点电荷,则O点电势比'O点电势高B.若A、B、C三点各固定一电荷量为Q的正点电荷,将另一质量为m的带正电的小球(可视为点电荷)放置在O点恰静止,则小球所带的电荷量为2 66 mgL kQC.若A、B、C三点各固定一电荷量为Q的负点电荷,则O点与AB、BC、AC三边中点的电势差相等D.若A、B、C三点各固定一电荷量为Q的负点电荷,则O点的场强比'O点的场强大20.如图所示,竖直平面内有一个圆,BD是其竖直直径,AC是其另一条直径,该圆处于匀强电场中,场强方向平行于圆周所在平面,带等量负电荷的相同小球从圆心O以相同的初动能沿不同方向射出,小球会经过圆周上不同的点,其中通过圆周上A点的小球动能最小,忽略空气阻力,下列说法中正确的是A.电场方向沿OA方向B .小球经过圆周上的不同点时,过B 点的小球的动能和电势能之和最小C .小球经过圆周上的不同点时,过C 点的小球的电势能和重力势能之和最小D .小球经过圆周上的不同点时,机械能最小的小球应经过圆弧CND 上的某一点21.在倾角为θ的光滑斜面上有两个用轻弹簧连接的物块A 和B ,它们的质量分别为3m 和2m ,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现用一沿斜面方向的恒力拉物块A 使之沿斜面向上运动,当B 刚离开C 时,A 的速度为v ,加速度方向沿斜面向上,大小为a ,则A .从静止到B 刚离开C 的过程中,A 发生的位移为5sin mg kθB .从静止到B 刚离开C 的过程中,重力对A 做的功为2225sin m g kθ-C .B 刚离开C 时,恒力对A 做功的功率为()5sin 2mg ma v θ+D .当A 的速度达到最大时,B 的加速度大小为32a 第II 卷(非选择题)三、非选择题:包括必考题和选考题两部分 (一)必考题22.某物理课外小组利用图(a )中的装置探究物体加速度与其所受合外力之间的关系,图中,置于试验台上的长木板水平放置,其右端固定一轻滑轮,轻绳跨过滑轮,一端与放在木板上的小滑车相连,另一端可悬挂钩码,本实验中可用的钩码共欧N=5个,每个质量均为0.010kg ,实验步骤如下(1)将5个钩码全部放入小车中,在长木板左下方垫上适当厚度的小物快,使小车(和钩码)可以在木板上匀速下滑.(2)将n (依次取n=1,2,3,4,5)个钩码挂在轻绳右端,其余N-n 个钩码仍留在小车内;用手按住小车并使轻绳与木板平行.释放小车,同时用传感器记录小车在时刻t相对于其起始位置的位移s,绘制s-t 图象,经数据处理后可得到相应的加速度a.(3)对应于不同的n的a值见下表.n=2时的s-t图象如图(b)所示:由图(b)求出此时小车的加速度(保留2位有效数字),将结果填入下表.(4)利用表中的数据在图(c)中补齐数据点,并作出a-n图象.从图象可以看出:当物体质量一定时,物体的加速度与其所受的合外力成正比.(5)利用a-n图象求得小车(空载)的质量为_____________kg(保留2位有效数字,重力加速度取g=9.8 m •s-2).(6)若以“保持木板水平”来代替步骤(1),下列说法正确的是_______(填入正确选项前的标号)A.a-n图线不再是直线B.a-n图线仍是直线,但该直线不过原点C.a-n图线仍是直线,但该直线的斜率变大23.图(a)为某同学测量一节干电池电动势和内电阻的电路图,其中虚线框内为用毫安表改装成双量程电压表的电路,请完成下列填空和作图。
一、选择题(每小题1分,共60分,其中5、6、7、8、10、11、14是多项选择,其余各题是单选)1下列说法正确地是()A、物体速度变化越大,则加速度越大B、物体动量发生变化,则物体地动能一定变化C、合外力对系统做功为零,则系统地动量一定守恒D、系统所受合外力为零,则系统地动量一定守恒【解析】D考点:考查了加速度,动量,动能,动量守恒定律学科网【名师点睛】满足下列情景之一地,即满足动量守恒定律:⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受地合外力为零,则该方向上动量守恒。
⑷全过程地某一阶段系统受地合外力为零,则该阶段系统动量守恒2氢原子能级如图,当氢原子从n=3跃迁到n=2地能级时,辐射光地波长为656nm,以下判断正确地是()A、氢原子从n=2跃迁到n=1地能级时,辐射光地波长大于656nmB、用波长为325nm地光照射,可使氢原子从n=1跃迁到n=2地能级C、一群处于n=3能级上地氢原子向低能级跃迁时最多产生3种谱线D、用波长为633nm地光照射,不能使氢原子从n=2跃迁到n=3地能级【解析】CD【解析】试卷分析:氢原子从n=2跃迁到n=1地能级释放出地光子地能量大于氢原子从n=3跃迁到n=2地能级时释=可得,光子能量越大,频率越大,波长越短,故A错误;氢原子从n=1跃迁到放出地光子能量,根据公式E hγn=2能级,需要()193.413.6 1.610E J -∆=---⨯⨯(),根据公式hcE λ=可得()()193.413.61.610hcJ λ-=---⨯⨯,解得:122nm λ=,故B 错误;一群处于n=3能级上地氢原子跃迁,可发生233C =中光谱,不是一个氢原子,故C 正确;氢原子地电子从n =2跃迁到n =3地能级,必须吸收地能量与从n =3跃迁到n =2地能级放出能量相等,因此只能用波长656nm 地光照射,才能使得电子从n =2跃迁到n =3地能级.故D 正确学科网考点:考查了氢原子跃迁【名师点睛】大量处于n=3激发态地氢原子向低能级跃迁,可以辐射出3种不同频率地光子,跃迁释放能量满足m n E E E ∆=-.既不能多于能级差,也不能少于此值,同时根据c λγ=,即可求解3已知钙和钾地截止频率分别为147.7310Hz ⨯和145.4410H ⨯z,在某种单色光地照射下两种金属均发生光电效应,比较它们表面逸出地具有最大初动能地光电子,钙逸出地光电子具有较大地()A 、波长B 频率C 、能量D 、动量【解析】A考点:考查了光电效应【名师点睛】解决本题地关键要掌握光电效应方程,明确光电子地动量与动能地关系、物质波地波长与动量地关系hPλ=4如下图所示,x 轴在水平地面上,y 轴竖直向上,在y 轴上地P 点分别沿x 轴正方向和y 轴正方向以相同大小地初速度抛出两个小球a 和b ,不计空气阻力,若b 上行地最大高度等于P 点离地地高度,则从抛出点到落地有A 、a 地运动时间是b 倍B 、a 地位移大小是bC 、a 、b 落地时地速度相同,因此动能一定相同D 、a 、b 落地时地速度不同,但动能相同【解析】B考点:考查了平抛运动【名师点睛】a 做平抛运动,运动平抛运动地规律得出时间与高度地关系.b 做竖直上抛运动,上升过程做匀减速运动,下落做自由落体运动,分两段求运动时间,即可求解时间关系;b 地位移大小等于抛出时地高度.根据b 地最大高度,求出初速度与高度地关系,即可研究位移关系;根据机械能守恒分析落地时动能关系5如下图所示,光滑水平面上放着足够长地木板B ,木板B 上放着木块A ,A 、B 间地接触面粗糙,现在用一水平拉力F 作用在A 上,使其由静止开始运动,用1f 代表B 对A 地摩擦力,2f 代表A 对B 地摩擦力,则下列情况可能地是( )A 、拉力F 做地功等于A 、B 系统动能地增加量B 、拉力F 做地功大于A 、B 系统动能地增加量C 、拉力F 和B 对A 做地功之和小于A 地动能地增加量D 、A 对B 做地功小于B 地动能地增加量【解析】A 【解析】试卷分析:将AB 看做一个整体,由于水平面光滑,所以整体在水平方向上只有拉力F 作用,根据动能定理可得拉力F 做地功等于A 、B 系统动能地增加量,A 正确B 错误;对A 分析,在水平方向上受到拉力F 和B 对A 地摩擦力1f ,根据动能定理,两者做功之和等于A 地动能增加量,C 错误;对B 分析,B 在水平方向上只受到A 对B 地摩擦力2f ,根据动能定理可得摩擦力2f 做地功等于B 地动能地增加量,D 错误;考点:考查了动能定理地应用【名师点睛】本题地关键是利用整体和隔离法对整体或者隔离物体受力分析,分析哪些力做功,然后根据动能定理解题6小行星绕恒星运动地同时,恒星均匀地向四周辐射能力,质量缓慢减小,可认为小行星在绕恒星运动一周地过程中近似做圆周运动,则经过足够长地时间后,小行星运动地()A 、半径变大B 、速率变大C 、加速度变小D 、周期变小【解析】AC考点:考查了万有引力定律地应用【名师点睛】在万有引力这一块,设计地公式和物理量非常多,在做题地时候,首先明确过程中地向心力,然后弄清楚各个物理量表示地含义,最后选择合适地公式分析解题,另外这一块地计算量一是非常大地,所以需要细心计算7A 、B 两物体在光滑水平面上沿同一直线运动,图表示发生碰撞前后地v-t 图线,由图线可以判断A 、A 、B 地质量比为3:2B 、A 、B 作用前后总动量守恒C 、A 、B 作用前后总动量不守恒D 、A 、B 作用前后总动能不变【解析】ABD考点:考查了动量守恒定律【名师点睛】满足下列情景之一地,即满足动量守恒定律:⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受地合外力为零,则该方向上动量守恒。
河北省衡水中学2017届高三上学期四调考试理科数学试题第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合错误!未找到引用源。
,集合错误!未找到引用源。
中至少有3个元素,则()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【答案】C考点:1.集合的运算;2.对数函数的性质.2. 若错误!未找到引用源。
,则错误!未找到引用源。
等于()A.1 B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【答案】C【解析】试题分析:由错误!未找到引用源。
得错误!未找到引用源。
,所以错误!未找到引用源。
,故选C.考点:1.复数相关的概念;2.复数的运算.3. 在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔其古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?()A.5 B.6 C.4 D.3【答案】D【解析】试题分析:由题意可知,每层悬挂的灯数从上到下依次构成比差数列,公比为错误!未找到引用源。
