中考数学专题一
- 格式:pptx
- 大小:313.01 KB
- 文档页数:13
2023年中考数学专题练——1数与式一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2 3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1 4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−120225.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12 6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6 7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−120228.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3 9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y 11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多个.(由含n的代数式表示)13.(2022•泉山区校级三模)√4=.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为.15.(2022•丰县二模)计算:(x2)3•x﹣2=.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点离原点的距离较近(填“A”或“B”).17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示.18.(2022•邳州市一模)因式分解:b2﹣4b+4=.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米=米.20.(2021•徐州模拟)分解因式:m2+6m=.21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4; (2)化简:(1−1x+2)÷x 2−1x+2. 25.(2022•贾汪区二模)计算: (1)20220+(12)−1−|−3|+√−83; (2)(x −1x )÷x 2−2x+1x . 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 29.(2022•徐州一模)计算: (1)√12+4﹣1﹣(12)﹣1+|−√3|;(2)(1x+3−1)×x 2+6x+9x 2−4.30.(2022•鼓楼区校级二模)计算: (1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a.2023年江苏省徐州市中考数学专题练——1数与式参考答案与试题解析一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 【解答】解:A、a2与a3不属于同类项,不能合并,故A不符合题意;B、a2•a3=a5,故B不符合题意;C、(﹣a3)2=a6,故C符合题意;D、a2÷a3=a﹣1,故D不符合题意;故选:C.2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2【解答】解:a+a=2a,故A错误,不符合题意;(2a)2÷a=4a,故B正确,符合题意;(﹣ab)2=a2b2,故C错误,不符合题意;a2⋅a2=a4,故D错误,不符合题意;故选:B.3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1【解答】解:A、a2•a3=a5,故A符合题意;B、(a2)3=a6,故B不符合题意;C、a2与a3不属于同类项,不能合并,故C不符合题意;D、a3÷a2=a,故D不符合题意;故选:A.4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−12022【解答】解:2022的倒数是12022.故选:C.5.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12【解答】解:∵5<6<9<10<12<16,∴√5<√6<3<√10<√12<4,与3最接近的是√10,故选:C.6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6【解答】解:A、3a+2a=5a,原计算错误,故此选项不符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、a2+a2=2a2,原计算错误,故此选项不符合题意;D、(﹣a3)2=a6,原计算正确,故此选项符合题意.故选:D.7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−12022【解答】解:有理数﹣2022的相反数等于2022,故选:A.8.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3【解答】解:x6÷x2=x4≠x3,故选项A计算错误;(x2)3=x6≠x5,故选项B计算错误;x2与x3不是同类项,不能加减,故选项C计算错误;2x2•x=2x3,故选项D计算正确.故选:D.9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个【解答】解:∵1<3<4,9<10<16,∴1<√3<2,3<√10<4,∴在√3和√10之间的整数有2,3共2个,故选:C.10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y【解答】解:∵x杯饮料则在B和C餐中点了x份汉堡,∴点A餐为10﹣x,∴y份沙拉,则点C餐有y份,∴点B餐的份数为:10﹣(10﹣x)﹣y=x﹣y,故选:C.11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6【解答】解:∵2a2﹣a2=a2≠2,∴选项A不符合题意;∵(a﹣b)2=a2﹣2abb+2≠a2﹣b2,∴选项B不符合题意;∵(﹣a3b)2=a6b2,∴选项C符合题意;∵(2a+3)(a﹣2)=2a2﹣a﹣6≠2a2﹣6,∴选项D不符合题意;故选:C.二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多(2n+1)个.(由含n的代数式表示)【解答】解:根据题意有,第1个图形,圆的个数为:1;正三角形的个数为:1×3+1;第2个图形,圆的个数为:2;正三角形的个数为:2×3+1;第3个图形,圆的个数为:3;正三角形的个数为:3×3+1;……,第n个图形,圆的个数为:n;正三角形的个数为:n×3+1;n×3+1﹣n=3n﹣n+1=2n+1,∴第n个图形中三角形的个数比圆的个数多(2n+1)个.故答案为:(2n+1).13.(2022•泉山区校级三模)√4=2.【解答】解:∵22=4,∴4的算术平方根是2,即√4=2.故答案为:2.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为 2.5×1017.【解答】解:数据250000000000000000用科学记数法表示为2.5×1017.故答案为:2.5×1017.15.(2022•丰县二模)计算:(x2)3•x﹣2=x4.【解答】解:(x2)3•x﹣2=x6•1x2=x4,故答案为:x4.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点A离原点的距离较近(填“A”或“B”).【解答】解:∵|﹣2|=2,|3|=3,∴点A离原点的距离较近,故答案为:A.17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示9.65×1011.【解答】解:9650亿=965000000000=9.65×1011.故答案为:9.65×1011.18.(2022•邳州市一模)因式分解:b2﹣4b+4=(b﹣2)2.【解答】解:b2﹣4b+4=(b﹣2)2.故答案为:(b﹣2)2.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米= 1.6×10﹣7米.【解答】解:∵1纳米=10﹣9米,∴160纳米=160×10﹣9米=1.6×10﹣7米.故答案为:1.6×10﹣7.20.(2021•徐州模拟)分解因式:m2+6m=m(m+6).【解答】解:原式=m(m+6).故答案为:m(m+6).21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为a≥﹣2.【解答】解:∵√a+2有意义,∴a+2≥0,解得a≥﹣2,即a的取值范围为a≥﹣2.故答案为:a≥﹣2.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.【解答】解:(1)20220﹣(−12)﹣1﹣|3−√8|=1﹣(﹣2)﹣(3﹣2√2)=1+2﹣3+2√2=2√2;(2)(1+1x−2)÷x−1x−2=x−1 x−2⋅x−2 x−1=1.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.【解答】解:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273=1+4+2﹣3=4;(2)(1−1a)÷a2−2a+1a=a−1a⋅a(a−1)2 =1a−1.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4;(2)化简:(1−1x+2)÷x2−1x+2.【解答】解:(1)原式=4﹣1﹣1+2=4;(2)原式=x+2−1x+2•x+2(x+1)(x−1)=x+1 x+2•x+2 (x+1)(x−1)=1x−1.25.(2022•贾汪区二模)计算:(1)20220+(12)−1−|−3|+√−83;(2)(x−1x)÷x2−2x+1x.【解答】解:(1)20220+(12)−1−|−3|+√−83=1+2﹣3+(﹣2)=﹣2; (2)(x −1x)÷x 2−2x+1x=x 2−1x ⋅x (x−1)2=(x+1)(x−1)(x−1)2=x+1x−1. 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 【解答】解:(1)原式=﹣8+3﹣3+2√2 =﹣8+2√2.(2)原式=a(a+2)(a−2)÷a+2−2a+2 =a(a+2)(a−2)•a+2a=1a−2. 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 【解答】解:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12 =1+5﹣3+2√3 =3+2√3; (2)a−1a 2÷(1−1a 2) =a−1a2⋅a 2(a−1)(a+1)=1a+1.28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 【解答】解:(1)原式=√3−1+2×√32+2=√3−1+√3+2=2√3+1;(2)原式=[x−1(x+1)(x−1)−x+1(x+1)(x−1)]•(x+1)(x−1)2 =x−1−x−1(x+1)(x−1)•(x+1)(x−1)2=﹣1. 29.(2022•徐州一模)计算:(1)√12+4﹣1﹣(12)﹣1+|−√3|; (2)(1x+3−1)×x 2+6x+9x 2−4. 【解答】解:(1)√12+4﹣1﹣(12)﹣1+|−√3| =2√3+14−2+√3=3√3−74;(2)(1x+3−1)×x 2+6x+9x 2−4=1−x−3x+3•(x+3)2(x+2)(x−2)=−2−x x+3•(x+3)2(x+2)(x−2) =−x+3x−2.30.(2022•鼓楼区校级二模)计算:(1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a. 【解答】解:(1)|−4|−20220+√273−(13)−1=4﹣1+3﹣3=3;(2)(a +2a+1a )÷a 2−1a=a 2+2a+1a •a (a+1)(a−1) =(a+1)2a •a (a+1)(a−1) =a+1a−1.。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:﹣2的相反数是()A.2 B.﹣2 C. D.试题2:下列图形中,是轴对称图形的是()A. B. C. D.试题3:已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形试题4:某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75C.中位数是4,平均数是3.8 D.