x y sin u 在(, )内连续, y sin 1 在(, 0) (0, )内连续.
x
定理6 一切初等函数在其定义区间内都是连续的.
定义区间是指包含在定义域内的区间.
注意 1. 初等函数仅在其定义区间内连续, 在 其定义域内不一定连续;
例如, y cos x 1, D {x | x 2k , k Z}
函数的连续性
一、函数的连续性 二、连续性原理 三、函数的间断点 四、闭区间上连续函数的性质
一、函数的连续性
1.函数的增量
设函数 f ( x)在U ( x0 )内有定义, x U ( x0 ), x x x0 , 称为自变量在点 x0的增量.
y f ( x) f ( x0 ),称为函数 f ( x)相应于x的增量.
又 f (0) 1 0, f (1) 2 0, 由零点定理,
3.第二类间断点
如果 f ( x) 在点 x0 处的左、右极限至 少有一个不存在, 则称点 x0 为函数 f ( x)的 第二类间断点.
例6
讨论函数
f
(x)
1 x
,
x 0,在x 0处的连续性.
x, x 0,
y
解 f (0 0) 0, f (0 0) ,
x 0为函数的第二类间断点.
上连续,且 f (a)与 f (b) 异号(即 f (a) f (b) 0 ),
那末在开区间a, b内至少有函数f ( x) 的一个零
点,即至少有一点 (a b),使 f () 0 .
即方程 f ( x) 0在(a, b)内至少存在一个实根 .
几何解释:
y
连续曲线弧 y f ( x)的两个 端点位于x轴的不同侧,则曲 a o
求 lim