,设顶层的灯数为错误!未找到引用源。
,则错误!未找到引用源。
,解之得错误!未找到引用源。
,故选D.考点:1.数学文化;2.等比数列的性质与求和.4. 已知双曲线错误!未找到引用源。
的离心率为错误!未找到引用源。
,则错误!未找到引用源。
的渐近线方程为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【答案】C考点:双曲线的标准议程与几何性质.5. 执行如图所示的程序框图,则输出的结果为()A.4 B.9 C.7 D.5【答案】B【解析】试题分析:模拟算法,开始:输入错误!未找到引用源。
二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~17题只有一项符合题目要求,第18~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
1. 美国物理学家于1995年在国家实验室观察到了顶夸克。
这是近代粒子物理研究最重要的实验进展之一。
正、反顶夸克之间的强相互作用势能可写为E p=-K,式中r是正、反顶夸克之间的距离,αs=0.12是强相互作用耦合常数,无单位,K是与单位制有关的常数。
则在国际单位制中常数K的单位是()A. JB. NC. J·mD. J/m【答案】C【解析】试题分析:由题意知,无单位,r的单位为m,的单位为J,则K的单位为Jm,故C正确.考点:考查了力学单位制【名师点睛】本题看似比较难,但是仔细阅读以后会发现只是考查了单位制,难度不大,属于基础题.2. 如图所示,在倾角θ=30°的斜面上,用弹簧系住一重力为20 N的物块,物块保持静止。
已知物块与斜面间的最大静摩擦力F f=12 N,那么该弹簧的弹力不可能是()A. 2 NB. 10 NC. 20 ND. 24 N【答案】D【解析】试题分析:当弹力较小物体有向下的运动趋势时,当弹力较大物体有向上的运动趋势时,D错;考点:考查静摩擦力规律的应用点评:本题难度适中,静摩擦力的大小和方向都可以是变化的,要根据物体的运动趋势进行判断3. 关于人造地球卫星,下列说法中正确的是()A. 卫星可与地球表面上某一纬度线(非赤道)是共面同心圆B. 任何人造地球卫星绕地球运行的轨道都是圆C. 发射人造地球卫星所需的速度大小只决定于轨道高度,而与卫星的质量无关D. 若卫星中有水银气压计,则仍然可以准确读出气压值【答案】C【解析】试题分析:卫星的轨道平面只能过地球的大圆球心,而不可能是地球表面上某一纬度线(非赤道)是共面同心圆,选项A错误;人造地球卫星绕地球运行的轨道不一定都是圆,也可能是椭圆,选项B错误;发射人造地球卫星所需的速度大小只决定于轨道高度,而与卫星的质量无关,选项C正确;卫星中因为是完全失重,则卫星内与重力有关的仪器都不能使用,则其内的水银气压计部可以准确读出大气压值,选项D错误;故选C.考点:4. 真空中有一半径为r0的带电金属球,通过其球心的一直线上各点的电势φ分布如图所示,r表示该直线上某点到球心的距离,r1、r2分别是该直线上A、B两点离球心的距离,根据电势图象(φ-r图象),判断下列说法正确的是()A. 该金属球可能带负电B. A点的电场强度方向由A指向BC. A点的电场强度小于B点的电场强度D. 电荷量为q的正电荷沿直线从A移到B的过程中,电场力做功W=q(φ2-φ1)【答案】B【解析】试题分析:由图可知0到r0电势不变,之后电势变小,带电金属球为一等势体,再依据沿着电场线方向,电势降低,则金属球带正电,故A错误;A点的电场强度方向由A指向B,A点的电场强度大于B点的电场强度,选项B正确、C错误;正电荷沿直线从A移到B的过程中,电场力做功W=qU AB=q(φ1-φ2),故D错误.故选B.考点:电场强度;电势及电势能【名师点睛】解决该题要掌握根据电势高低判断电场方向,沿电场线方向电势逐点降低;理解电场力做功表达式,注意电势差与电势之差的关系式。
第I 卷 (共15题 共60分)一、 本题共15小题,每小题4分。
在每小题给出的四个选项中,至少有一项是正确的。
全部选对得4分,选对但不全得2分,有选错的得0分。
1、某同学通过以下步骤测出了从一定高度落下的排球对地面的冲击力:将一张白纸铺在水平地面上,把排球在水里弄湿,然后让排球从规定的高度自由落下,并在白纸上留下球的水印.再将印有水印的白纸铺在台秤上,将球放在纸上的水印中心,缓慢地向下压球,使排球与纸接触部分逐渐发生形变直至刚好遮住水印,记下此时台秤的示数即为冲击力的最大值.下列物理学习或研究中用到的方法与该同学的方法相近的是 ( )A .建立“瞬时速度”的概念B .建立“合力与分力”的概念C .建立“点电荷”的概念D .探究导体电阻与其影响因素的定量关系【答案】B【解析】考点:物理学中为了研究问题方便,经常采用很多的方法来分析问题,对于常用的物理方法一定要知道.【名师点睛】2、卡车以v 0=10 m/s 在平直的公路上匀速行驶,因为路口出现红灯,司机立即刹车,使卡车匀减速直线前进直至停止。
停止等待 6 s 时,交通灯变为绿灯,司机立即使卡车做匀加速运动。
已知从开始刹车到恢复原来的速度所用时间t=12 s,匀减速的加速度是匀加速的2倍,反应时间不计。
则下列说法正确的是( )A 、卡车匀减速所用时间t 1=2sB 、匀加速的加速度为2/5s mC 、卡车刹车过程通过的位移是20mD 、从卡车开始刹车到刚恢复到原来速度的过程中,通过的位移大小为40m 。
【答案】A【解析】试题分析:匀减速运动的加速度是匀加速的2倍,根据v=at 得匀减速运动的时间是匀加速运动的时间的12. 匀加速和匀减速运动的时间之和为:△t=12-6=6s .则匀减速运动的时间:t 1=13△t =2s .选项A 正确;匀加速运动的时间为3s ,故匀加速的加速度为22010/ 2.5/4v a m s m s t ===,选项B 错误;卡车刹车过程的位移:01152210v x t m m ⨯===.匀加速直线运动的位移:x 2=02v ×t 2=5×4m =20m .则s=x 1+x 2=30m ,选项CD 错误;故选A. 考点:匀变速直线运动的规律的应用【名师点睛】解决本题的关键掌握匀变速直线运动的运动学公式和推论,并能灵活运用,有时运用推论求解会使问题更加简捷。
一、选择题(每小题1分,共60分,其中5、6、7、8、10、11、14是多项选择,其余各题是单选)1下列说法正确的是()A、物体速度变化越大,则加速度越大B、物体动量发生变化,则物体的动能一定变化C、合外力对系统做功为零,则系统的动量一定守恒D、系统所受合外力为零,则系统的动量一定守恒【答案】D考点:考查了加速度,动量,动能,动量守恒定律【名师点睛】满足下列情景之一的,即满足动量守恒定律:⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒2氢原子能级如图,当氢原子从n=3跃迁到n=2的能级时,辐射光的波长为656nm,以下判断正确的是()A、氢原子从n=2跃迁到n=1的能级时,辐射光的波长大于656nmB、用波长为325nm的光照射,可使氢原子从n=1跃迁到n=2的能级C、一群处于n=3能级上的氢原子向低能级跃迁时最多产生3种谱线D、用波长为633nm的光照射,不能使氢原子从n=2跃迁到n=3的能级【答案】CD【解析】试题分析:氢原子从n=2跃迁到n=1的能级释放出的光子的能量大于氢原子从n=3跃迁到n=2的能级时释=可得,光子能量越大,频率越大,波长越短,故A错误;氢原子从n=1放出的光子能量,根据公式E hγ跃迁到n=2能级,需要()193.413.6 1.610E J -∆=---⨯⨯(),根据公式 h cE λ=可得()()19 3.413.61.610hcJ λ-=---⨯⨯,解得:122nm λ=,故B 错误;一群处于n=3能级上的氢原子跃迁,可发生233C =中光谱,不是一个氢原子,故C 正确;氢原子的电子从n =2跃迁到n =3的能级,必须吸收的能量与从n =3跃迁到n =2的能级放出能量相等,因此只能用波长656nm 的光照射,才能使得电子从n =2跃迁到n =3的能级.故D 正确 考点:考查了氢原子跃迁【名师点睛】大量处于n=3激发态的氢原子向低能级跃迁,可以辐射出3种不同频率的光子,跃迁释放能量满足m n E E E ∆=-.既不能多于能级差,也不能少于此值,同时根据cλγ=,即可求解3已知钙和钾的截止频率分别为147.7310Hz ⨯和145.4410H ⨯z ,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的( ) A 、波长 B 频率 C 、能量 D 、动量 【答案】A考点:考查了光电效应【名师点睛】解决本题的关键要掌握光电效应方程,明确光电子的动量与动能的关系、物质波的波长与动量的关系hPλ=4如图所示,x 轴在水平地面上,y 轴竖直向上,在y 轴上的P 点分别沿x 轴正方向和y 轴正方向以相同大小的初速度抛出两个小球a 和b ,不计空气阻力,若b 上行的最大高度等于P 点离地的高度,则从抛出点到落地有A 、a 的运动时间是b 倍B 、a 的位移大小是bC 、a 、b 落地时的速度相同,因此动能一定相同D 、a 、b 落地时的速度不同,但动能相同 【答案】B考点:考查了平抛运动【名师点睛】a 做平抛运动,运动平抛运动的规律得出时间与高度的关系.b 做竖直上抛运动,上升过程做匀减速运动,下落做自由落体运动,分两段求运动时间,即可求解时间关系;b 的位移大小等于抛出时的高度.根据b 的最大高度,求出初速度与高度的关系,即可研究位移关系;根据机械能守恒分析落地时动能关系5如图所示,光滑水平面上放着足够长的木板B ,木板B 上放着木块A ,A 、B 间的接触面粗糙,现在用一水平拉力F 作用在A 上,使其由静止开始运动,用1f 代表B 对A 的摩擦力,2f 代表A 对B 的摩擦力,则下列情况可能的是( )A 、拉力F 做的功等于A 、B 系统动能的增加量 B 、拉力F 做的功大于A 、B 系统动能的增加量C 、拉力F 和B 对A 做的功之和小于A 的动能的增加量D 、A 对B 做的功小于B 的动能的增加量 【答案】A 【解析】试题分析:将AB 看做一个整体,由于水平面光滑,所以整体在水平方向上只有拉力F 作用,根据动能定理可得拉力F 做的功等于A 、B 系统动能的增加量,A 正确B 错误;对A 分析,在水平方向上受到拉力F 和B 对A 的摩擦力1f ,根据动能定理,两者做功之和等于A 的动能增加量,C 错误;对B 分析,B 在水平方向上只受到A 对B 的摩擦力2f ,根据动能定理可得摩擦力2f 做的功等于B 的动能的增加量,D 错误; 考点:考查了动能定理的应用【名师点睛】本题的关键是利用整体和隔离法对整体或者隔离物体受力分析,分析哪些力做功,然后根据动能定理解题6小行星绕恒星运动的同时,恒星均匀地向四周辐射能力,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动,则经过足够长的时间后,小行星运动的( ) A 、半径变大 B 、速率变大 C 、加速度变小 D 、周期变小 【答案】AC考点:考查了万有引力定律的应用【名师点睛】在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算7A 、B 两物体在光滑水平面上沿同一直线运动,图表示发生碰撞前后的v-t 图线,由图线可以判断A 、A 、B 的质量比为3:2 B 、A 、B 作用前后总动量守恒C 、A 、B 作用前后总动量不守恒D 、A 、B 作用前后总动能不变 【答案】ABD考点:考查了动量守恒定律【名师点睛】满足下列情景之一的,即满足动量守恒定律:⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