众数是2,平均数是3.8试题5:如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm试题6:如图所示的几何体的俯视图是()A. B. C.D.试题7:不等式组的解集,在数轴上表示正确的是()A.B.C. D.试题8:要将抛物线平移后得到抛物线,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位试题9:一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A. B. C. D.试题10:.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A. B. C. D.试题11:如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C. D.试题12:如图,在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MG•MH=,其中正确结论为()A.①②③ B.①③④ C.①②④ D.①②③④试题13:分解因式:= .试题14:函数的自变量x的取值范围是.试题15:的平方根是.试题16:如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数()和()的图象交于P、Q两点,若=14,则k的值为.试题17:一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要元.试题18:如图,圆O的直径AB=8,AC=3CB,过C作AB的垂线交圆O于M,N两点,连结MB,则∠MBA的余弦值为.试题19:如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= .试题20:方程的解是.试题21:已知二次函数,当x时,y随x的增大而减小.试题22:如图,直线与两坐标轴分别交于A、B两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则当n=2015时,S1+S2+S3+…+S n﹣1= .试题23:计算:;试题24:解方程:.试题25:如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(项点是网格线的交点).(1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为.试题26:随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.根据以上信息回答下列问题:(1)a= ,b= ,c= .并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.试题27:为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y(元)与用水量xm3之间的函数关系.其中线段AB表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求线段AB所在直线的表达式;(3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?试题28:一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?试题29:如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tanC.试题30:某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x 件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?试题31:已知二次函数的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值;(2)如图,一次函数的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.【试题1答案:A.【解析】试题分析:﹣2的相反数是2,故选A.考点:相反数.试题2答案:C.考点:轴对称图形.试题3答案:B.【解析】试题分析:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选B.考点:平行四边形的判定;矩形的判定;正方形的判定.试题4答案:C.考点:中位数;加权平均数;众数.试题5答案:B.【解析】试题分析:连接OA,∵AB=6cm,OC⊥AB于点C,∴AC=AB=×6=3cm,∵⊙O的半径为5cm,∴OC===4cm,故选B.考点:垂径定理;勾股定理.试题6答案:D.【解析】试题分析:从上面看是一个大正方形,大正方形内部的左下角是一个小正方形,故选D.考点:简单组合体的三视图.试题7答案:C.【解析】试题分析:,由①得,x>﹣3,由②得,x≤2,故不等式组的解集为:﹣3<x≤2.在数轴上表示为:.故选C.考点:在数轴上表示不等式的解集;解一元一次不等式组.试题8答案:D.考点:二次函数图象与几何变换.试题9答案:B.【解析】试题分析:从中随机摸出一个小球,恰好是黄球的概率==.故选B.考点:概率公式.试题10答案:A.【解析】试题分析:设小亮妈妈买了甲种水果x千克,乙种水果y千克,由题意得.故选A.考点:由实际问题抽象出二元一次方程组.试题11答案:B.【解析】考点:动点问题的函数图象;分段函数;分类讨论;压轴题.试题12答案:C.【解析】试题分析:①由题意知,△ABC是等腰直角三角形,∴AB==,故①正确;②如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG ∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CE=AF=BF,∴FG是△ACB的中位线,∴GC=AC=MH,故②正确;③如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2,在△ECF和△ECD中,∵CF=CD,∠2=∠DCE,CE=CE,∴△ECF≌△ECD(SAS),∴EF=DE,∵∠5=45°,∴∠BDE=90°,∴,即2,故③错误;考点:相似形综合题;综合题;压轴题.试题13答案:.【解析】试题分析:==.故答案为:.考点:因式分解-运用公式法.试题14答案:且.【解析】试题分析:根据题意得x≠0且1﹣2x≥0,所以且.故答案为:且.考点:函数自变量的取值范围.试题15答案:±2.【解析】试题分析:的平方根是±2.故答案为:±2.考点:平方根;算术平方根.试题16答案:-20.考点:反比例函数与一次函数的交点问题;反比例函数系数k的几何意义;综合题.试题17答案:2000a.【解析】试题分析:2500a×80%=2000a(元).故答案为:2000a元.考点:列代数式.试题18答案:.【解析】试题分析:如图,连接AM;∵AB=8,AC=3CB,∴BC=AB=2:∵AB为⊙O的直径,∴∠AMB=90°;由射影定理得:,∴BM=4,cos∠MBA==,故答案为:.考点:垂径定理;解直角三角形;综合题.试题19答案:5.【解析】试题分析:作FG⊥AC,根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,∵点F是DE的中点,∴FG∥CD,∴GF= CD=AC=3,EG=EC=BC=2,∵AC=6,EC=BC=4,∴AE=2,∴AG=4,根据勾股定理,AF=5.考点:旋转的性质.试题20答案:x=6.【解析】试题分析:去分母得:3(x﹣2)﹣2x=0,去括号得:3x﹣6﹣2x=0,整理得:x=6,经检验得x=6是方程的根.故答案为:x=6.考点:解分式方程.试题21答案:<2(或x≤2).考点:二次函数的性质.试题22答案:.【解析】考点:一次函数图象上点的坐标特征;规律型;综合题.试题23答案:试题24答案:试题25答案:(1)作图见试题解析;(2)作图见试题解析;(3).【解析】试题分析:(1)根据图形平移的性质画出△A1B1C1;(2)根据旋转的性质画出△A2B1C2;(3)利用扇形面积公式求出即可.试题解析:(1)如图;(2)如图;(3)∵BC=3,∴线段B1C1变换到B1C2的过程中扫过区域的面积为:=.故答案为:.考点:作图-旋转变换;作图-平移变换.试题26答案:(1)36,0.30,120,作图见试题解析;(2)C;(3)900.试题解析:(1)观察频数分布表知:A组有18人,频率为0.15,∴c=18÷0.15=120,∵a=36,∴b=36÷120=0.30;∴C组的频数为120﹣18﹣36﹣24﹣12=30,补全统计图为:故答案为:36,0.30,120;(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C小组内;(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.考点:频数(率)分布表;用样本估计总体;条形统计图;中位数.试题27答案:(1)图中B点的实际意义表示当用水25m3时,所交水费为90元;(2);(3)27.【解析】试题分析:(1)根据图象的信息得出即可;(2)首先求出第一、二阶梯单价,再设出解析式,代入求出即可;(3)因为102>90,求出第三阶梯的单价,得出方程,求出即可.(3)设该户5月份用水量为xm3(x>90),由第(2)知第二阶梯水的单价为4.5元/m3,第三阶梯水的单价为6元/m3,则根据题意得90+6(x﹣25)=102,解得,x=27.答:该用户5月份用水量为27m3.考点:一次函数的应用;分段函数;综合题.试题28答案:(1)250;(2)甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:254(元).【解析】试题分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,再根据经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果甲店盈利×x;列出函数解析式利用函数性质求得答案即可.考点:一元一次不等式的应用;方案型;最值问题;综合题.试题29答案:(1)证明见试题解析;(2).试题解析:(1)连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)连接BE,∵AB是直径,∴∠AEB=90°,∵AB =AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE ==AE,在RT△BEC中,tanC==.考点:切线的判定.试题30答案:(1)y=;(2)22.【解析】试题分析:(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.试题解析:(1)y =,(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,,当时,y取得最大值,∵x为整数,根据抛物线的对称性得x =22时,y有最大值1408,∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.考点:二次函数的应用;二次函数的最值;最值问题;分段函数;综合题.试题31答案:(1)m=2,n=-2;(2)一次函数的表达式为.【解析】试题分析:(1)利用对称轴公式求得m,把P(﹣3,1)代入二次函数得出n=3m﹣8,进而就可求得n;(2)根据(1)得出二次函数的解析式,根据已知条件,利用平行线分线段成比例定理求得B的纵坐标,代入二次函数的解析式中求得B的坐标,然后利用待定系数法就可求得一次函数的表达式.试题解析:∵对称轴是经过(﹣1,0)且平行于y轴的直线,∴,∴m=2,∵二次函数的图象经过点P(﹣3,1),∴9﹣3m+n=1,得出n=3m﹣8.∴n=3m﹣8=﹣2;(2)∵m=2,n=﹣2,∴二次函数为,作PC⊥x轴于C,BD⊥x轴于D,则PC ∥BD,∴,∵P(﹣3,1),∴PC =1,∵PA :PB=1:5,∴,∴BD =6,∴B的纵坐标为6,代入二次函数为得,,解得,(舍去),∴B(2,6),∴,解得,∴一次函数的表达式为.考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式.。