2015-2016学年河北省衡水中学高三〔上〕四调物理试卷一、选择题〔本大题共15小题;每一小题4分,共60分;其中5、6、7、8、10、11、14是多项选择题,其余各题是单项〕1.如下说法正确的答案是:〔〕A.物体速度变化越大,如此加速度一定越大B.物体动量发生变化,如此物体的动能一定变化C.合外力对系统做功为零,如此系统机械能一定守恒D.系统所受合外力为零,如此系统的动量一定守恒.2.氢原子能级如图,当氢原子从n=3跃迁到n=2的能级时,辐射光的波长为656nm,以下判断正确的答案是〔〕A.氢原子从n=2跃迁到n=1的能级时,辐射光的波长大于656nmB.用波长为325nm的光照射,可使氢原子从n=1跃迁到n=2的能级C.一群处于n=3能级上的氢原子向低能级跃迁时最多产生3种谱线D.用波长633nm的光照射,不能使氢原子从n=2跃迁到n=3的能级3.钙和钾的截止频率分别为7.73×1014Hz和5.44×1014Hz,在某种单色光的照射下两种金属均发生光电效应,比拟它们外表逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的〔〕A.波长 B.频率 C.能量 D.动量4.如下列图,x轴在水平地面上,y轴竖直向上,在y轴上的P点分别沿x轴正方向和y轴正方向以一样大小的初速度抛出两个小球a和b,不计空气阻力,假设b上行的最大高度等于P点离地的高度,如此从抛出到落地,有〔〕A.a的运动时间是b的运动时间的倍B.a的位移大小是b的位移大小的倍C.a、b落地时的速度一样,因此动能一定一样D.a、b落地时的速度不同,但动能可能一样5.如下列图.光滑水平面上放着足够长的木板B,木板B上放着木块A,A、B间的接触面粗糙.现用一水平拉力F作用在A上使其由静止开始运动,用f1代表B对A的摩擦力,f2代表A 对B的摩擦力,如此如下情况可能的是〔〕A.拉力F做的功等于A、B系统动能的增加量B.拉力F做的功大于A、B系统动能的增加量C.拉力F和f1对A做的功之和小于A的动能的增加量D.f2对B做的功小于B的动能的增加量6.小行星绕恒星运动的同时,恒星均匀地向四周辐射能量,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动.如此经过足够长的时间后,小行星运动的〔〕A.半径变大 B.速率变大 C.加速度变小D.周期变小7.A、B两物体在光滑水平面上沿同一直线运动,图表示发生碰撞前后的v﹣t图线,由图线可以判断〔〕A.A、B的质量比为3:2 B.A、B作用前后总动量守恒C.A、B作用前后总动量不守恒D.A、B作用前后总动能不变8.如图甲所示,静止在水平地面的物块A,受到水平向右的拉力F作用,F与时间t的关系如图乙所示,设物块与地面的静摩擦力最大值f m与滑动摩擦力大小相等,如此〔〕A.0~t1时间内F的功率逐渐增大B.t2时刻物块A的加速度最大C.t2时刻后物块A做反向运动D.t3时刻物块A的动能最大9.如下列图,在光滑的水平面上,质量为m1的小球A以速率v0向右运动.在小球的前方O点处有一质量为m2的小球B处于静止状态,Q点处为一竖直的墙壁.小球A与小球B发生弹性碰撞后两小球均向右运动.小球B与墙壁碰撞后原速率返回并与小球A在P点相遇.=2,如此两小球的质量之比m1:m2为〔〕A.7:5 B.1:3 C.2:1 D.5:310.两个小球在光滑水平面上沿同一直线,同一方向运动,B球在前.A球在后.m A=1kg,m B=2kg,v A=6m/s,v B=2m/s,当A球与B球发生碰撞后,A、B两球速度可能为〔〕A.v A=4m/s,v B=4m/s B.v A=2m/s,v B=5m/sC.v A=﹣4m/s,v B=6m/s D.v A=7m/s,v B=2.5m/s11.如下列图,生产车间有两个相互垂直且等高的水平传送带甲和乙,甲的速度为v0.小工件离开甲前与甲的速度一样,并平稳地传到乙上.乙的宽度足够大,速度为v1.如此〔〕A.在地面参考系中,工件做类平抛运动B.在乙参考系中,工件在乙上滑动的轨迹是直线C.工件在乙上滑动时,受到乙的摩擦力方向不变D.工件沿垂直于乙的速度减小为0时,工件的速度等于v112.人用手托着质量为m的“小苹果〞,从静止开始沿水平方向运动,前进距离L后,速度为v〔物体与手始终相对静止〕,物体与手掌之间的动摩擦因数为μ,如此如下说法正确的答案是〔〕A.手对苹果的作用力方向竖直向上B.苹果所受摩擦力大小为μmgC.手对苹果做的功为mv2D.苹果对手不做功13.如下列图,一小球从斜轨道的某高度处由静止滑下,然后沿竖直光滑轨道的内侧运动.圆轨道的半径为R,忽略一切摩擦阻力.如此如下说法正确的答案是〔〕A.在轨道最低点、最高点,轨道对小球作用力的方向是一样的B.小球的初位置比圆轨道最低点高出2R时,小球能通过圆轨道的最高点C.小球的初位置比圆轨道最低点高出0.5R时,小球在运动过程中能不脱离轨道D.小球的初位置只有比圆轨道最低点高出2.5R时,小球在运动过程中才能不脱离轨道14.在光滑的水平面上,动能为E0,动量为P0的小钢球1与静止的小钢球2发生碰撞,碰撞前后球1运动方向相反,将碰撞后球1的动能和动量大小记为E1和P1,球2的动能和动量大小记为E2和P2,如此必有〔〕A.E1<E0B.P1<P0C.E2>E0D.P2>P015.如图,外表光滑的固定斜面顶端安装一定滑轮,小物块A、B用轻绳连接并跨过滑轮〔不计滑轮的质量和摩擦〕.初始时刻,A、B处于同一高度并恰好静止状态.剪断两物块轻绳后A下落、B沿斜面下滑,如此从剪断轻绳到物块着地,〔〕A.速率的变化量一样 B.机械能的变化量不同C.重力势能的变化量一样 D.重力做功的平均功率一样二、非选择题〔本大题共6小题,共50分〕16.与打点计时器一样,光电计时器也是一种研究物体运动情况时的常用计时仪器,如图甲所示,a、b分别是光电门的激光发射和接收装置.现利用如图乙所示的装置验证滑块所受外力做功与其动能变化的关系.方法是:在滑块上安装一遮光板,把滑块放在水平放置的气垫导轨上〔滑块在该导轨上运动时所受阻力可忽略〕,通过跨过定滑轮的细绳与钩码相连,连接好1、2两个光电门,在图示位置释放滑块后,光电计时器记录下滑块上的遮光板先后通过两个光电门的时间分别为△t1、△t2.滑块〔含遮光板〕质量为M、钩码质量为m、两光电门间距为S、遮光板宽度为L、当地的重力加速度为g.①用游标卡尺〔20分度〕测量遮光板宽度,刻度如图丙所示,读数为mm;②本实验想用钩码的重力表示滑块受到的合外力,为减小这种做法带来的误差,实验中需要满足的条件是Mm〔填“大于〞、“远大于〞、“小于〞或“远小于〞〕③计算滑块先后通过两个光电门时的瞬时速度的表达式为:v1=、v2=;〔用题中所给字母表示〕④本实验中,验证滑块运动的动能定理的表达式为.〔用题中所给字母表示〕17.用如图1实验装置验证m1、m2组成的系统机械能守恒.m2从高处由静止开始下落,m1上拖着的纸带打出一系列的点,对纸带上的点迹进展测量,即可验证机械能守恒定律.图2给出的是实验中获取的一条纸带:0是打下的第一个点,每相邻两计数点间还有4个打点〔图中未标出〕,计数点间的距离如图2所示.m1=50g、m2=150g,如此〔结果保存两位有效数字〕〔1〕在纸带上打下记数点5时的速度v=m/s;〔2〕在0~5过程中系统动能的增量△E K=J,系统势能的减少量△E P=J;〔3〕假设某同学作出图象如图3,如此当地的重力加速度g=m/s2.18.如下列图,物体A、B的质量分别是4kg和8kg.由轻质弹簧连接,放在光滑的水平面上,物体B左侧与竖直墙壁接触,另有一个物体C水平向左运动,在t=5s时与物体A相碰,并立即与A有一样的速度,一起向左运动,物块C的速度﹣时间图象如乙所示.〔1〕求物体C的质量;〔2〕在5s到15s的时间内,墙壁对物体B的作用力的冲量.19.〔10分〕〔2015•青岛二模〕如下列图,在水平地面上固定一个倾角α=45°、高H=4m的斜面.在斜面上方固定放置一段由内壁光滑的圆管构成的轨道ABCD,圆周局部的半径R=m,AB与圆周相切于B点,长度为R,与水平方向的夹角θ=60°,轨道末端竖直,圆周轨道最低点C、轨道末端D与斜面顶端处于同一高度.现将一质量为0.1kg,直径可忽略的小球从管口A处由静止释放,g取10m/s2.〔1〕求小球在C点时对轨道的压力;〔2〕假设小球与斜面碰撞〔不计能量损失〕后做平抛运动落到水平地面上,如此碰撞点距斜面左端的水平距离x多大时小球平抛运动的水平位移最大?是多少?20.〔12分〕〔2015秋•衡水校级月考〕如下列图,为一传送装置,其中AB段粗糙,AB段长为L=0.2m,动摩擦因数μ=0.6,BC、DEN段均可视为光滑,且BC的始、末端均水平,具有h=0.1m 的高度差,DEN是半径为r=0.4m的半圆形轨道,其直径DN沿竖直方向,C位于DN竖直线上,CD间的距离恰能让小球自由通过.在左端竖直墙上固定一轻质弹簧,现有一可视为质点的小球,小球质量m=0.2kg,压缩轻质弹簧至A点后由静止释放〔小球和弹簧不粘连〕,小球刚好能沿DEN轨道滑下.求:〔1〕小球刚好能通过D点时速度的大小;〔2〕小球到达N点时速度的大小与受到轨道的支持力的大小;〔3〕压缩的弹簧所具有的弹性势能.21.〔12分〕〔2015•江西校级二模〕如图,一长木板位于光滑水平面上,长木板的左端固定一挡板,木板和挡板的总质量为M=3.0kg,木板的长度为L=1.5m.在木板右端有一小物块,其质量m=1.0kg,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态.现令小物块以初速度v0沿木板向左滑动,重力加速度g取10m/s2.①假设小物块刚好能运动到左端挡板处,求v0的大小;②假设初速度v0=3m/s,小物块与挡板相撞后,恰好能回到右端而不脱离木板,求碰撞过程中损失的机械能.2015-2016学年河北省衡水中学高三〔上〕四调物理试卷参考答案与试题解析一、选择题〔本大题共15小题;每一小题4分,共60分;其中5、6、7、8、10、11、14是多项选择题,其余各题是单项〕1.如下说法正确的答案是:〔〕A.物体速度变化越大,如此加速度一定越大B.物体动量发生变化,如此物体的动能一定变化C.合外力对系统做功为零,如此系统机械能一定守恒D.系统所受合外力为零,如此系统的动量一定守恒.【考点】动量定理;速度;加速度;机械能守恒定律.【专题】动量定理应用专题.【分析】根据加速度的定义式判断加速度与速度变化量的关系,动量是矢量,动能是标量,动量变化,动能不一定变化;当系统只有重力做功,机械能守恒,当系统所受的外力之和为零,系统动量守恒.【解答】解:A、根据加速度a=知,速度变化越大,如此加速度不一定大.故A错误.B、物体的动量发生变化,速度大小不一定变化,如此动能不一定变化.故B错误.C、合外力对系统做功为零,可能存在除重力以外其它力做功,其它力不为零,如此机械能不守恒.故C错误.D、系统所受的合外力为零,系统动量守恒.故D正确.应当选:D.【点评】解决此题的关键知道系统机械能守恒、动量守恒的条件,知道动量是矢量,动能是标量,物体的动量变化,动能不一定变化,动能变化,如此动量一定变化.2.氢原子能级如图,当氢原子从n=3跃迁到n=2的能级时,辐射光的波长为656nm,以下判断正确的答案是〔〕A.氢原子从n=2跃迁到n=1的能级时,辐射光的波长大于656nmB.用波长为325nm的光照射,可使氢原子从n=1跃迁到n=2的能级C.一群处于n=3能级上的氢原子向低能级跃迁时最多产生3种谱线D.用波长633nm的光照射,不能使氢原子从n=2跃迁到n=3的能级【考点】氢原子的能级公式和跃迁.【专题】原子的能级结构专题.【分析】大量处于n=3激发态的氢原子向低能级跃迁,可以辐射出3种不同频率的光子,跃迁释放能量满足△E=E m﹣E n.既不能多于能级差,也不能少于此值,同时根据,即可求解.【解答】解:A、从n=3跃迁到n=2的能级时,辐射光的波长为656nm,即有:h,而当从n=2跃迁到n=1的能级时,辐射能量更多,如此频率更高,如此波长小于656nm.故A错误.B、当从n=1跃迁到n=2的能级,需要吸收的能量为△E=〔﹣3.4﹣〔﹣13.6〕〕×1.6×10﹣19J,根据A选项分析,如此有:,解得:λ=122nm;故B错误;C、根据数学组合=3,可知一群n=3能级上的氢原子向低能级跃迁时最多产生3种谱线.故C正确.D、同理,氢原子的电子从n=2跃迁到n=3的能级,必须吸收的能量为△E′,与从n=3跃迁到n=2的能级,放出能量相等,因此只能用波长656nm的光照射,才能使得电子从n=2跃迁到n=3的能级.故D正确.应当选:CD.【点评】解决此题的关键掌握光电效应的条件,以与知道能级间跃迁辐射的光子能量等于两能级间的能级差.3.钙和钾的截止频率分别为7.73×1014Hz和5.44×1014Hz,在某种单色光的照射下两种金属均发生光电效应,比拟它们外表逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的〔〕A.波长 B.频率 C.能量 D.动量【考点】电磁波谱.【专题】光电效应专题.【分析】根据爱因斯坦光电效应方程列式,分析钙逸出的光电子波长、频率、能量和动量大小.金属的逸出功W0=hγc,γc是金属的截止频率.【解答】解:根据爱因斯坦光电效应方程得:E k=hγ﹣W0,又 W0=hγc联立得:E k=hγ﹣hγc,据题:钙的截止频率比钾的截止频率大,由上式可知:从钙外表逸出的光电子最大初动能较小,由P=,可知该光电子的动量较小,根据λ=可知,波长较大,如此频率较小.故A正确,BCD错误.应当选:A.【点评】解决此题的关键要掌握光电效应方程,明确光电子的动量与动能的关系、物质波的波长与动量的关系λ=.4.如下列图,x轴在水平地面上,y轴竖直向上,在y轴上的P点分别沿x轴正方向和y轴正方向以一样大小的初速度抛出两个小球a和b,不计空气阻力,假设b上行的最大高度等于P点离地的高度,如此从抛出到落地,有〔〕A.a的运动时间是b的运动时间的倍B.a的位移大小是b的位移大小的倍C.a、b落地时的速度一样,因此动能一定一样D.a、b落地时的速度不同,但动能可能一样【考点】动能定理的应用;平抛运动.【专题】定量思想;合成分解法;机械能守恒定律应用专题.【分析】a做平抛运动,运动平抛运动的规律得出时间与高度的关系.b做竖直上抛运动,上升过程做匀减速运动,下落做自由落体运动,分两段求运动时间,即可求解时间关系;b的位移大小等于抛出时的高度.根据b的最大高度,求出初速度与高度的关系,即可研究位移关系;根据机械能守恒分析落地时动能关系.【解答】解:A、设P点离地的高度为h.对于b:b做竖直上抛运动,上升过程与下落过程对称,如此b上升到最大的时间为t1=,从最高点到落地的时间为 t2=,故b运动的总时间t b=t1+t2=〔+1〕;对于a:做平抛运动,运动时间为t a=;如此有t b=〔+1〕t a.故A错误.B、对于b:h=,如此得v0=;对于a:水平位移为x=v0t=•=2h,a的位移为x a==h,而b的位移大小为h,如此a的位移大小是b的位移大小的倍.故B正确.CD、根据机械能守恒定律得:E k=mgh+,假设两球的质量相等,如此两球落地时动能一样.而速度方向不同,如此落地时速度不同.故C错误,D正确.应当选:BD【点评】此题的解题关键要掌握竖直上抛和平抛两种运动的研究方法与其规律,并根据机械能守恒分析落地时动能关系.5.如下列图.光滑水平面上放着足够长的木板B,木板B上放着木块A,A、B间的接触面粗糙.现用一水平拉力F作用在A上使其由静止开始运动,用f1代表B对A的摩擦力,f2代表A 对B的摩擦力,如此如下情况可能的是〔〕A.拉力F做的功等于A、B系统动能的增加量B.拉力F做的功大于A、B系统动能的增加量C.拉力F和f1对A做的功之和小于A的动能的增加量D.f2对B做的功小于B的动能的增加量【考点】动能定理的应用.【专题】参照思想;推理法;动能定理的应用专题.【分析】对两物体与整体受力分析,结合可能的运动状态,由功能关系进展分析.【解答】解:A、假设拉力不够大,AB一起加速运动时,对整体,根据动能定理可知,拉力F 做的功等于A、B系统动能的增加量.故A正确.B、假设拉力足够大,A与B有相对运动,对整体分析可知,F做功转化为转化为两个物体的动能与系统的内能;故拉力F做的功大于AB系统动能的增加量;故B正确.C、对A来说,只有拉力F和摩擦力f1做功,由动能定理可知,拉力F和f1对A做的功之和等于A的动能的增加量.故C错误.D、对B来说,只有摩擦力f2做功,由动能定理可知,f2对B做的功等于B的动能的增加量.故D错误.应当选:AB【点评】此题考查了能量守恒定律和动能定理的运用,要灵活选择研究对象,正确分析能量是如何转化的,这是解决这类问题的关键.6.小行星绕恒星运动的同时,恒星均匀地向四周辐射能量,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动.如此经过足够长的时间后,小行星运动的〔〕A.半径变大 B.速率变大 C.加速度变小D.周期变小【考点】万有引力定律与其应用;向心力.【专题】定性思想;推理法;万有引力定律的应用专题.【分析】恒星均匀地向四周辐射能量,质量缓慢减小,二者之间万有引力减小,小行星做离心运动,即半径增大,又小行星绕恒星运动做圆周运动,万有引力提供向心力,可分析线速度、周期、加速度等.【解答】解:A、恒星均匀地向四周辐射能量,质量缓慢减小,二者之间万有引力减小,小行星做离心运动,即半径增大,故A正确;B、根据得,a=,v=,T=,因为r增大,M减小,如此a减小,v减小,T增大.故C正确,B、D错误.应当选:AC.【点评】关于万有引力与航天,记住作圆周运动万有引力等于向心力;离心运动,万有引力小于向心力;向心运动,万有引力大于向心力.7.A、B两物体在光滑水平面上沿同一直线运动,图表示发生碰撞前后的v﹣t图线,由图线可以判断〔〕A.A、B的质量比为3:2 B.A、B作用前后总动量守恒C.A、B作用前后总动量不守恒D.A、B作用前后总动能不变【考点】动量守恒定律;匀变速直线运动的图像.【分析】由图可以读出两物体碰撞前后的各自速度,根据动量守恒列方程求质量比.【解答】解:A、根据动量守恒定律:m A•6+m B•1=m A•2+m B•7得:m A:m B=3:2,故A正确;B、根据动量守恒知A、B作用前后总动量守恒,B正确C错误;D、作用前总动能:m A•62+m B•12=m A作用后总动能:m A•22+m B•72=m A可见作用前后总动能不变,D正确;应当选:ABD.【点评】两物体碰撞过程系统所受合外力为零,系统动量守恒.8.如图甲所示,静止在水平地面的物块A,受到水平向右的拉力F作用,F与时间t的关系如图乙所示,设物块与地面的静摩擦力最大值f m与滑动摩擦力大小相等,如此〔〕A.0~t1时间内F的功率逐渐增大B.t2时刻物块A的加速度最大C.t2时刻后物块A做反向运动D.t3时刻物块A的动能最大【考点】动能定理的应用;功率、平均功率和瞬时功率.【专题】压轴题;动能定理的应用专题.【分析】当拉力大于最大静摩擦力时,物体开始运动;当物体受到的合力最大时,物体的加速度最大;由动能定理可知,物体拉力做功最多时,物体获得的动能最大.