精品基础教育教学资料,仅供参考,需要可下载使用!专题一 规律探索问题类型1 数字规律1.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2020时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是__337__分.解析:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n 个数为1+3(n -1)=3n -2,3n -2=2020,则n =674,甲报出了674个数,一奇一偶,所以偶数有674÷2=337个,得337分.2.如图,给正五边形的顶点依次编号为1,2,3,4,5,若从某一顶点开始,沿五边形的边顺时针行走,顶点编号是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”,则他所处顶点的编号为__3__.3.(2017·六盘水)计算1+4+9+16+25+…的前29项的和是__8555__.解析:12+22+32+42+52+…+292+…+n 2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n -1)n +n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n -1)n]=n (n +1)2+{13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+13(3×4×5-2×3×4)+…+13[(n -1)·n·(n +1)-(n -2)·(n -1)·n]}=n (n +1)2+13[(n -1)·n·(n +1)]=n (n +1)(2n +1)6, ∴当n =29时,原式=29×(29+1)×(2×29+1)6=8555. 类型2 图形规律4.(2017·天水)观察下列的“蜂窝图”则第n 个图案中的“”的个数是__3n +1__.(用含有n 的代数式表示)5.(2017·临沂)将一些相同的“○“按如图所示摆放,观察每个图形中的“○“的个数,若第n 个图形中“○“的个数是78,则n 的值是( B )A .11B .12C .13D .14解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n 个图形有1+2+3+…+n =n (n +1)2个小圆;∵第n 个图形中“○“的个数是78,∴78=n (n +1)2,解得:n 1=12,n 2=-13(不合题意舍去).6.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为( C )A .121B .362C .364D .729解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,类型3 坐标变化规律7.在平面直角坐标系中,对于平面内任一点(a ,b),若规定以下三种变换:①△(a ,b)=(-a ,b);②○(a ,b)=(-a ,-b);③Ω(a ,b)=(a ,-b),按照以上变换例如:△(○(1,2))=(1,-2),则○(Ω(3,4))等于__(-3,4)__.8.(2017·衢州)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经一次翻滚后得到△A 1B 1O ,则翻滚3次后点B的对应点的坐标是__(5,3)__,翻滚2017次后AB 中点M 经过的路径长为 (134633+896)π .解析:如图作B 3E ⊥x 轴于E ,易知OE =5,B 3E =3,∴B 3(5,3),观察图象可知三次一个循环,一个循环点M 的运动路径为120·π·3180+120π·1180+120π·1180=(23+43)π,∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672·(23+43)π+233π=(134633+896)π.9.(2017·菏泽)如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y =-33x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y =-33x 上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为__(-9-93,9+33)__.解:观察图象可知,O 12在直线y =-33x 时,OO 12=6·OO 2=6(1+3+2)=18+63, ∴O 12的横坐标=-(18+63)·cos30°=-9-93,O 12的纵坐标=12OO 12=9+33,∴O 12(-9-93,9+33). 10.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( C )A .2B .3C .4D .5解析:如图,∵到直线l 1的距离是l 的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离为2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上,∴“距离坐标”是(1,2)的点是M 1,M 2,M 3,M 4,一共4个.11.(2017·绍兴模拟)在平面直角坐标系中,对图形F 给出如下定义:如图形F 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度.例如,图中的矩形ABCD 的坐标角度是90°.现将二次函数y =ax 2(1≤a ≤3)的图象在直线y =1下方的部分沿直线y =1向上翻折,则所得图形的坐标角度α的取值范围是( B )A .30°≤α≤60°B .60°≤α≤90°C .90°≤α≤120°D .120°≤α≤150°12.(2017·昆山二模)赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x 轴和y 轴,大正方形的顶点B 1,C 1,C 2,C 3,…,C n 在直线y =-12x +72上,顶点D 1,D 2,D 3,…,D n 在x 轴上,则第n 个阴影小正方形的面积为__(23)2n -2__.解:设第n 个大正方形的边长为a n ,则第n 个阴影小正方形的边长为55a n,当x =0时,y =-12x +72=72,∴72=55a 1+52a 1,∴a 1= 5.∵a 1=a 2+12a 2,∴a 2=235,同理可得:a 3=23a 2,a 4=23a 3,a 5=23a 4,…,∴a n =(23)n -1a 1=5(23)n -1,∴第n 个阴影小正方形的面积为(55a n )2=[(23)n -1]2=(23)2n -2.。
有理数知识点梳理考点01 正数和负数1.正数:像1,2,3,4,0.1等这样大于0的数叫作正数。
正数的前面的“+”可以省略不写。
2.负数:像-0.2.-2.-6这样在正数前面加上符号“-”(负号)的数叫作负数。
3.注意事项:(1)0既不是正数也不是负数.0是正数和负数的分界线;(2)对于正数和负数.不能简单地理解为带“+”号的数就是正数.带负号的数就是负数.要根据正负数的含义.看其是符合正数的定义还是符合负数的定义。
4.正负习惯:习惯上把零上、增加、前进、海平面以上、收入、向南、盈利、上升等记为正.把与它们意义相反的量记为负。
考点02 有理数与数轴1.有理数定义:正整数、0、负整数统称整数.正分数、负分数统称分数.整数和分数统称有理数。
2.有理数的分类3.注意:(1)整数可以看成是分母为1的分数.所以有理数都可以写成分数的形式;有限小数和无限循环小数都可以写成分数形式.所以有限小数和无限循环小数都是有理数。
(2)正数和零统称为非负数;负数和零统称为非正数。
4.零的作用(1)表示数的性质.例如0是自然数;(2)表示没有.例如有5个本子.用+5表示.没有本子用0表示;(3)表示正数与负数的分界。
5.数轴定义:规定了原点、正方向和单位长度的直线叫作数轴。
数轴的三要素即原点、正方向和单位长度。
6.数轴上的点与有理数有理数都可以用数轴上的点来表示.任何一个有理数都能在数轴上找到与它对应的点.而且是唯一的点.但数轴上的点不一定都是有理数。
考点03 相反数和绝对值1.相反数的代数意义:只有符号不同的两个数叫作互为相反数.把其中一个数叫作另一个数的相反数。
0的相反数是0.2.相反数的几何意义:两个互为相反数的数在数轴上所表示的点在原点的两侧且到原点的距离相等;这两点关于原点对称。
3.多重符号的化简:数字前面的“-”号的个数若有偶数个.化简结果为正;有奇数个时.花间结果为负。
4.相反数的性质:如果b a 、互为相反数.那么0=+b a 或b a -=或a b -=;反过来.如果0=+b a .那么b a 、互为相反数。
2022年中考数学真题分项汇编(江苏专用)专题01有理数与实数一.选择题(共12小题)1.(2022•镇江)“珍爱地球,人与自然和谐共生”是今年世界地球日的主题,旨在倡导公众保护自然资源.全市现有自然湿地28700公顷,人工湿地13100公顷,这两类湿地共有()A.4.18×105公顷B.4.18×104公顷C.4.18×103公顷D.41.8×102公顷2.(2022•南通)若气温零上2℃记作+2℃,则气温零下3℃记作()A.﹣3℃B.﹣1℃C.+1℃D.+5℃3.(2022•南通)沪渝蓉高铁是国家中长期铁路网规划“八纵八横”之沿江高铁通道的主通道,其中南通段总投资约39000000000元,将39000000000用科学记数法表示为()A.3.9×1011B.0.39×1011C.3.9×1010D.39×1094.(2022•盐城)2022的倒数是()A.﹣2022B.12022C.2022D.−120225.(2022•盐城)盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为()A.0.16×107B.1.6×107C.1.6×106D.16×1056.(2022•常州)2022的相反数是()A.2022B.﹣2022C.12022D.−120227.(2022•苏州)2022年1月17日,国务院新闻办公室公布:截至2021年末全国人口总数为141260万,比上年末增加48万人,中国人口的增长逐渐缓慢.141260用科学记数法可表示为()A.0.14126×106B.1.4126×106C.1.4126×105D.14.126×1048.(2022•苏州)下列实数中,比3大的数是()A.5B.1C.0D.﹣29.(2022•连云港)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×10510.(2022•镇江)如图,数轴上的点A和点B分别在原点的左侧和右侧,点A、B对应的实数分别是a、b,下列结论一定成立的是()A.a+b<0B.b﹣a<0C.2a>2b D.a+2<b+2 11.(2022•泰州)下列判断正确的是()A.0<√3<1B.1<√3<2C.2<√3<3D.3<√3<4 12.(2022•扬州)实数﹣2的相反数是()A.2B.−12C.﹣2D.12二.填空题(共15小题)13.(2022•徐州)我国2021年粮食产量约为13700亿斤,创历史新高,其中13700亿斤用科学记数法表示为亿斤.14.(2022•镇江)“五月天山雪,无花只有寒”,反映出地形对气温的影响.大致海拔每升高100米,气温约下降0.6℃.有一座海拔为2350米的山,在这座山上海拔为350米的地方测得气温是6℃,则此时山顶的气温约为℃.15.(2022•常州)2022年5月22日,中国科学院生物多样性委员会发布《中国生物物种名录》2022版,共收录物种及种下单元约138000个.数据138000用科学记数法表示为.16.(2022•泰州)若x=﹣3,则|x|的值为.17.(2022•泰州)2022年5月15日4时40分,我国自主研发的极目一号Ⅲ型科学考察浮空艇升高至海拔9032m,将9032用科学记数法表示为.18.(2022•无锡)高速公路便捷了物流和出行,构建了我们更好的生活.交通运输部的数据显示,截止去年底,我国高速公路通车里程161000公里,稳居世界第一.161000这个数据用科学记数法可表示为.19.(2022•宿迁)2022年5月,国家林业和草原局湿地管理司在第二季度侧行发布会上表示,到“十四五”末,我国力争将湿地保护率提高到55%,其中修复红树林146200亩,请将146200用科学记数法表示是.20.(2022•扬州)扬州某日的最高气温为6℃,最低气温为﹣2℃,则该日的日温差是℃.21.(2022•扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量E与震级n 的关系为E=k×101.5n(其中k为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的倍.22.(2022•镇江)计算:3+(﹣2)= .23.(2022•常州)如图,数轴上的点A 、B 分别表示实数a 、b ,则1a 1b(填“>”、“=”或“<”).24.(2022•宿迁)满足√11≥k 的最大整数k 是 .25.(2014•泰州)计算:√4= .26.(2022•连云港)写出一个在1到3之间的无理数: .27.(2022•常州)化简:√83= .三.解答题(共3小题)28.(2022•盐城)|﹣3|+tan45°﹣(√2−1)0.29.(2022•宿迁)计算:(12)﹣1+√12−4sin60°.30.(2022•连云港)计算(﹣10)×(−12)−√16+20220.。
实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。
圆圆在该快递公司寄一件8千克的物品,需要付费( )。
A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。
2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。
正数的倒数为正数,负数的倒数为负数,0没 有倒数。
倒数是本身的只有1和-1。
4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。
(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。
专题01 有理数【基础训练】一、单选题1.(2021·西宁市教育科学研究院中考真题)中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(-2),根据这种表示法,可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-2.(2021·山东滨州市·中考真题)在数轴上,点A 表示-2.若从点A 出发,沿数轴的正方向移动4个单位长度到达点B ,则点B 表示的数是( )A .-6B .-4C .2D .4 3.(2021·广西百色市·中考真题)﹣2022的相反数是( )A .﹣2022B .2022C .±2022D .2021 4.(2021·广西桂林市·中考真题)有理数3,1,﹣2,4中,小于0的数是( ) A .3 B .1 C .﹣2 D .4 5.(2021·湖北荆门市·中考真题)2021的相反数的倒数是( ).A .2021-B .2021C .12021-D .12021 6.(2021·内蒙古呼和浩特市·中考真题)几种气体的液化温度(标准大气压)如表:A .氦气B .氮气C .氢气D .氧气 7.(2021·湖北襄阳市·中考真题)下列各数中最大的是( )A .3-B .2-C .0D .18.(2021·山东济宁市·中考真题)若盈余2万元记作2+万元,则2-万元表示( ) A .盈余2万元 B .亏损2万元 C .亏损2-万元 D .不盈余也不亏损 9.(2021·广东深圳市·中考真题)计算|1tan 60|-︒的值为( )A .1B .0C 1D .1 10.(2021·湖北鄂州市·中考真题)实数6的相反数等于( )A .6-B .6C .6±D .1611.(2021·湖北恩施土家族苗族自治州·中考真题)-6的相反数是( )A .-6B .6C .6±D .1612.(2021·黑龙江齐齐哈尔市·中考真题)五张不透明的卡片,正面分别写有实数1-,115 5.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A .15B .25C .35D .4513.(2021·广东广州市·中考真题)如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6-14.(2021·广东广州市·中考真题)下列运算正确的是( )A .()22--=-B .3=C .()22346a b a b =D .(a -2)2=a 2-415.(2021·贵州安顺市·中考真题)如图,已知数轴上,A B 两点表示的数分别是,a b ,则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --16.(2021·内蒙古中考真题)下列运算结果中,绝对值最大的是( )A .1(4)+-B .4(1)-C .1(5)-- D17.(2021·黑龙江大庆市·中考真题)下列说法正确的是( )A .||x x <B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +≤,则1x =-18.(2021·河北中考真题)如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为1a ,2a ,3a ,4a ,5a ,则下列正确的是( )A .30a >B .14a a =C .123450a a a a a ++++=D .250a a +<19.(2021·湖南邵阳市·中考真题)如图,若数轴上两点M ,N 所对应的实数分别为m ,n ,则m n +的值可能是( )A .2B .1C .1-D .2-20.(2021·河北中考真题)能与3645⎛⎫-- ⎪⎝⎭相加得0的是( ) A .3645-- B .6354+ C .6354-+ D .3645-+ 21.(2021·四川达州市·中考真题)﹣23的相反数是( ) A .﹣32 B .﹣23 C .23 D .3222.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是( ) A .﹣3 B .﹣1 C .0 D .223.(2021·安徽中考真题)9-的绝对值是( )A .9B .9-C .19D .19- 24.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-25.(2021·山东枣庄市·中考真题)如图,数轴上有三个点A﹣B﹣C ,若点A﹣B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4二、填空题 26.(2021·辽宁盘锦市·2________27.(2021·江苏常州市·中考真题)数轴上的点A 、B 分别表示3-、2,则点__________离原点的距离较近(填“A ”或“B ”).28.(2021·湖北随州市·()012021π+-=______.29.(2021·湖北鄂州市·中考真题)已知实数a 、b30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1211x x +=_____________. 30.(2021·甘肃兰州市·中考真题)《九章算术》中注有“今两算得失相反,要令正负以名之”大意为:今有两数若其意义相反,则分别叫做正数与负数.若水位上升1m 记作1m +,则下降2m 记作______m .三、解答题31.(2021·广西桂林市·中考真题)计算:|﹣3|+(﹣2)2.32.(2021·河北中考真题)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q ;(2)若共购进4510⨯本甲种书及3310⨯本乙种书,用科学记数法表示Q 的值.33.(2021·西宁市教育科学研究院中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭. 34.(2021·山西中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步49662x x ->--+第三步510x ->-第四步2x >第五步任务一:填空:﹣以上解题过程中,第二步是依据______________(运算律)进行变形的;﹣第__________步开始出现错误,这一步错误的原因是________________;任务二:请直接写出该不等式的正确解集.35.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.。
中考总复习专题一动点探究一、单动点1.(2015•成都)如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A 作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为8,或.解:①当BA=BP时,易得AB=BP=BC=8,即线段BC的长为8.②当AB=AP时,如图1,延长AO交PB于点D,过点O作OE⊥AB于点E,则AD⊥PB,AE=AB=4,∴BD=DP,在Rt△AEO中,AE=4,AO=5,∴OE=3,易得△AOE∽△ABD,∴,∴,∴,即PB=,∵AB=AP=8,∴∠ABD=∠P,∵∠PAC=∠ADB=90°,∴△ABD∽△CPA,∴,∴CP=,∴BC=CP﹣BP==;③当PA=PB时如图2,连接PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连接OB,则PF⊥AB,∴AF=FB=4,在Rt△OFB中,OB=5,FB=4,∴OF=3,∴FP=8,易得△PFB∽△CGB,∴,设BG=t,则CG=2t,易得∠PAF=∠ACG,∵∠AFP=∠AGC=90°,∴△APF∽△CAG,∴,∴,解得t=,在Rt△BCG中,BC=t=,答案为:8,,.2.(2015•连云港)已知如图,在平面直角坐标系xOy中,直线y=x﹣2与x轴、y轴分别交于A,B两点,P是直线AB上一动点,⊙P的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与x轴相切时,求出切点的坐标.解:(1)原点O在⊙P外.理由:∵直线y=x﹣2与x轴、y轴分别交于A,B两点,∴点A(2,0),点B(0,﹣2),在Rt△OAB中,tan∠OBA===,∴∠OBA=30°,如图1,过点O作OH⊥AB于点H,在Rt△OBH中,OH=OB•sin∠OBA=,∵>1,∴原点O在⊙P外;(2)如图2,当⊙P过点B时,点P在y轴右侧时,∵PB=PC,∴∠PCB=∠OBA=30°,∴⊙P被y轴所截的劣弧所对的圆心角为:180°﹣30°﹣30°=120°,∴弧长为:=;同理:当⊙P过点B时,点P在y轴左侧时,弧长同样为:;∴当⊙P过点B时,⊙P被y轴所截得的劣弧的长为:;(3)如图3,当⊙P与x轴相切时,且位于x轴下方时,设切点为D,在PD⊥x轴,∴PD∥y轴,∴∠APD=∠ABO=30°,∴在Rt△DAP中,AD=DP•tan∠DPA=1×tan30°=,∴OD=OA﹣AD=2﹣,∴此时点D的坐标为:(2﹣,0);当⊙P与x轴相切时,且位于x轴上方时,根据对称性可以求得此时切点的坐标为:(2+,0);综上可得:当⊙P与x轴相切时,切点的坐标为:(2﹣,0)或(2+,0).3.(2015•潍坊)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>0)与y轴的交点为A,与x 轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由解得:∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:①当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6<t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APM﹣S△CPM===,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t<8时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>8时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=14,∴t=或t=或t=144.(2015•铁岭)如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A(﹣3,0),B(1,0)两点.与y轴交于点C,点D与点C关于抛物线的对称轴对称.(1)求抛物线的解析式,并直接写出点D的坐标;(2)如图1,点P从点A出发,以每秒1个单位长度的速度沿A→B匀速运动,到达点B时停止运动.以AP为边作等边△APQ(点Q在x轴上方),设点P在运动过程中,△APQ与四边形AOCD重叠部分的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式;(3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC相似.请直接写出所有符合条件的点M坐标.解:(1)∵抛物线y=ax2+bx+经过A(﹣3,0),B(1,0)两点,∴,解得,∴抛物线解析式为y=﹣x2﹣x+;则D点坐标为(﹣2,).(2)∵点D与A横坐标相差1,纵坐标之差为,则tan∠DAP=,∴∠DAP=60°,又∵△APQ为等边三角形,∴点Q始终在直线AD上运动,当点Q与D重合时,由等边三角形的性质可知:AP=AD==2.①当0≤t≤2时,P在线段AO上,此时△APQ的面积即是△APQ与四边形AOCD的重叠面积.AP=t,∵∠QAP=60°,∴点Q的纵坐标为t•sin60°=t,∴S=×t×t=t2.②当2<t≤3时,如图1:此时点Q在AD的延长线上,点P在OA上,设QP与DC交于点H,∵DC∥AP,∴∠QDH=∠QAP=∠QHD=∠QPA=60°,∴△QDH是等边三角形,∴S=S△QAP﹣S△QDH,∵QA=t,∴S△QAP=t2.∵QD=t﹣2,∴S△QDH=(t﹣2)2,∴S=t2﹣(t﹣2)2=t﹣.图1③当3<t≤4时,如图2:此时点Q在AD的延长线上,点P在线段OB上,设QP与DC交于点E,与OC交于点F,过点Q作AP的垂涎,垂足为G,∵OP=t﹣3,∠FPO=60°,∴OF=OP•tan60°=(t﹣3),∴S△FOP=×(t﹣3)(t﹣3)=(t ﹣3)2,∵S=S△QAP﹣S△QDE﹣S△FOP,S△QAP﹣S△QDE=t﹣.∴S=t﹣﹣(t﹣3)2=﹣t2+4t﹣.综上所述,S与t之间的函数关系式为S=.