【解答】解:A、由图象可知,0~t1时间内拉力F小于最大静摩擦力,物体静止,拉力功率为零,故A错误;B、由图象可知,在t2时刻物块A受到的拉力最大,物块A受到的合力最大,由牛顿第二定律可得,此时物块A的加速度最大,故B正确;C、由图象可知在t2~t3时间内物体受到的合力与物块的速度方向一样,物块一直做加速运动,故C错误;D、由图象可知在t1~t3时间内,物块A受到的合力一直做正功,物体动能一直增加,在t3时刻以后,合力做负功.物块动能减小,因此在t3时刻物块动能最大,故D正确;应当选BD.【点评】根据图象找出力随时间变化的关系是正确解题的前提与关键;要掌握图象题的解题思路.9.如下列图,在光滑的水平面上,质量为m1的小球A以速率v0向右运动.在小球的前方O点处有一质量为m2的小球B处于静止状态,Q点处为一竖直的墙壁.小球A与小球B发生弹性碰撞后两小球均向右运动.小球B与墙壁碰撞后原速率返回并与小球A在P点相遇.=2,如此两小球的质量之比m1:m2为〔〕A.7:5 B.1:3 C.2:1 D.5:3【考点】动量守恒定律.【分析】根据碰后再次相遇的路程关系,求出小球碰后的速度大小之比,根据碰撞过程中动量、能量守恒列方程即可求出两球的质量之比.【解答】解:设A、B两个小球碰撞后的速度分别为v1、v2,以向右为正好方向,由动量守恒定律有:m1v0=m1v1+m2v2…①由能量守恒定律有:m1v02=m1v12+m2v22 ②两个小球碰撞后到再次相遇,其速度率不变,由运动学规律有:v1:v2=:〔+2〕=1:5…③联立①②③,代入数据解得:m1:m2=5:3应当选:D.【点评】解答此题的突破口是根据碰后路程关系求出碰后的速度大小之比,此题很好的将直线运动问题与动量守恒和功能关系联系起来,比拟全面的考查了根底知识.10.两个小球在光滑水平面上沿同一直线,同一方向运动,B球在前.A球在后.m A=1kg,m B=2kg,v A=6m/s,v B=2m/s,当A球与B球发生碰撞后,A、B两球速度可能为〔〕A.v A=4m/s,v B=4m/s B.v A=2m/s,v B=5m/sC.v A=﹣4m/s,v B=6m/s D.v A=7m/s,v B=2.5m/s【考点】动量守恒定律.【分析】两球碰撞过程,系统不受外力,故碰撞过程系统总动量守恒;碰撞过程中系统机械能可能有一局部转化为内能,根据能量守恒定律,碰撞后的系统总动能应该小于或等于碰撞前的系统总动能;同时考虑实际情况,碰撞后A球速度不大于B球的速度.【解答】解:两球碰撞过程系统动量守恒,以两球的初速度方向为正方向,如果两球发生完全非弹性碰撞,由动量守恒定律得:m A v A+m B v B=〔m A+m B〕v,代入数据解得:v=m/s,如果两球发生完全弹性碰撞,有:m A v A+m B v B=m A v A′+m B v B′,由机械能守恒定律得:m A v A2+m B v B2=m A v A′2+m B v B′2,代入数据解得:v A′=m/s,v B′=m/s,如此碰撞后A、B的速度:m/s≤v A≤m/s,m/s≤v B≤m/s,应当选:B.【点评】此题碰撞过程中动量守恒,同时要遵循能量守恒定律,不忘联系实际情况,即后面的球不会比前面的球运动的快.11.如下列图,生产车间有两个相互垂直且等高的水平传送带甲和乙,甲的速度为v0.小工件离开甲前与甲的速度一样,并平稳地传到乙上.乙的宽度足够大,速度为v1.如此〔〕A.在地面参考系中,工件做类平抛运动B.在乙参考系中,工件在乙上滑动的轨迹是直线C.工件在乙上滑动时,受到乙的摩擦力方向不变D.工件沿垂直于乙的速度减小为0时,工件的速度等于v1【考点】摩擦力的判断与计算;参考系和坐标系.【专题】摩擦力专题.【分析】在地面参考系中,沿甲与乙的运动方向分析摩擦力方向,根据合外力方向与初速度方向的夹角分析工件的运动情况.【解答】解:A、在地面参考系中,沿甲运动的方向滑动摩擦力分力向左,沿乙运动的方向滑动摩擦力沿乙运动方向,如此摩擦力的合力如图.合初速度沿甲运动的方向,如此合力与初速度不垂直,所以工件做的不是类平抛运动.故A错误.B、在乙参考系中,如右图所示,摩擦力的合力与合初速度方向相反,故工件在乙上滑动的轨迹是直线,做匀减速直线运动,故B正确.C、工件在乙上滑动时,在x轴方向做匀减速直线运动,在y轴方向做匀加速直线运动,可知两个方向摩擦力的分力不变,受到乙的摩擦力方向不变,当工件沿垂直于乙的速度减小为0时,摩擦力方向沿y轴方向,摩擦力方向发生改变.故C错误.D、设t=0时刻摩擦力与纵向的夹角为α,侧向〔x轴方向〕、纵向〔y轴方向〕加速度的大小分别为a x、a y,如此=tanα很短的时间△t内,侧向、纵向的速度增量大小分别为△v x=a x△t,△v y=a y△t解得:=tanα由题意知tanα==,如此=,如此当△v x=v0,△v y=v1,所以工件沿垂直于乙的速度减小为0时,工件的速度等于v1.故D 正确.应当选:BD.。
2017年全国高考物理四模试卷一、选择题:本大题共8小题,每小题6分.在每小题给出的四个选项中.1~4题只有一项符合题目要求.5~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)下列说法正确的是()A.开普勒经过数十年的天文观测,并潜心研究,发现了行星运动的三大定律B.牛顿发现了万有引力定律,并测出了引力常量C.汤姆逊发现了电子,并测出了电子的电量D.贝克勒耳发现了天然放射性现象,揭示了原子核有复杂的结构2.(6分)如图所示,弹簧秤一端固定在墙壁上,另一端与小木块A相连,当用力加速抽出长木板B的过程中,观察到弹簧秤的示数为3.0N,若匀速抽出木板B,弹簧秤的示数大小()A.一定大于3.0N B.一定小于3.0N C.一定等于3.0N D.一定为零3.(6分)甲、乙两车某时刻由同一地点沿同一方向开始做直线运动,若以该时刻作为计时起点,得到两车的位移﹣时间(x﹣t)图象如图所示,则下列说法正确的是()A.t1时刻甲车加速度大于乙车加速度B.甲车追上乙车以前t1时刻两车相距最远C.0~t1时间内,乙车的平均速度等于甲车的平均速度D.t1时刻两车的速度刚好相等4.(6分)如图所示,一边长为L的立方体绝缘体上均匀分布着电荷量为Q的电荷,在垂直于左右面且过立方体中心O的轴线上有a、b、c三个点,a和b、b 和O、O和c间的距离均为L,在a点处固定有一电荷量为q(q<0)的点电荷.已知b点处的场强为零,则c点处场强的大小为(k为静电力常量)()A.k B.k C.k D.k5.(6分)如图,有一理想变压器,原副线圈的匝数比为1:n,原线圈接正弦交流电,电压为U,输出端接有一个交流电流表和一个电动机.电动机线圈电阻为R,当输入端接通电源后,电流表读数为I,电动机带动一质量为m的重物匀速上升,重力加速度为g.下列判断正确的是()A.原线圈中的电流的有效值为nIB.电动机消耗的功率为I2RC.变压器的输入功率为D.物体匀速上升的速度为6.(6分)如图所示,某同学将一块橡皮用光滑细线悬挂于O点,用一枝铅笔贴着细线中点的左侧以速度v水平向右匀速移动.则在铅笔移动到图中虚线位置的过程中()A.细线绕O点转动的角速度变小B.细线绕O点转动的角速度不断增大C.橡皮的运动轨迹为曲线D.橡皮处于超重状态7.(6分)如图所示,同步卫星与地心的距离为r,运行速率为v1,向心加速度为a1;地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球半径为R,则下列比值正确的是()A.=B.=()2C.=D.=8.(6分)如图所示,在一个边长为a的正六边形区域内存在磁感应强度为B,方向垂直于纸面向里的匀强磁场,一个比荷为的正粒子,从A点沿AD方向以一定的速度射入匀强磁场区域,粒子在运动过程中只受磁场力作用;已知粒子从ED边上的某一点垂直ED边界飞出磁场区域.则()A.粒子进入磁场区域的初速度大小为B.粒子在磁场区域内运动的时间t=C.粒子在磁场区域内运动的半径R=2aD.若改变B和初速度的大小,使该粒子仍从ED边界垂直飞出磁场区域,则粒子在磁场区域内运动的路程不变二、非选择题:(一)必考题:9.(6分)为了探究质量一定时加速度与力的关系,一同学设计了如图1所示的实验装置.其中M为带滑轮的小车的质量,m为砂和砂桶的质量.(滑轮质量不计)(1)实验时,一定要进行的操作是A.用天平测出砂和砂桶的质量B.将带滑轮的长木板右端垫高,以平衡摩擦力C.小车靠近打点计时器,先接通电源,再释放小车,打出一条纸带,同时记录弹簧测力计的示数D.改变砂和砂桶的质量,打出几条纸带E.为减小误差,实验中一定要保证砂和砂桶的质量m远小于小车的质量M (2)该同学在实验中得到如图2所示的一条纸带(两计数点间还有两个点没有画出),已知打点计时器采用的是频率为50Hz的交流电,根据纸带可求出小车的加速度为m/s2(结果保留两位有效数字).(3)以弹簧测力计的示数F为横坐标,加速度为纵坐标,画出的图3a﹣F图象是一条直线,图线与横坐标的夹角为θ,求得图线的斜率为k,则小车的质量为.10.(9分)某同学用伏安法测一节干电池的电动势和内阻,现备有下列器材:A.被测干电池一节B.电流表:量程0~0.6A,内阻约为0.3ΩC.电流表:量程0~3A,内阻约为0.1ΩD.电压表:量程0~3V,内阻未知E.电压表:量程0~15V,内阻未知F.滑动变阻器:0~10Ω,2AG.滑动变阻器:0~100Ω,1AH.开关、导线若干伏安法测电池电动势和内阻的实验中,由于电流表和电压表内阻的影响,测量结果存在系统误差.在现有器材的条件下,要尽可能准确地测量电池的电动势和内阻.(1)在上述器材中请选择适当的器材:(填写选项前的字母);(2)实验电路图应选择图中的(填“甲”或“乙”);(3)根据实验中电流表和电压表的示数得到了如图丙所示的U﹣I图象,则在修正了实验系统误差后,干电池的电动势E=V,内电阻r=Ω.11.(14分)如图所示,两根竖直固定的足够长的金属导轨cd和ef相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=10﹣2kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(竖直金属导轨电阻不计),PQ杆放置在水平绝缘平台上,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向里,磁感应强度B=1.0T.现让MN杆在恒定拉力作用下由静止开始向上加速运动,运动位移x=0.1m时MN杆达到最大速度,此时PQ杆对绝缘平台的压力恰好为零.