图2图3图4(3)∵OC=,OA=3,OA⊥OC,则△OAC是含30°的直角三角形.①当△AMO以∠AMO为直角的直角三角形时;如图3:过点M2作AO的垂线,垂足为N,∵∠M2AO=30°,AO=3,∴M2O=,又∵∠OM2N=M2AO=30°,∴ON=OM2=,M2N=ON=,∴M2的坐标为(﹣,).同理可得M1的坐标为(﹣,).②当△AMO以∠OAM为直角的直角三角形时;如图4:∵以M、O、A为顶点的三角形与△OAC相似,∴=,或=,∵OA=3,∴AM=或AM=3,∵AM⊥OA,且点M在第二象限,∴点M的坐标为(﹣3,)或(﹣3,3).综上所述,符合条件的点M的所有可能的坐标为(﹣3,),(﹣3,3),(﹣,),(﹣,).5.(2015•绵阳)如图,在边长为2的正方形ABCD中,G是AD延长线时的一点,且DG=AD,动点M从A 点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=HN;(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S 的最大值.(1)解:存在;当点M为AC的中点时,AM=BM,则△ABM为等腰三角形;当点M与点C重合时,AB=BM,则△ABM为等腰三角形;当点M在AC上,且AM=2时,AM=AB,则△ABM为等腰三角形;当点M为CG的中点时,AM=BM,则△ABM 为等腰三角形;(2)证明:在AB上截取AK=AN,连接KN;如图1所示:∵四边形ABCD是正方形,∴∠ADC=90°,AB=AD,∴∠CDG=90°,∵BK=AB﹣AK,ND=AD﹣AN,∴BK=DN,∵DH平分∠CDG,∴∠CDH=45°,∴∠NDH=90°+45°=135°,∴∠BKN=180°﹣∠AKN=135°,∴∠BKN=∠NDH,在Rt△ABN中,∠ABN+∠ANB=90°,又∵BN⊥NH,即∠BNH=90°,∴∠ANB+∠DNH=180°﹣∠BNH=90°,∴∠ABN=∠DNH,在△BNK和△NHD中,,∴△BNK≌△NHD(ASA),∴BN=NH;(3)解:①当M在AC上时,即0<t≤2时,△AMF为等腰直角三角形,∵AM=t,∴AF=FM=t,∴S=AF•FM=×t×t=t2;当t=2时,S的最大值=×(2)2=2;②当M在CG上时,即2<t<4时,如图2所示:CM=t﹣AC=t﹣2,MG=4﹣t,在△ACD和△GCD中,,∴△ACD≌△GCD(SAS),∴∠ACD=∠GCD=45°,∴∠ACM=∠ACD+∠GCD=90°,∴∠G=90°﹣∠GCD=45°,∴△MFG为等腰直角三角形,∴FG=MG•cos45°=(4﹣t)•=4﹣t,∴S=S△ACG﹣S△CMJ﹣S△FMG=×4×2﹣×CM×CM﹣×FG×FG=4﹣(t﹣2)2﹣(4﹣)2=﹣+4t﹣8=﹣(t﹣)2+,∴当t=时,S的最大值为.6.(2015•抚顺)已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图①,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G 点的坐标;(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+8经过点A(﹣6,0),B(4,0),∴解得∴抛物线的解析式是:y=﹣x2﹣x+8.(2)如图①,作DM⊥抛物线的对称轴于点M,,设G点的坐标为(﹣1,n),由翻折的性质,可得BD=DG,∵B(4,0),C (0,8),点D为BC的中点,∴点D的坐标是(2,4),∴点M的坐标是(﹣1,4),DM=2﹣(﹣1)=3,∵B(4,0),C(0,8),∴BC==4,∴,在Rt△GDM中,32+(4﹣n)2=20,解得n=4±,∴G点的坐标为(﹣1,4+)或(﹣1,4﹣).(3)抛物线y=ax2+bx+8的对称轴上存在点F,使得以C、D、E、F为顶点的四边形为平行四边形.①当CD∥EF,且点E在x轴的正半轴时,如图②,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则解得∴点F的坐标是(﹣1,4),点E的坐标是(1,0).②当CD∥EF,且点E在x轴的负半轴时,如图③,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则解得∴点F的坐标是(﹣1,﹣4),点E的坐标是(﹣3,0).③当CE∥DF时,如图④,,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则解得∴点F的坐标是(﹣1,12),点E的坐标是(3,0).综上,可得抛物线y=ax2+bx+8的对称轴上存在点F,使得以C、D、E、F为顶点的四边形为平行四边形,点F的坐标是(﹣1,4)、(﹣1,﹣4)或(﹣1,12).二、双动点1.(2015•辽阳)如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为()A.1 B.2 C.3 D.4解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴===tan60°=,则=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,∴|xy|=AD•DO=×6=3,∴k=EC×EO=1,则EC×EO=2.选:B.2.(2015•衢州)如图,在△ABC中,AB=5,AC=9,S△ABC=,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A运动,当Q点运动到A 点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.(1)求tanA的值;(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t为何值时,正方形PQEF的某个顶点(Q点除外)落在正方形QCGH的边上,请直接写出t的值.解:(1)如图1,过点B作BM⊥AC于点M,∵AC=9,S△ABC=,∴AC•BM=,即×9•BM=,解得BM=3.由勾股定理,得AM===4,则tanA==;(2)存在.如图2,过点P作PN⊥AC于点N.依题意得AP=CQ=5t.∵tanA=,∴AN=4t,PN=3t.∴QN=AC﹣AN﹣CQ=9﹣9t.根据勾股定理得到:PN2+NQ2=PQ2,S正方形PQEF=PQ2=(3t)2+(9﹣9t)2=90t2﹣162t+81(0<t<).∵﹣==在t的取值范围之内,∴S最小值===;(3)①如图3,当点E在边HG上时,t1=;②如图4,当点F在边HG上时,t2=;③如图5,当点P边QH(或点E在QC上)时,t3=1④如图6,当点F边C上时,t4=3.(2015•大连)如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2,点P,Q同时从点D 出发,以相同的速度分别沿射线DC、射线DA运动,过点Q作AC的垂线段QR,使QR=PQ,连接PR,当点Q到达点A时,点P,Q同时停止运动.设PQ=x,△PQR与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤,<x≤m时,函数的解析式不同).(1)填空:n的值为;(2)求S关于x的函数关系式,并写出x的取值范围.解:(1)如图1,当x=时,△PQR与△ABC重叠部分的面积就是△PQR的面积,∵PQ=,QR=PQ,∴QR=,∴n=S=×()2=×=.(2)如图2,根据S关于x的函数图象,可得S关于x的函数表达式有两种情况:当0<x≤时,S=×PQ×RQ=x2,当点Q点运动到点A时,x=2AD=4,∴m=4.当<x≤4时,S=S△APF﹣S△AQE=AP•FG﹣AQ•EQ,AP=2+,AQ=2﹣,∵△AQE∽△AQ 1R1,,∴QE=,设FG=PG=a,∵△AGF∽△AQ1R1,,∴AG=2+﹣a,∴a=,∴S=S△APF﹣S△AQE=AP•FG﹣AQ•EQ=(2)(2)﹣(2﹣)•(2)=﹣x2+∴S=﹣x2+.综上,可得S=4.(2015•宿迁)已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若=,AD是⊙O的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.(1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,∴△AED∽△BEC,∴,∴EA•EC=EB•ED;(2)证明:如图2,连接CD,OB交AC于点F∵B是弧AC的中点,∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.又∵AD为⊙O直径,∴∠ABC=90°,又∠CFB=90°.∴△CBF∽△ABD.∴,故CF•AD=BD•BC.∴AC•AD=2BD•BC;(3)解:如图3,连接AO并延长交⊙O于F,连接DF,∴AF为⊙O的直径,∴∠ADF=90°,过O作OH⊥AD于H,∴AH=DH,OH∥DF,∵AO=OF,∴DF=2OH=4,∵AC⊥BD,∴∠AEB=∠ADF=90°,∵∠ABD=∠F,∴△ABE∽△ADF,∴∠1=∠2,∴,∴BC=DF=4.5.(2015•荆门)如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长及经过O,D,C三点抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC 以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E 为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.解:(1)∵CE=CB=5,CO=AB=4,∴在Rt△COE中,OE===3,设AD=m,则DE=BD=4﹣m,∵OE=3,∴AE=5﹣3=2,在Rt△ADE中,由勾股定理可得AD2+AE2=DE2,即m2+22=(4﹣m)2,解得m=,∴D(﹣,﹣5),∵C(﹣4,0),O(0,0),∴设过O、D、C三点的抛物线为y=ax(x+4),∴﹣5=﹣a(﹣+4),解得a=,∴抛物线解析式为y=x(x+4)=x2+x;(2)∵CP=2t,∴BP=5﹣2t,在Rt△DBP和Rt△DEQ中,,∴△DBP≌△DEQ(HL),∴BP=EQ,∴5﹣2t=t,∴t=;(3)∵抛物线的对称为直线x=﹣2,∴设N(﹣2,n),又由题意可知C(﹣4,0),E(0,﹣3),设M(m,y),①当EN为对角线,即四边形ECNM是平行四边形时,则线段EN的中点横坐标为=﹣1,线段CM中点横坐标为,∵EN,CM互相平分,∴=﹣1,解得m=2,又M点在抛物线上,∴y=×22+×2=16,∴M(2,16);②当EM为对角线,即ECMN是平行四边形时,则线段EM的中点横坐标为,线段CN中点横坐标为=﹣3,∵EN,CM互相平分,∴=﹣3,解得m=﹣6,又∵M点在抛物线上,∴y=×(﹣6)2+×(﹣6)=16,∴M(﹣6,16);③当CE为对角线,即四边形EMCN是平行四边形时,则M为抛物线的顶点,即M(﹣2,﹣).综上可知,存在满足条件的点M,其坐标为(2,16)或(﹣6,16)或(﹣2,﹣).三、面动探究1.(2015•青岛)已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)当t为何值时,PQ∥MN?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.解:(1)在Rt△ABC中,AC==4,由平移得MN∥AB,∵PQ∥MN,∴PQ∥AB,∴=,∴=,t=,(2)过点P作PD⊥BC于D,∵△CPD∽△CBA,∴=,∴=,∴PD=﹣t,∵PD∥BC,∴S△QMC=S△QPC,∴y=S△QMC=QC•PD=t(﹣t)=t﹣t2(0<t<4),(3)∵S△QMC:S四边形ABQP=1:4,∴S△QPC:S四边形ABQP=1:4,∴S△QPC:S△ABC=1:5,∴(t﹣t2):6=1:5,∴t=2,(4)若PQ⊥MQ,则∠PQM=∠PDQ,∵∠MPQ=∠PQD,∴△PDQ∽△MQP,∴=,∴PQ2=MP•DQ,∴PD 2+DQ2=MP•DQ,∵CD=,∴DQ=CD﹣CQ=﹣t=,∴()2+()2=5×,∴t1=0(舍去),t2=,∴t=时,PQ⊥MQ.2.(2015•徐州)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值=12cm.解:(1)①过点C作y轴的垂线,垂足为D,如图1:在Rt△AOB中,AB=12,OB=6,则BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以点C的坐标为(﹣3,9);②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=12×cos∠BAO=12×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=12在△A'O B'中,由勾股定理得,(6﹣x)2+(6+x)2=122,解得:x=6(﹣1),∴滑动的距离为6(﹣1);(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:则OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴取AB中点D,连接CD,OD,则CD与OD之和大于或等于CO,当且仅当C,D,O三点共线时取等号,此时CO=CD+OD=6+6=12,故答案为:12.第二问方法二:因角C与角O和为180度,所以角CAO与角CBO和为180度,故A,O,B,C四点共圆,且AB为圆的直径,故弦CO的最大值为12.3.(2015•深圳)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.(1)解:由题意可得:BO=4cm,t==2(s);(2)解:如图2,连接O与切点H,则OH⊥AC,又∵∠A=45°,∴AO=OH=3cm,∴AD=AO﹣DO=(3﹣3)cm;(3)证明:如图3,连接EF,∵OD=OF,∴∠ODF=∠OFD,∵DE为直径,∴∠ODF+∠DEF=90°,∠DEC=∠DEF+∠C EF=90°,∴∠CEF=∠ODF=∠OFD=∠CFG,又∵∠FCG=∠ECF,∴△CFG∽△CEF,∴=,∴CF2=CG•CE.4.(2015•温州)如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ,DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).解:(1)在Rt△ABQ中,∵AQ:AB=3:4,AQ=3x,∴AB=4x,∴BQ=5x,∵OD⊥m,m⊥l,∴OD∥l,∵OB=OQ,∴=2x,∴CD=2x,∴FD==3x;(2)∵AP=AQ=3x,PC=4,∴CQ=6x+4,作OM⊥AQ于点M(如图1),∴OM∥AB,∵⊙O是△ABQ的外接圆,∠BAQ=90°,∴点O是BQ的中点,∴QM=AM=x∴OD=MC=,∴OE=BQ=,∴ED=2x+4,S矩形DEGF=DF•DE=3x(2x+4)=90,解得:x1=﹣5(舍去),x2=3,∴AP=3x=9;(3)①若矩形DEGF是正方形,则ED=DF,I.点P在A点的右侧时(如图1)∴2x+4=3x,解得:x=4,∴AP=3x=12;II.点P在A点的左侧时,当点C在Q右侧,0<x<时(如图2),∵ED=4﹣7x,DF=3x,∴4﹣7x=3x,解得:x=,∴AP=;当≤x<时(如图3),∵ED=4﹣7x,DF=3x,∴4﹣7x=3x,解得:x=(舍去),当点C在Q的左侧时,即x≥(如图4),DE=7x﹣4,DF=3x,∴7x﹣4=3x,解得:x=1,∴AP=3,综上所述:当AP为12或或3时,矩形DEGF是正方形;②连接NQ,由点O到BN的弦心距为l,得NQ=2,当点N在AB的左侧时(如图5),过点B作BM⊥EG于点M,∵GM=x,BM=x,∴∠GBM=45°,∴BM∥AQ,∴AI=AB=4x,∴IQ=x,∴NQ==2,∴x=2,∴AP=6;当点N在AB的右侧时(如图6),过点B作BJ⊥GE于点J,∵GJ=x,BJ=4x,∴tan∠GBJ=,∴AI=16x,∴QI=19x,∴NQ==2,∴x=,∴AP=,综上所述:AP的长为6或。
专题1.9 数与式计算100题(基础篇)(真题专练)1.(2021·江苏淮安·中考真题)先化简,再求值:(11a -+1)÷21a a -,其中a =﹣4. 2.(2021·广西桂林·中考真题)计算:|﹣3|+(﹣2)2.3.(2021·江苏连云港·262--.4.(2021·辽宁本溪·中考真题)先化简,再求值:2623193a a a a -⎛⎫÷+ ⎪-+⎝⎭,其中2sin303a =︒+.5.(2021·黑龙江齐齐哈尔·中考真题)(1)计算:()201 3.144cos 4512π-⎛⎫-+-+︒- ⎪⎝⎭(2)因式分解:3312xy xy -+.6.(2021·吉林长春·中考真题)先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =. 7.(2021·湖南永州·中考真题)先化简,再求值:()()212(2)x x x +++-,其中1x =.8.(2021·湖南张家界·中考真题)计算:2021(1)22cos60-+-︒9.(2021·广东深圳·中考真题)先化简再求值:2169123x x x x ++⎛⎫+÷ ⎪++⎝⎭,其中1x =-. 10.(2021·湖南长沙·中考真题)先化简,再求值:()()()()233322x x x x x -++-+-,其中12x =-.11.(2021·湖南株洲·中考真题)计算:12602--︒-.12.(2021·浙江台州·中考真题)计算:|-2| 13.(2021·浙江·中考真题)计算:()()()211x x x x +++-.14.(2020·山东济南·中考真题)计算:0112sin 3022π-⎛⎫⎛⎫-︒ ⎪ ⎪⎝⎭⎝⎭.15.(2020·黑龙江大庆·中考真题)计算:1015(1)3π-⎛⎫---+ ⎪⎝⎭16.(2020·贵州毕节·中考真题)计算:11|2|(3)2cos303π-⎛⎫-+++︒- ⎪⎝⎭17.(2020·云南·中考真题)先化简,再求值:22244242x x x xx x -+-÷-+,其中12x =.18.(2020·广东深圳·中考真题)计算:101()2cos30|(4)3π--︒+--.19.(2020·广东广州·中考真题)已知反比例函数ky x=的图象分别位于第二、第四象限,化简:21644k k k ---20.(2020·湖南邵阳·中考真题)计算:120201(1)|12sin602-︒⎛⎫-+-- ⎪⎝+⎭. 21.(2020·江苏淮安·中考真题)计算:(1)0|3|(1)π-+-(2)1112x x x +⎛⎫÷+ ⎪⎝⎭22.(2020·湖北·中考真题)计算:101|2|20202-⎛⎫--+ ⎪⎝⎭.23.(2020·湖北宜昌·中考真题)在“-”“×”两个符号中选一个自己想要的符号,填入212212⎛⎫+⨯ ⎪⎝⎭中的□,并计算.24.(2020·湖南张家界·中考真题)计算:21|12sin 45(3.14)2π-︒⎛⎫-+-- ⎪⎝⎭.25.(2020·四川泸州·中考真题)化简:2211x x x x +-⎛⎫+÷ ⎪⎝⎭.26.(2020·江苏连云港·中考真题)化简2233121a a aa a a ++÷--+.27.(2019·青海·中考真题)计算:)11112453cos -⎛⎫+--︒ ⎪⎝⎭28.(2019·广西河池·中考真题)计算:21332-⎛⎫+- ⎪⎝⎭.29.(2019·辽宁大连·中考真题)计算:22241112a a a a-÷+---30.(2019·辽宁大连·中考真题)计算:22)31.(2019·湖北省直辖县级单位·中考真题)(1)计算:20(2)|3|(6)----; (2)解分式方程:22511x x =--. 32.(2019·广西河池·中考真题)分解因式:2((1)5)2x x -+-.33.(2019·湖南株洲·中考真题)计算:02cos30π+-︒.34.(2019·四川遂宁·中考真题)计算:201920(1)(2)(3.14)4cos30|2π-︒-+-+--+ 35.(2019·浙江湖州·中考真题)计算:()31282-+⨯.36.(2019·四川乐山·中考真题)计算:()10120192sin 302π-︒⎛⎫--+ ⎪⎝⎭.37.(2019·四川乐山·中考真题)如图,点A 、B 在数轴上,它们对应的数分别为2-,1xx +,且点A 、B 到原点的距离相等.求x 的值.38.(2019·四川乐山·中考真题)化简:2222111x x x x x x -+-÷-+. 39.(2019·浙江杭州·中考真题)化简:242142x xx圆圆的解答如下:2224214224422x x x x xx xx圆圆的解答正确吗?如果不正确,写出正确的解答.40.(2019·北京·中考真题)计算:()01142604sin π-----+(). 41.(2019·辽宁鞍山·中考真题)先化简,再求值:(233x x x +-﹣2169x x x--+)÷9x x-,其中x =42.(2019·辽宁葫芦岛·中考真题)先化简,再求值:2221a aa a +-+÷(211a a --),其中a =(13)﹣1﹣(﹣2)0.43.(2019·辽宁和平·中考真题)计算:2012cos301(2019)2π-⎛⎫-+︒-- ⎪⎝⎭44.(2019·福建·中考真题)先化简,再求值:(x-1)÷(x -21x x-),其中x +1 45.(2019·湖北鄂州·中考真题)先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x xx x ⎛⎫---÷ ⎪-+--⎝⎭.46.(2019·辽宁阜新·中考真题)(1)(12)-1+4sin30°. (2)先化简,再求值:22m 9m 6m 9-++÷(1-2m 3+),其中m=2.47.(2019·贵州安顺·中考真题)计算:()1201920192cos 608(0.125)--+⨯-︒+.48.(2019·辽宁营口·中考真题)先化简,再求值:2821333a a a a a ++⎛⎫+-÷ ⎪++⎝⎭,其中a 为不等式组121232a a -<⎧⎪⎨+>⎪⎩的整数解. 49.(2019·辽宁盘锦·中考真题)先化简,再求值:(m +12m +)÷(m ﹣2+32m +),其中m =3tan30°+(π﹣3)0.50.(2019·湖南娄底·中考真题)计算:1011)2sin |602+-︒⎛⎫-- ⎪⎝⎭51.(2019·江苏常州·中考真题)计算:(1)1212π-⎛⎫+-⎪⎝⎭;(2)()()()111x x x x -+--. 52.(2019·广西贺州·中考真题)计算:()()201901 3.142sin30π-+-.53.(2019·吉林·中考真题)先化简,再求值:()()212a a a -++,其中a =54.(2019·湖南湘潭·中考真题)阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:立方和公式:()()3322x y x y x xy y +=+-+ ; 立方差公式:()3322()x y x y x xy y -=-++ ;根据材料和已学知识,先化简,再求值:22332428x x x x x x ++---,其中3x =.55.(2019·湖南永州·中考真题)先化简,再求值:221·11a a aa a a a ---+-,其中a =2.56.(2019·湖南永州·中考真题)计算:(﹣1)2019sin60°﹣(﹣3). 57.(2019·广西广西·中考真题)计算:22()()19(6)2-+--+-÷.58.(2019·湖南株洲·中考真题)先化简,再求值:221(1)a a a a a -+--,其中12a =.59.(2019·湖北武汉·中考真题)计算:()32242x x x -⋅60.(2019·黑龙江·中考真题)先化简再求值:22224()2442x x x x x x x x +---÷--+-其中4tan452cos30x =︒+︒.61.(2019·黑龙江·中考真题)已知:ab =1,b =2a -1,求代数式12a b-的值.62.(2019·黑龙江·中考真题)计算:0(2019)160sin π-+︒.63.(2019·山东枣庄·中考真题)先化简,再求值:221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 为整数且满足不等式组11,{52 2.x x ->-≥-64.(2019·甘肃兰州·中考真题)计算:02|2|1)(2)tan 45--+--︒ 65.(2019·甘肃兰州·中考真题)化简:(1 2 )+2(+1)(1)a a a a --66.(2019·山东东营·中考真题)(1)计算:()101 3.142019π-⎛⎫+- ⎪⎝⎭2sin 4512+- (2)化简求值:22222a b a ab b a b a ab a ⎛⎫++-÷ ⎪--⎝⎭,当1a =-时,请你选择一个适当的数作为b 的值,代入求值.67.(2019·甘肃陇南·中考真题)计算:20()|243()225cos π---︒+-68.(2019·浙江台州·()11--.69.(2019·四川遂宁·中考真题)先化简,再求值:2222222a ab b a ab a b a a b -+-÷--+,其中a ,b 满足2(2)0a -+=.70.(2019·江苏宿迁·中考真题)先化简,再求值:212111a a a ⎛⎫+÷ ⎪--⎝⎭,其中2a =-.71.(2019·江苏宿迁·中考真题)计算:()101112π-⎛⎫--+ ⎪⎝⎭72.(2019·江苏苏州·中考真题)计算:()222π+---.73.(2019·江苏苏州·中考真题)先化简,再求值:2361693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中3x =.74.(2019·山东济宁·中考真题)计算:016sin 60|2018|2︒⎛⎫+ ⎪⎝⎭75.(2019·江苏南京·中考真题)计算22()()x y x xy y +-+.76.