(g取l0m/s2)求:(1)MN杆的最大速度v m为多少?(2)当MN杆加速度达到a=2m/s2时,PQ杆对地面的压力为多大?(3)MN杆由静止到最大速度这段时间内通过MN杆的电量为多少?12.(18分)足够长的光滑水平面离地面高度h=0.45m,质量均为m=1kg的物块A与长木板B叠放在一起,以v0=4m/s的速度与物块C发生弹性碰撞,取水平向右为正方向,碰撞后瞬间B板速度v1=﹣2m/s.已知A、B间动摩擦因数μ=0.1,g取10m/s2,当B板右端J边处在宽d=1m的PQ区域内时,B板就会受到一个水平向左的恒力F,使B板最终向左离开该区域,且A始终没有滑落B板.求:(1)B板右端J边刚进入边界P的速度v2;(2)物块C离开水平面做平抛运动的水平位移s;(3)讨论:F在不同的可能取值范围,B板右端J边处在PQ区域的时间t与恒力F的关系.如果F=5N,计算B板最终的速度v.【物理-选修3-3】(15分)13.(5分)下列说法正确的是()A.布朗运动就是分子运动B.分子间表现为引力时,物体分子势能随体积增大而增大C.有些非晶体在一定条件下可以转化为晶体D.气体分子单位时间内与单位面积的容器器壁碰撞的次数与单位体积内的分子数和温度有关E.自然界凡是符合能量守恒定律的宏观过程都能自然发生14.(10分)如图所示,固定的绝热气缸内有一质量为m的“T”型绝热活塞(体积可忽略),距气缸底部h0处连接一U形管(管内气体的体积忽略不计).初始时,封闭气体温度为T0,活塞距离气缸底部为1.5h0,两边水银柱存在高度差.已知水银的密度为ρ,大气压强为p0,气缸横截面积为S,活塞竖直部分长为1.2h0,重力加速度为g.试问:①初始时,水银柱两液面高度差多大?②缓慢降低气缸内封闭气体的温度,当U形管两水银面相平时封闭气体的温度是多少?2017年全国高考物理四模试卷参考答案与试题解析一、选择题:本大题共8小题,每小题6分.在每小题给出的四个选项中.1~4题只有一项符合题目要求.5~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)下列说法正确的是()A.开普勒经过数十年的天文观测,并潜心研究,发现了行星运动的三大定律B.牛顿发现了万有引力定律,并测出了引力常量C.汤姆逊发现了电子,并测出了电子的电量D.贝克勒耳发现了天然放射性现象,揭示了原子核有复杂的结构【解答】解:A、开普勒经过研究第谷的数十年的天文观测资料,发现了行星运动的三大定律.故A错误;B、牛顿发现了万有引力定律,卡文迪许测出了引力常量,故B错误;C、密立根通过著名的油滴实验测出了电子的电量,故C错误;D、贝克勒耳发现了天然放射性现象,揭示了原子核有复杂的结构,故D正确;故选:D2.(6分)如图所示,弹簧秤一端固定在墙壁上,另一端与小木块A相连,当用力加速抽出长木板B的过程中,观察到弹簧秤的示数为3.0N,若匀速抽出木板B,弹簧秤的示数大小()A.一定大于3.0N B.一定小于3.0N C.一定等于3.0N D.一定为零【解答】解:当用力加速抽出木板B时,A物体保持静止,故可知A受B的摩擦力f=F=3.0N;因A对B物体的压力不变,故A、B间的摩擦力不会发生变化,故匀速拉动时摩擦力也为3.0N;物体A在弹簧秤的作用下仍保持静止,故弹簧秤对A的拉力仍为3.0N,即弹簧秤的示数大小仍等于3.0N;故选C.3.(6分)甲、乙两车某时刻由同一地点沿同一方向开始做直线运动,若以该时刻作为计时起点,得到两车的位移﹣时间(x﹣t)图象如图所示,则下列说法正确的是()A.t1时刻甲车加速度大于乙车加速度B.甲车追上乙车以前t 1时刻两车相距最远C.0~t1时间内,乙车的平均速度等于甲车的平均速度D.t1时刻两车的速度刚好相等【解答】解:A、根据图象的斜率等于速度,斜率绝对值越大速度越大,则知甲车的速度不变,而乙车的速度增大,所以t1时刻甲车加速度小于乙车加速度.故A错误.B、两车在同一时刻由同一地点沿同一方向开始做直线运动,经过时间t1位移又相等,说明在t1时刻乙车刚好从后面追上甲车,故B错误.C、0到t1时间内,甲乙两车位移相等,根据平均速度等于位移除以时间可知,0到t1时间内,乙车的平均速度等于甲车的平均速度,故C正确.D、根据图象的斜率等于速度,斜率绝对值越大速度越大,则知,t1时刻乙车的速度比甲车的速度大,故D错误;故选:C4.(6分)如图所示,一边长为L的立方体绝缘体上均匀分布着电荷量为Q的电荷,在垂直于左右面且过立方体中心O的轴线上有a、b、c三个点,a和b、b 和O、O和c间的距离均为L,在a点处固定有一电荷量为q(q<0)的点电荷.已知b点处的场强为零,则c点处场强的大小为(k为静电力常量)()A.k B.k C.k D.k【解答】解:电荷量为q的点电荷在b处产生电场强度大小为E=k,方向向左.由于在b点处的场强为零,所以立方体金属板和点电荷在b点处产生的电场强度大小相等,方向相反,则金属板在b处产生电场强度大小也为k,方向向右.根据对称性可得:金属板在c处产生电场强度大小为k,方向向左.而电荷量为q的点电荷在c处产生电场强度为:E′=k=k,方向向左,所以c点处场强的大小为:E c=E+E′=k,故D正确,ABC错误;故选:D.5.(6分)如图,有一理想变压器,原副线圈的匝数比为1:n,原线圈接正弦交流电,电压为U,输出端接有一个交流电流表和一个电动机.电动机线圈电阻为R,当输入端接通电源后,电流表读数为I,电动机带动一质量为m的重物匀速上升,重力加速度为g.下列判断正确的是()A.原线圈中的电流的有效值为nIB.电动机消耗的功率为I2RC.变压器的输入功率为D.物体匀速上升的速度为【解答】解:A、变压器电流之比等于线圈匝数的反比,故I1:I2=n:1;解得:I1=nI,故A正确;B、电动机消耗的功率P=UI,一定大于电动机内阻上消耗的热功率,故B错误;C、变压器不会改变功率大小,由P=UI可知,输入功率P=nUI,故C错误;D、电动机输出功率P出=P﹣I2R,再根据P=mgv可知,物体上升的速度v==,故D正确.故选:AD.6.(6分)如图所示,某同学将一块橡皮用光滑细线悬挂于O点,用一枝铅笔贴着细线中点的左侧以速度v水平向右匀速移动.则在铅笔移动到图中虚线位置的过程中()A.细线绕O点转动的角速度变小B.细线绕O点转动的角速度不断增大C.橡皮的运动轨迹为曲线D.橡皮处于超重状态=vcosθ【解答】解:AB、根据运动的合成与分解,则有,垂直绳子方向的速度为:v⊥而半径为r=,那么角速度为:ω==,而θ逐渐增大,因此角速度减小,故A正确,B错误;CD、由图,并结合几何关系,则有:v绳=vsinθ,因v不变,当θ逐渐增大,因此绳子速度增大,向上加速;依据运动的合成,可知,橡皮的运动轨迹为曲线,而处于超重状态,故CD正确;故选:ACD.7.(6分)如图所示,同步卫星与地心的距离为r,运行速率为v1,向心加速度为a1;地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球半径为R,则下列比值正确的是()A.=B.=()2C.=D.=【解答】解:A、因为地球同步卫星的角速度和地球赤道上的物体随地球自转的角速度相同,由a1=ω2r,a2=ω2R得:=,故A正确、B错误;C、对于地球同步卫星和以第一宇宙速度运动的近地卫星,由万有引力提供做匀速圆周运动所需向心力得到:=,=解得:=,故D正确,C错误;故选:AD.8.(6分)如图所示,在一个边长为a的正六边形区域内存在磁感应强度为B,方向垂直于纸面向里的匀强磁场,一个比荷为的正粒子,从A点沿AD方向以一定的速度射入匀强磁场区域,粒子在运动过程中只受磁场力作用;已知粒子从ED边上的某一点垂直ED边界飞出磁场区域.则()A.粒子进入磁场区域的初速度大小为B.粒子在磁场区域内运动的时间t=C.粒子在磁场区域内运动的半径R=2aD.若改变B和初速度的大小,使该粒子仍从ED边界垂直飞出磁场区域,则粒子在磁场区域内运动的路程不变【解答】解:画出带电粒子在磁场中运动的轨迹如图所示,由题意及速度方向确定轨迹圆的圆心在O点,连接AE,由几何关系确定各角度关系如图所标.A、带电粒子做匀速圆周运动的半径r=OA=,由洛仑兹力提供向心力,从而求得.所以选项A错误.B、粒子在磁场中运动的时间t=,所以选项B错误.C、由A选项的计算可知:带电粒子在磁场中的半径r=OA=,所以选项C正确.D、若改变粒子初速度的大小和B的大小,仍使粒子从ED边界垂直飞出磁场区域,通过画图知道带电粒子在磁场中的运动轨迹不变,所以路程也不变.所以选项D正确.故选:CD二、非选择题:(一)必考题:9.(6分)为了探究质量一定时加速度与力的关系,一同学设计了如图1所示的实验装置.其中M为带滑轮的小车的质量,m为砂和砂桶的质量.(滑轮质量不计)(1)实验时,一定要进行的操作是BCDA.用天平测出砂和砂桶的质量B.将带滑轮的长木板右端垫高,以平衡摩擦力C.小车靠近打点计时器,先接通电源,再释放小车,打出一条纸带,同时记录弹簧测力计的示数D.改变砂和砂桶的质量,打出几条纸带E.为减小误差,实验中一定要保证砂和砂桶的质量m远小于小车的质量M(2)该同学在实验中得到如图2所示的一条纸带(两计数点间还有两个点没有画出),已知打点计时器采用的是频率为50Hz的交流电,根据纸带可求出小车的加速度为 1.3m/s2(结果保留两位有效数字).(3)以弹簧测力计的示数F为横坐标,加速度为纵坐标,画出的图3a﹣F图象是一条直线,图线与横坐标的夹角为θ,求得图线的斜率为k,则小车的质量为.【解答】解:(1)A、本题拉力可以由弹簧测力计测出,不需要用天平测出砂和砂桶的质量,也就不需要使小桶(包括砂)的质量远小于车的总质量,故A错误,E错误.B、该题是弹簧测力计测出拉力,从而表示小车受到的合外力,故需要将带滑轮的长木板右端垫高,以平衡摩擦力,故B正确;C、打点计时器运用时,都是先接通电源,待打点稳定后再释放纸带,该实验探究加速度与力和质量的关系,要记录弹簧测力计的示数,故C正确;D、改变砂和砂桶质量,即改变拉力的大小,打出几条纸带,研究加速度随F变化关系,故D正确;故选:BCD.(2)由于两计数点间还有两个点没有画出,计数点间的时间间隔:t=0.06s,由△x=aT2可知,加速度:a==≈1.3m/s2;(3)对a﹣F图来说,图象的斜率表示小车质量的倒数,此题,弹簧测力计的示数F=F,故小车质量为m=.合故答案为:(1)BCD;(2)1.3;(3).10.(9分)某同学用伏安法测一节干电池的电动势和内阻,现备有下列器材:A.被测干电池一节B.电流表:量程0~0.6A,内阻约为0.3ΩC.电流表:量程0~3A,内阻约为0.1ΩD.电压表:量程0~3V,内阻未知E.电压表:量程0~15V,内阻未知F.滑动变阻器:0~10Ω,2AG.滑动变阻器:0~100Ω,1AH.开关、导线若干伏安法测电池电动势和内阻的实验中,由于电流表和电压表内阻的影响,测量结果存在系统误差.在现有器材的条件下,要尽可能准确地测量电池的电动势和内阻.(1)在上述器材中请选择适当的器材:ABDFH(填写选项前的字母);(2)实验电路图应选择图中的乙(填“甲”或“乙”);(3)根据实验中电流表和电压表的示数得到了如图丙所示的U﹣I图象,则在修正了实验系统误差后,干电池的电动势E= 1.5V,内电阻r= 1.0Ω.【解答】解:(1)在上述器材中请选择适当的器材:A.被测干电池一节为了读数准确,所以选择B.电流表:量程0~0.6A,D.电压表:量程0~3V,滑动变阻器阻值较小有利于电表的数值变化,减小误差,故选F.滑动变阻器,H.开关、导线若干(2)测量电电动势和内阻的时候,由于电源的内阻是很小的,若采用甲图的接法,由于电流表内阻的影响,会使测量电阻偏大,为了减小内阻的测量误差,实验时应选用电路图乙.(3)由U﹣I图可知,电源的电动势为:E=1.50V;内电阻为:r===1.0Ω;故答案为:(1)ABDFH;(2)乙;(3)1.5;1.0.11.(14分)如图所示,两根竖直固定的足够长的金属导轨cd和ef相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=10﹣2kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(竖直金属导轨电阻不计),PQ杆放置在水平绝缘平台上,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向里,磁感应强度B=1.0T.现让MN杆在恒定拉力作用下由静止开始向上加速运动,运动位移x=0.1m时MN杆达到最大速度,此时PQ杆对绝缘平台的压力恰好为零.(g取l0m/s2)求:(1)MN杆的最大速度v m为多少?(2)当MN杆加速度达到a=2m/s2时,PQ杆对地面的压力为多大?(3)MN杆由静止到最大速度这段时间内通过MN杆的电量为多少?【解答】解:(1)最大速度时PQ杆受力平衡有:BIL=mg由闭合电路欧姆定律得:E=I•2RMN杆切割磁感线,产生的电动势为:E=BLv m联立得最大速度为:v m===1m/s对于MN杆有:F=BIL+mg=2mg=2×10﹣2×10N=0.2N(2)对MN杆应用牛顿第二定律得:F﹣mg﹣B I1L=ma1PQ杆受力平衡有:F N+BI1L=mg得:F N=2mg﹣F+ma=ma=10﹣2×2N=2×10﹣2N(3)位移x内回路中产生的平均电动势:=感应电流为:通过MN杆的电量为:q=I′△t得:q==C=0.05C答:(1)MN杆的最大速度v m为1m/s.(2)当MN杆加速度达到a=2m/s2时,PQ杆对地面的压力为2×10﹣2N.(3)MN杆由静止到最大速度这段时间内通过MN杆的电量为0.05C.12.(18分)足够长的光滑水平面离地面高度h=0.45m,质量均为m=1kg的物块A与长木板B叠放在一起,以v0=4m/s的速度与物块C发生弹性碰撞,取水平向右为正方向,碰撞后瞬间B板速度v1=﹣2m/s.已知A、B间动摩擦因数μ=0.1,g取10m/s2,当B板右端J边处在宽d=1m的PQ区域内时,B板就会受到一个水平向左的恒力F,使B板最终向左离开该区域,且A始终没有滑落B板.求:(1)B板右端J边刚进入边界P的速度v2;(2)物块C离开水平面做平抛运动的水平位移s;(3)讨论:F在不同的可能取值范围,B板右端J边处在PQ区域的时间t与恒力F的关系.如果F=5N,计算B板最终的速度v.【解答】解:(1)B、C碰后,以A、B系统为研究对象,以向右为正方向,由动量守恒定律得:mv0+mv1=2mv2,解得,J边进入PQ区域的速度v2=1m/s;(2)B、C发和弹性碰撞,设C质量为m c,碰后速度为v c,以向右为正方向,由动量守恒定律得:mv0=mv1+m c v c,由机械能守恒定律得:mv02=mv12+m c v c2,解得:v1=﹣2m/s,m c=3kg,v c=2m/s,C做平抛运动:h=gt2,s=v c t,解得:s=0.6m;(3)设J边进入PQ区域,刚好能到达Q边界:v t=0,由速度位移公式可得:v t2﹣v22=2ad,解得:a=0.5m/s2,由牛顿第二定律得:F1=2ma,解得:F1=1N,设J边进入PQ区域,A、B恰好能一起做匀变速运动,由牛顿第二定律得,A有最大加速度a m=μg,a m=1m/s2,由牛顿第二定律得:F2=2ma=2×1×1=2N,讨论:当1 N<F≤2 N A、B一起匀变速运动,加速度a1=,进入及返回的过程互逆,所以t1==,当F>2N,A、B发生相对滑动,B的加速度a2=,进入及返回的过程互逆,所以:t2==,F=5N,t=0.5s,B板右端J边离开P,此时A的速度:v A=v2﹣a m t,解得:v A=0.5m/s,此后,A、B系统动量守恒,以A的初速度方向为正方向,由动量守恒定律得:m(﹣v2)+mv A=2mv,解得:v=﹣0.25m/s,方向向左;答:(1)B板右端J边刚进入边界P的速度v2=1m/s;(2)物块C离开水平面做平抛运动的水平位移为0.6m;(3)当1N<F≤2N时,t1==,当F>2N时,t2==,当F=5N时,v=0.25m/s,方向向左.【物理-选修3-3】(15分)13.(5分)下列说法正确的是()A.布朗运动就是分子运动B.分子间表现为引力时,物体分子势能随体积增大而增大C.有些非晶体在一定条件下可以转化为晶体D.气体分子单位时间内与单位面积的容器器壁碰撞的次数与单位体积内的分子数和温度有关E.自然界凡是符合能量守恒定律的宏观过程都能自然发生【解答】解:A、布朗运动是悬浮在液体中固体微粒的运动,是由于其周围液体分子的碰撞形成的,故布朗运动是液体分子无规则热运动的反映,但并不是液体分子的无规则运动.故A错误.B、当分子力表现为引力时,分子距离增大时,分子引力做负功,分子势能增加.故B正确.C、晶体和非晶体区别在于内部分子排列,有些通过外界干预可以相互转化,如把晶体硫加热熔化(温度超过300℃)再倒进冷水中,会变成柔软的非晶硫,再过一段时间又会转化为晶体硫,故C正确.D、根据气体压强的微观意义可知,气体分子单位时间内与单位面积的容器器壁碰撞的次数与单位体积内的分子数和温度有关.故D正确;E、根据热力学第二定律可知,自然界中与热现象有关的过程都有一定的方向性.故E错误.故选:BCD14.(10分)如图所示,固定的绝热气缸内有一质量为m的“T”型绝热活塞(体积可忽略),距气缸底部h0处连接一U形管(管内气体的体积忽略不计).初始时,封闭气体温度为T0,活塞距离气缸底部为1.5h0,两边水银柱存在高度差.已知水银的密度为ρ,大气压强为p0,气缸横截面积为S,活塞竖直部分长为1.2h0,重力加速度为g.试问:①初始时,水银柱两液面高度差多大?②缓慢降低气缸内封闭气体的温度,当U形管两水银面相平时封闭气体的温度是多少?【解答】解:①被封闭气体压强:p=p0+=p0+ρgh,初始时,液面高度差为:h=;②降低温度直至液面相平的过程中,气体先等压变化,后等容变化.初状态:p1=p0+,V1=1.5h0 s,T1=T02分末状态:p2=p0,V2=1.2h0 s,T2=?根据理想气体状态方程得:=,解得:T2=;答:①初始时,水银柱两液面高度差是;②缓慢降低气缸内封闭气体的温度,当U形管两水银面相平时封闭气体的温度是.赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性yxo。
如下图所示,两条曲线为汽车列三个粒子在磁场内运动地时间依次增加处有有甲、乙两个物体8.如图,固定在水平桌面上地光滑金属导轨cd、eg处于方向竖直向下地匀强磁场中,金属杆ab与导轨接触良好.在两根导轨地端点d、e之间连接一电阻,其它部分电阻忽略不计.现用一水平向右地恒力F作用在金属杆ab上,使金属杆由静止开始向右沿导轨滑动,滑动中杆ab始终垂直于导轨.金属杆表示,则下列说法正确地是受到地安培力用F安()A.金属杆ab做匀加速直线运动B.金属杆ab运动过程中回路中有顺时针方向地电流C.金属杆ab所受到地F安先不断增大,后保持不变D.金属杆ab克服安培力做功地功率与时间地平方成正比9.理想变压器原、副线圈匝数之比为2:1,原线圈接入如图乙所示地正弦式交流电压,副线圈接一个R=55 地负载电阻。
电流表、电压表均为理想电表,则下述结论正确地是()A.副线圈中电压表地读数为110VB.副线圈中输出交流电地频率为0.02HzC.原线圈中电流表地读数为0.5AD.原线圈中地输入功率为220W10.如下图所示,BC是半径为R=1m地竖直面内地圆弧轨道,轨道末端C在圆心O地正下方,∠BOC=60°,将质量为m=1Kg地小球,从与O等高地A点水平抛出,小球恰好从B点沿圆弧切线方向进入圆轨道,由于小球与圆弧之间有摩擦,能够使小球从B到C做匀速圆周运动.重力加速度大小为g=10m/s2.则下列说法正确地是( )A.从B到C,小球与轨道之间地动摩擦因数可能保持不变地全过程中已知一足够长地传送带与水平面地倾斜角为(一)必考题(4小题,共47分)13.(共10分,每空2分)如图为"验证牛顿第二定律"地实验装置示意图,盘和重物地总质量为m,小车和砝码地总质量为M。
实验中用盘和重物总重力地大小作为细线对小车拉力地大小。
(1)实验中,为了使细线对小车地拉力等于小车所受地合外力,先调节长木板一端定滑轮地高度,使细线与长木板平行。
一、选择题:1、下列说法正确的是:A.欲改放射性元素的半衰期,可以通过改变它的化学状态来实现B.每个核子只跟邻近的核子发生核力作用C.β衰变中产生的β射线实际上是原子的核外电子挣脱原子核的束缚而形成的D.太阳内部发生的核反应是重核裂变【答案】B【解析】考点:半衰期;核力;核反应【名师点睛】本题考查了半衰期;核力;核反应等基础知识点,难度不大,关键要熟悉教材,牢记这些基础知识点。