(2019·浙江温州·中考真题)计算:(1)06(1(3)---;(2)224133x x x x x +-++. 77.(2019·重庆·中考真题)计算:(1)2()(2)x y y x y +-+ ; (2)294922a a a a a --⎛⎫+÷⎪--⎝⎭78.(2021·甘肃兰州·中考真题)先化简,再求值:22611931m m m m m --÷--+-,其中4m =. 79.(2021·青海西宁·中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭. 80.(2021·山东济南·中考真题)计算:101(1)32tan 454π-⎛⎫+-+-- ⎪⎝⎭︒. 81.(2021·山东日照·中考真题)(1)若单项式14m n x y -与单项式33812m nx y --是一多项式中的同类项,求m 、n 的值;(2)先化简,再求值:211111x x x x ⎛⎫+÷ ⎪+--⎝⎭,其中1x =.82.(2021·四川绵阳·中考真题)(1)计算:02cos 452021︒ (2)先化简,再求值:2222x xy x y x y x y ---+-,其中 1.12x =,0.68y =. 83.(2021·广西河池·中考真题)先化简,再求值:2(1)(1)x x x +-+,其中2021x =.84.(2021·四川德阳·中考真题)计算:(﹣1)31|﹣(12)﹣2+2cos45°85.(2021·山东滨州·中考真题)计算:221244422x x x x x x x x -+-⎛⎫-÷⎪-+--⎝⎭. 86.(2021·西藏·中考真题)先化简,再求值:2212a a a ++-•221a a --﹣(11a -+1),其中a =10.87.(2021·湖南湘潭·中考真题)先化简,再求值:22169(1)24x x x x +++÷+-,其中3x =.88.(2021·贵州遵义·中考真题)先化简2242x x x -÷-(244x x x x+--),再求值,其中x =2.89.(2021·湖南湘潭·中考真题)计算:011|2|(2)()4tan 453π----+-︒90.(2021·黑龙江牡丹江·中考真题)先化简,再求值:(22211x x x -+--1)1x x ÷+,其中x =sin30°. 91.(2021·广西梧州·中考真题)计算:(﹣1)2+(﹣8)÷4(﹣2021)0.92.(2021·江苏南通·中考真题)(1)化简求值:2(21)(6)(2)x x x -++-,其中x = (2)解方程2303x x-=-. 93.(2021·辽宁丹东·中考真题)先化简,再求代数式的值:22241242a a a a a-+++---,其中02sin 302(1)a π=︒+-.94.(2021·贵州毕节·中考真题)先化简,再求值:2222a b ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中2a =,1b =. 95.(2021·江苏泰州·中考真题)(1)分解因式:x 3﹣9x ; (2)解方程:22x x -+1=52x-. 96.(2021·江苏徐州·中考真题)计算:(1)101220212-⎛⎫-- ⎪⎝⎭(2)22111a a a a ++⎛⎫+÷⎪⎝⎭ 97.(2021·吉林·中考真题)先化简,再求值:()()()221x x x x +---,其中12x =. 98.(2021·山东淄博·中考真题)先化简,再求值:222a ab b a ba b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中1,1a b =.99.(2021·内蒙古呼伦贝尔·中考真题)计算:222sin 601---︒+100.(2021·辽宁大连·中考真题)计算:223333693a a a a a a a ++⋅--++-.参考答案1.a +1,﹣3【分析】根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 解:(11a -+1)÷21a a - =11(1)(1)1a a a a a+-+-⋅-=11a a a+⋅=a +1,当a =﹣4时,原式=﹣4+1=﹣3.【点拨】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行化简,代入数值后准确进行计算. 2.7【分析】根据有理数的绝对值以及乘方的意义化简各数后即可得到答案. 解:|﹣3|+(﹣2)2 =3+4 =7【点拨】此题主要考查了有理数的运算,正确化简各数是解答此题的关键. 3.4.,-6=6,计算出结果. 解:原式2644=+-= 故答案为:4.【点拨】本题主要考查了实数的混合运算,关键是开三次方与绝对值的计算. 4.23a -,2 【分析】先把分式化简后,再求出a 的值代入求出分式的值即可. 解:2623193a a a a -⎛⎫÷+ ⎪-+⎝⎭26323=933a a a a a a +-⎛⎫÷+ ⎪-++⎝⎭63=3)(3)3a a a a a +⨯+-( 2=3a - 2sin303a =︒+ 1232=⨯+4=当4a =时,原式=2=243-.【点拨】本题考查了分式的化简值,特殊角的三角函数值,熟练分解因式是解题的关键. 5.(1)6(2)3(2)(2)xy y y -+-【分析】(1)先计算乘方、特殊三角函数值、绝对值的运算,再利用四则运算法则计算即可; (2)先提取公因式,再利用平方差公式分解因式即可.解:(1)解:原式4141)=++411=++6=(2)解:原式23(4)xy y =-- 3(2)(2)xy y y =-+-【点拨】本题考查的是实数的运算、因式分解,熟练运用乘方公式、特殊三角函数值、绝对值、正确提取公因式等是解题的关键. 6.4,5a【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题. 解:221aa a a224a a a =-+-4a =-当4a =时,原式44-=【点拨】本题考查了整式的混合运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 7.25x +,7.【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将1x =代入求值即可得.解:原式22214x x x =+++-,25x =+,将1x =代入得:原式2157=⨯+=.【点拨】本题考查了整式的化简求值,熟记完全平方公式和平方差公式是解题关键. 8【分析】先运用乘方、绝对值、特殊角的三角函数值以及平方根的性质化简,然后计算即可.解:2021(1)22cos60-+-︒11222=-+-⨯+=【点拨】本题主要考查了乘方、绝对值、特殊角的三角函数值、平方根的性质等知识点,灵活运用相关知识成为解答本题的关键. 9.12x +;1 【分析】先把分式化简后,再把x 的值代入求出分式的值即可. 解:原式212331122(3)232x x x x x x x x x +++⎛⎫=+⋅=⋅= ⎪++++++⎝⎭ 当1x =-时,原式1112==-+. 【点拨】本题考查了分式的化简求值,熟练分解因式是解题的关键. 10.2x -,1.【分析】先计算完全平方公式、平方差公式、单项式乘以多项式,再计算整式的加减,然后将x 的值代入即可得.解:原式22246299x x x x x =-+-++-, 2x =-,将12x =-代入得:原式12212x ⎛⎫=⨯-= ⎪⎝⎭=--.【点拨】本题考查了整式的化简求值,熟练掌握整式的运算法则是解题关键. 11.3【分析】熟记特殊三角数值、掌握绝对值的代数意义和负整数指数幂的求法,遵循运算法则计算即可.解:原式131223222=+-=+-= 【点拨】本题考察实数的运算,属于基础题,难度不大.熟练掌握运算法则是解题的关键.12.【分析】先算绝对值,化简二次根式,再算加减法,即可求解.解:原式=2+【点拨】本题主要考查二次根式的运算,熟练掌握二次根式的性质以及合并同类二次根式法则,是解题的关键.13.21x +【分析】利用单项式乘多项式、平方差公式直接求解即可.解:原式2221x x x =++-21x =+.【点拨】本题考查整式的乘法,掌握单项式乘多项式法则和平方差公式是解题的关键. 14.4【分析】分别计算零指数幂,锐角三角函数,算术平方根,负整数指数幂的运算,再合并即可得到答案. 解:原式112222=-⨯++ =1﹣1+2+2=4.【点拨】本题考查的是实数的混合运算,考查了零指数幂,锐角三角函数,算术平方根,负整数指数幂的运算,掌握以上知识是解题的关键.15.7.【分析】先计算绝对值运算、零指数幂、负整数指数幂,再计算有理数的加减法即可得. 解:原式513=-+43=+7=.【点拨】本题考查了绝对值运算、零指数幂、负整数指数幂等知识点, 熟记各运算法则是解题关键.16.【分析】根据绝对值、零指数幂、三角函数、负指数幂、二次根式的运算法则计算即可.解:101|2|(3)2cos303π-⎛⎫-+++︒- ⎪⎝⎭2123=++--=【点拨】本题考查绝对值、零指数幂、三角函数、负指数幂、二次根式的混合运算,关键在于牢记运算法则.17.2.【分析】先把分子、分母能分解因式的分解因式,再把除法转化为乘法,约分后再代入求值即可. 解:22244242x x x x x x -+-÷-+ ()()()()222222x x x x x x -+=•+-- 1x = 当1,2x = 上式11 2.2=÷= 【点拨】本题考查的是分式的除法运算,掌握把除法转化为乘法是解题的关键. 18.2【分析】分别计算负整数指数幂,锐角三角函数,绝对值,零次幂,再合并即可.解:101()2cos30|(4)3π--︒+--321=-31=2.=【点拨】本题考查实数的运算,考查了负整数指数幂,锐角三角函数,绝对值,零次幂的运算,掌握以上知识是解题的关键.19.5【分析】由反比例函数图象的性质可得k <0,化简分式时注意去绝对值.解:由题意得k <0.()()224416164444k k k k k k k k +---=----441415k k k k k +=++-=+-+==【点拨】本题考查反比例函数图象的性质和分式的化简,关键在于去绝对值时符号的问题. 20.2【分析】分别利用零指数幂、负指数幂的性质,绝对值的性质和特殊角的三角函数值分别化简即可.解:原式=)1212++-=121+=2【点拨】此题主要考查了根式运算,指数计算,绝对值,三角函数值等知识点,正确应用记住它们的化简规则是解题关键.21.(1)2;(2)12. 【分析】(1)根据绝对值、零指数幂、二次根式的计算方法计算即可.(2)根据分式的混合运算法则计算即可.解:(1) 0|3|(1)3122π-+-=+-=. (2)111111122212x x x x x x x x x x x ++++⎛⎫÷+=÷=⋅= ⎪+⎝⎭. 【点拨】本题考查分式的混合运算和绝对值、零指数幂、二次根式的计算,关键在于熟练掌握相关的计算方法.22.1【分析】根据负整数指数幂,绝对值的运算,0次幂分别计算出每一项,再计算即可. 解:101|2|20202-⎛⎫--+ ⎪⎝⎭221=-+ 1=.【点拨】本题考查负整数指数幂,绝对值的运算,0次幂,熟练掌握运算法则是解题的关键.23.-;5或×;5【分析】先选择符号,然后按照有理数的四则运算进行计算即可.解:(1)选择“-”212212⎛⎫+⨯- ⎪⎝⎭1422=+⨯ 41=+5=(2)选择“×”212212⎛⎫+⨯⨯ ⎪⎝⎭ 1422=+⨯ 41=+5=【点拨】本题考查了有理数的四则运算,熟知有理数的四则运算法则是解题的关键. 24.4-【分析】根据绝对值的性质,特殊角的三角函数值,零次幂,负整数指数幂进行运算即可.解:201|12sin 45(3.14)2π-︒⎛⎫-+-- ⎪⎝⎭1214=--114=-4=-【点拨】本题考查了绝对值的性质,特殊角的三角函数值,零次幂,负整数指数幂,熟知以上运算是解题的关键.25.21x - 【分析】首先进行通分运算,进而利用因式分解变形,再约分化简分式.解:原式=221x x x x x ++⨯- =()()()2111x x x x x +⨯+- =21x - 【点拨】此题主要考查了分式的化简求值,正确利用分解因式再化简分式是解题关键. 26.1a a- 【分析】首先把分子分母分解因式,把除法变为乘法,然后再约分后相乘即可.解:原式23(3)1(1)a a a a a ++=÷-- , 23(1)1(3)a a a a a +-=⋅-+, 1a a-=. 【点拨】此题主要考查了分式的乘除法,关键是掌握分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.27.3-.【分析】直接利用零指数幂的性质以及负指数幂的性质、特殊角的三角函数值分别化简得出答案.解:原式1312-+-=131-=3=-.故答案为3-.【点拨】本题考查实数运算,正确化简各数是解题关键.28.【分析】直接利用零指数幂的性质、负指数幂的性质以及绝对值的性质、二次根式的性质分别化简得出答案.解:原式143=++=【点拨】此题主要考查了实数运算,正确化简各数是解题关键.29.2a a - 【分析】直接利用分式的乘除运算法则化简,进而利用分式的加减运算法则计算得出答案;解:原式2(1)(1)112(2)2a a a a a -+=⨯---- 1122a a a +=--- 2a a =-. 