2、水平面上有质量相等的ab两物体,水平推力F1、F2分别作用在a、b上,各作用一段时间后撤去推力,物体将继续运动一段时间后停下来.撤去推力时两物体速度相等,它们运动的v-t图象如图所示,图中AB ∥CD,整个过程中()A.水平推力F1、F2的大小相等B.a、b与水平面间的动摩擦因数相等C.a的平均速度大于b的平均速度D.水平推力F1、F2所做的功可能相等【答案】B【解析】试题分析:根据v-t图象,由于AB∥CD,可见两物体与水平面间的动摩擦因数相同,设为μ,在a、b加速运动过程中,由牛顿第二定律知,12a b a bF m g F m gm m μμ-->;由于m a =m b ,得F 1>F 2.故A 错误;B 正确; 由 2vv =可知,两物体在全过程中运动的平均速度相同;故C 错误; 对全程由动能定理可知,两物体的位移不相同,而摩擦力做功不同,则可知水平推力做功不可能相同;故D 错误;故选B 。
考点:牛顿第二定律;动能定理【名师点睛】本题首先考查读图能力,其次考查动量定理应用时,选择研究过程的能力.知道水平推力撤去后,AB 与CD 平行,说明加速度相同,动摩擦因数相同。
3、如图所示,AB 两球质量相等,光滑斜面的倾角为θ,图甲中,A 、B 两球用轻弹簧相连,图乙中A 、B 两球用轻质杆相连,系统静止时,挡板C 与斜面垂直,弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有( )A .两图中两球加速度均为gsin θB .两图中A 球的加速度均为零C .图乙中轻杆的作用力一定不为零D .图甲中B 球的加速度是图乙中B 球加速度的2倍 【答案】D 【解析】考点:牛顿第二定律的应用【名师点睛】解题时要根据弹簧弹力不能突变,杆的弹力会突变,去分析撤去挡板的瞬间,图甲和图乙中AB 所受合外力即可得到各自的加速度。
4、如图所示,穿在一根光滑的固定杆上的两个小球A 、B 连接在一条跨过定滑轮的细绳两端,杆与水平面成θ角,不计所有摩擦.当两球静止止时,OA 绳与杆的夹角为θ,OB 绳沿竖直方向,则正确的说法是 ( )A.A可能受到2个力的作用B.B可能受到3个力的作用C.绳子对A的拉力大于对B的拉力D.A、B的质量之比为1:tanθ【答案】D【解析】考点:物体的平衡【名师点睛】本题考查了隔离法对两个物体的受力分析,关键是抓住同一根绳子上的拉力处处相等结合几何关系将两个小球的重力联系起来。
5. 有a、b、c、d四颗地球卫星,a还未发射,在赤道表面上随地球一起转动,b是近地轨道卫星,c是地球同步卫星,d是高空探测卫星,它们均做匀速圆周运动,各卫星排列位置如图所示,则()A.a的向心加速度等于重力加速度gB.在相同时间内b转过的弧长最长C.c在4小时内转过的圆心角是6D.d的运动周期有可能是20小时【答案】B【解析】考点:万有引力定律的应用【名师点睛】对于卫星问题,要建立物理模型,根据万有引力提供向心力,分析各量之间的关系,并且要知道同步卫星的条件和特点。
6、在如图所示的电路中,电源的负极接地,其电动势为E,内电阻为r,R1、R2为定值电阻,R3为滑动变阻器,C为电容器.在滑动变阻器滑动头P自a端向b端滑动的过程中,下列说法中正确的是()A.电压表示数变小B.电流表示数变小C.电容器C所带电荷量增多D.a点的电势降低【答案】D【解析】试题分析:在滑动变阻器滑动头P自a端向b端滑动的过程中,变阻器在路电阻减小,外电阻减小,干路电流增大,电阻R1两端电压增大,则电压表示数变大.电阻R2两端的电压U2=E-I(R1+r),I增大,则U2变小,电容器板间电压变小,其带电量减小.根据外电路中顺着电流方向,电势降低,可知a的电势大于零,U2变小,则a点的电势降低,通过R2的电流I2减小,通过电流表的电流I A=I-I2,I增大,I2减小,则I A增大.即电流表示数变大.故D正确,ABC错误.故选D。
考点:电路的动态分析【名师点睛】本题是电路动态变化分析问题,要抓住不变量:电源的电动势、内阻及定值电阻的阻值不变,进行分析.根据电流方向判断电势高低,由电压的变化判断电势的变化。
7、如图,一带电粒子沿着图中AB曲线从A到B穿过一匀强电场,a、b、c、d为该匀强电场的等势线,且U a<U b<U c<U d,则()A.粒子一定带负电,电势能一定减小B.粒子一定带负电,电势能一定增大C.粒子可能带正电,电势能一定减小D.粒子可能带正电,电势能一定增大【答案】A【解析】考点:带电粒子在电场中的运动【名师点睛】本题通过带电粒子在电场中的运动考查了等势线和电场线、电势能、电场力等问题,解决这类问题的突破口是:做曲线运动的物体所受合外力指向其轨迹内侧。
8、图为示波管的原理图,如果在电极YY/之间所加的电压按图甲所示的规律变化,在电极XX′之间所加的电压按图乙所示的规律变化,则在荧光屏上会看到的图形是()A.B.C.D.【答案】C【解析】试题分析:因为在电极xx′之间所加的电压保持不变,可知在x方向上的偏转位移保持不变,在y方向上电压随正弦规律变化,即y方向上偏移在正负最大值之间变化.故C正确,ABD错误.故选C。
考点:示波器【名师点睛】本题关键要清楚示波管的工作原理,要用运动的合成与分解的正交分解思想进行思考。
9、如图所示电路,在平行金属板M、N内部左侧中央P有一质量为m的带电粒子(重力不计)以水平速度v0射入电场并打在N板的O点.改变R1或R2的阻值,粒子仍以v0射入电场,则()A.该粒子带正电B.减少R2,粒子还能打在O点C.减少R1,粒子将打在O点左侧D.增大R1,粒子在板间运动时间不变【答案】BC【解析】由图知,y一定,q、m、d、v0不变,则由③式知:当减少R1时,M、N间的电压U增大,x减小,所以粒子将打在O点左侧;由①知,增大R1,U减小,t增大,故C正确,D错误.故选BC。
考点:带电粒子在电场中的运动;闭合电路的欧姆定律【名师点睛】本题是类平抛运动与电路知识的综合,其联系的纽带是电压,要抓住电路稳定时与电容器串联的电阻上没有电压,相当于导线,电容器的电压等于所并联的电路两端的电压。
10、如题所示,水平放置的平行金属板A、B连接一恒定电压,两个质量相等的电荷M和N同时分别从极板A的边缘和两极板的正中间沿水平方向进入板间电场,两电荷恰好在板间某点相遇.若不考虑电荷的重力和它们之间的相互作用,则下列说法正确的是()A.电荷M的电荷量大于电荷N的电荷量B.两电荷在电场中运动的加速度相等C.从两电荷进入电场到两电荷相遇,电场力对电荷M做的功大于电场力对电荷N做的功D.电荷M进入电场的初速度大小与电荷N进入电场的初速度大小一定相同【答案】AC【解析】考点:带电粒子在电场中的运动【名师点睛】本题是带电粒子在电场中的运动问题,解题的关键是将合运动沿水平和竖直方向正交分解,然后根据运动学公式列式分析。
11、如图所示有三个斜面a、b、c,底边分别为L、L、2L,高分别为2h、h、h,同一物体与三个斜面的动摩擦因数相同,这个物体分别沿三个斜面从顶端由静止下滑到底端的三种情况相比较,下列说法正确的是A.物体损失的机械能△E c=2△E b=4△E aB.物体运动的时间4t a=2t b=t cC.物体到达底端的动能E ka=2E kb=2E kcD.因摩擦产生的热量2Q a=2Q b=Q c【答案】D【解析】考点:动能定理;牛顿第二定律【名师点睛】本题比较简单直接利用功能关系即可求解,易错点在于写出表达式后的数学运算,因此学生要加强练习,提高利用数学知识解决物理问题的能力。
12、如图甲所示为电场中的一条电场线,在电场线上建立坐标轴,则坐标轴上O~x2间各点的电势分布如图乙所示,下列说法中正确的是()A.x1点的电场强度最小B.0-x2之间,x轴附近的电场线分布先变密后变疏C.一正电电荷从O点由静止释放,若仅受电场力作用,点电荷的加速度先增大后减小D.一正电电荷从O点由静止释放,若仅受电场力作用,速度先增大后减小【答案】BC【解析】考点:电场强度;电势【名师点睛】本题从数学有角度理解φ-t图象的斜率等于场强,由电势的高低判断出电场线的方向,来判断电场力方向做功情况。
13、如图所示,竖直光滑杆固定不动,套在杆上的轻质弹簧下端固定,将套在杆上的滑块向下压缩弹簧至离地高度h=0.40m处,滑块与弹簧不拴接.现由静止释放滑块,通过传感器测量出滑块的速度和离地高度h,计算出滑块的动能E K,并作出滑块的E K-h图象,其中高度从0.80m上升到1.40m范围内图象为直线,其余部分为曲线.若以地面为重力势能的零势能面,取g=10m/s2,则结合图象可知()A.滑块的质量为1.00 kgB.弹簧原长为0.72 mC.弹簧最大弹性势能为10.00 JD.滑块的重力势能与弹簧的弹性势能总和最小为3.60J【答案】AD【解析】考点:机械能守恒定律;动能定理【名师点睛】本题是能量守恒定律和图象的理解与应用问题,根据该图象的形状得出滑块从0.8m上升到1.40m范围内所受作用力为恒力,说明物体不再受到弹簧的弹力的作用是解题的关键。
14、如图所示,半径R=0.5m的1/4圆弧接收屏位于电场强度方向竖直向下的匀强电场中,OB水平,一质量为m=10-4kg、带电荷量为q=8.0×10-5C的粒子从与圆弧圆心O等高且距O点0.3m的A点以初速度v0=3m/s 水平射出,粒子重力不计,粒子恰好能垂直打到圆弧曲面上的C点(图中未画出),取C点电势φ=0,则()A.该匀强电场的电场强度E=100 V/mB.粒子在A点的电势能为8×10-5JC.粒子到达C点的速度大小为5m/sD.粒子速率为4 m/s时的电势能为4.5×10-4J【答案】CD考点:带电粒子在电场中的运动【名师点睛】本题考查了粒子在电场中的运动,粒子在电场中做类平抛运动,应用类平抛运动规律、动能定理、能量守恒定律即可正确解题。
15、如图所示,M、N为两个等大的均匀带电圆环,其圆心分别为A、C,带电量分别为+Q、-Q,将它们平行放置,A、C连线垂直于圆环平面,B为AC的中点,现有质量为m、带电量为+q的微粒(重力不计)从左方沿A、C连线方向射入,到A点时速度v A=1m/s,到B点时速度v B=m/s,则()A.微粒从B至C做加速运动,且v C=3m/sB.微粒从A到C先做减速运动,后做加速运动C m/sD.微粒最终可能返回至B m/s【答案】AC考点:带电粒子在电场中的运动;动能定理【名师点睛】该题关键:一、要会识别电场分布,对于这种对称分布的电荷,其电场应该是对称的;二、要会识别电场的等势面,这个图有点相等量异种点电荷的电场和等势面分布,解题时候就是要类比它来解决。