【点拨】此题主要考查了分式的混合运算,正确化简是解题关键.30.7【分析】直接利用完全平方公式以及结合二次根式的性质化简进而得出答案.解:原式346=+-34=+-7=.【点拨】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.31.(1)6;(2)x=32【分析】(1)先计算乘方、去绝对值符号、计算二次根式的乘法及零指数幂,再计算加减可得;(2)去分母化分式方程为整式方程,解之求得x 的值,再检验即可得.解:(1)原式=43416-++=;(2)两边都乘以()()11x x +-,得:()215x +=, 解得:32x =, 检验:当32x =时,()()51104x x +-=≠, ∴原分式方程的解为32x =. 【点拨】本题主要考查二次根式的混合运算与解分式方程,解题的关键是熟练掌握二次根式的乘法法则及解分式方程的步骤.32.()(33)x x +-.【分析】直接利用完全平方公式化简,进而利用平方差公式分解因式即可.解:原式221210x x x =-++-29x =-(3)(3)x x =+-.【点拨】此题主要考查了公式法分解因式,正确运用公式是解题关键.33.1【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值分别化简得出答案.解:原式12-=1=1=.【点拨】此题主要考查了实数运算,正确化简各数是解题关键.34.74- 【分析】先根据整数指数幂、负指数幂、零指数幂、三角函数和绝对值进行化简,再进行加减运算.解:原式111424=-++-11124=-++- 74=-. 【点拨】本题考查指数幂、三角函数和绝对值,解题的关键是掌握指数幂、三角函数和绝对值.35.-4.【分析】先求(-2)3=-8,再求12×8=4,即可求解;解:原式844=-+=-【点拨】本题考查有理数的计算;熟练掌握幂的运算是解题的关键.36.2 【分析】111=12=212()-⎛⎫ ⎪⎝⎭,()012019=π-,sin 301=2︒ 解:原式12122=-+⨯ 211=-+2=.【点拨】本题考查了负整数指数幂,零指数幂,特殊角的正弦值,掌握即可解题. 37.2x =-【分析】根据点A 、B 到原点的距离相等可知点A 、B 表示的数值互为相反数,即21x x =+,解分式方程即可.解:∵点A 、B 到原点的距离相等∵A 、B 表示的数值互为相反数 即21x x =+,去分母,得2(1)x x =+,去括号,得22x x =+,解得2x =-经检验,2x =-是原方程的解.【点拨】本题考查了相反数,绝对值的定义,解分式方程,解本题的关键是读懂题意,根据题中点A 、B 到原点的距离相等可知点A 、B 表示的数值互为相反数38.1x【分析】平方差公式a 2-b 2=(a+b )(a -b )完全平方公式(a±b )2=a 2±2ab+b 2 解:原式2(1)(1)(1)x x x -=+-÷(1)1x x x -+ (1)(1)x x -=+×1(1)x x x +- 1x=. 【点拨】本题考查了运用完全平方公式与平方差公式,提公因式进行因式分解,分式的化简,注意符号问题即可.39.圆圆的解答不正确.正确解为2x x -+,解答见解析. 【分析】根据完全平方差公式先对分式进行通分,再化简,即可得到答案.解:圆圆的解答不正确.正确解答如下: 原式242(2)4(2)(2)(2)(2)(2)(2)x x x x x x x x x +-=--+-+-+- 24(24)(4)(2)(2)x x x x x -+--=+- (2)(2)(2)x x x x --=+- 2x x =-+. 【点拨】本题考查分式化简,解题的关键是掌握完全平方差公式.40.3【分析】根据绝对值、零指数幂、特殊角的三角函数值、负指数幂法则计算即可解:原式124+14==3【点拨】本题考查零指数幂、特殊角的三角函数值,负指数幂,熟练掌握相关的知识是解题的关键.41.21(3)x -,原式=13. 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值. 解:原式=231[](3)(3)9x x x x x x x +--•--- 2(3)(3)(1)(3)9x x x x x x x x -+--=•-- 2291(3)9(3)x x x x x x -=•=---当x = 原式=13. 【点拨】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.42.2a a 1-,原式=4. 【分析】先把分母因式分解后约分,再进行通分和同分母的减法运算得到()()()()212111a a a a a a a +--÷-+ ,接着化简计算得到2a a 1- ,然后化简()10123a -⎛⎫=-- ⎪⎝⎭,最后把2a = 代入计算即可; 解:2221211a a a a a a +⎛⎫÷- ⎪-+-⎝⎭()()()()212111a a a a a a a +--=÷-- ()()()()211211a a a a a a a +-=•--- ()()111a a a a a +=•-+2a a 1=-, 当()10123312a -⎛⎫=-- ⎪⎝⎭=﹣=时,原式22421==- . 【点拨】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.注意分式有意义的条件.43.6【分析】直接利用负指数幂的性质、特殊角的三角函数值、绝对值的性质、零指数幂的性质分别化简得出答案.解:原式==6. 【点拨】此题主要考查了实数运算,正确化简各数是解题关键.44.【分析】先化简分式,然后将x 的值代入计算即可.解:原式=(x−1)÷2221(1)(1)1x x x x x x x x -+=-⋅=--,当x 1时,12=+. 【点拨】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键. 45.x+2;当1x =-时,原式=1.【分析】先化简分式,然后将x 的值代入计算即可.解:原式()()22244242x x x x x x ⎡⎤--=-÷⎢⎥---⎢⎥⎣⎦ 244224x x x x x -⎡⎤=-÷⎢⎥---⎣⎦ ()()22424x x x x x -+-=⋅-- 2x =+∵20x -≠,40x -≠,∵2x ≠且4x ≠,∵当1x =-时,原式121=-+=.【点拨】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键. 46.(2)31m m -+;13-. 【分析】(1)先化简二次根式、计算负整数指数幂、代入三角函数值,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.解:(1)原式-2+4×122+2(2)原式=()()2m 3m 3(m 3)+-+÷(m 3m 3++-2m 3+) =m 3m 3-+•m 3m 1++ =m 3m 1-+, 当m=2时,原式=2321-+=13-. 【点拨】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.47.-3【分析】分别根据负整数指数幂的性质、算术平方根的定义、特殊角的余弦值、零指数幂以及积是乘方逆运算化简即可解答. 解:原式20191131(0.1258)22=--+++-⨯11311322=--++-=-. 【点拨】此题主要考查了实数运算,正确化简各数是解题关键.48.1;1a a -+13【分析】先根据变形得到2821333a a a a a ++⎛⎫+-÷ ⎪++⎝⎭,进行乘法运算得到22283(1)a a +-=+,化简得到11a a -+,然后将a 的整数解代入求值. 解:原式28(3)(3)33(1)a a a a a +-++=⋅++ 22283(1)a a +-=+2(1)(1)(1)a a a +-=+ 11a a -=+, 解不等式得534a <<, ∵不等式组的整数解为2a =,当2a =时, 原式211213-==+. 【点拨】本题考查分式的化简求值和完全平方公式,熟练分解因式是解题的关键.49.11m m +-. 【分析】本题考查了扇形统计图,条形统计图,树状图等知识点,解题时注意:概率=所求情况数与总情况数之比. 解:原式=2212m m m +++÷2432m m -++ =2(1)22(1)(1)m m m m m ++⨯++- 11m m +=-,m =3tan30°+(π﹣3)0=1,【点拨】本题考查了分式的化简求值,熟练分解因式是解题的关键.50.-1.【分析】原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解:原式122=-12=-+1=-. 【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.51.(1)0;(2)1x -.【分析】根据零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则准确计算即可;解:(1)120112302π-⎛⎫+-=+-= ⎪⎝⎭;(2)()()()111x x x x -+--=2211x x x x --+=-;【点拨】本题考查实数的运算,整式的运算;熟练掌握零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则是解题的关键.52.【分析】先分别计算幂、三角函数值、二次根式,然后算加减法. 解:原式=111422++⨯﹣﹣ =﹣4+1=﹣3.【点拨】本题考查了实数的运算,熟练掌握三角函数值、零指数幂的运算是解题的关键. 53.5【分析】先根据完全平方公式及单项式与多项式的乘法计算,再合并同类项,然后把a =代入计算即可.解:原式=22221221a a a a a -+++=+,当a =原式=221⨯+=5.【点拨】本题考查了整式的化简求值熟练掌握运算顺序及乘法公式是解答本题的关键. 54.2【分析】根据题目中的公式可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题. 解:22332428x x x x x x ++--- ()22324(2)(2)24x x x x x x x x ++=---++ 3122x x =--- 22x =-,当3x =时,原式2232==- 【点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 55.-1.【分析】根据分式的乘法和减法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 解:221·11a a a a a a a ---+- =()()()a 1a 1aa a a 1a 1a 1+---+- =a 1a 1-- =a 1a a 1--- =1a 1-- 当a 2=时,原式=1121-=-- 【点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 56.5.【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.解:(﹣1)2019sin60°﹣(﹣3)=﹣+3 =﹣1+3+3=5【点拨】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.57.13.【分析】分别运算每一项然后再求解即可.解:22()()19(6)2-+--+-÷1693=++-13=.【点拨】本题考查实数的运算,熟练掌握实数的运算法则是解题的关键.58.1(1)a a -,-4. 【分析】根据分式的减法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 解:221(1)a a a a a-+-- 2(1)1(1)a a a a a-+=-- 11a a a a+=-- 2(1)(1)(1)a a a a a --+=- 221(1)a a a a -+=- 1(1)a a =-, 当12a =时,原式1411122==-⎛⎫- ⎪⎝⎭. 【点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 59.67x【分析】按顺序先分别进行积的乘方运算、同底数幂的乘法运算,然后再合并同类项即可. 解:()32242x x x -⋅ =668x x -67x =.【点拨】本题考查了整式的混合运算,涉及了积的乘方、同底数幂的乘法、合并同类项,熟练掌握各运算的运算法则是解题的关键.60【分析】先将多项式进行因式分解,根据分式的加减乘除混合运算法则,先对括号里的进行通分,再将除法转化为乘法,约分化简即可.解:原式()()2224222x x x x x x x ⎡⎤-+-=-÷⎢⎥---⎢⎥⎣⎦ 22224x x x x x x +-⎛⎫=-⋅ ⎪---⎝⎭ 2224x x x -=⋅-- 24x =-,当4tan452cos304124x ︒︒=+=⨯+=原式=== 【点拨】本题主要考查了分式的加减乘除混合运算,熟练应用分式的基本性质进行约分和通分是解题的关键.61.-1.【分析】根据ab=1,b=2a -1,可以求得b -2a 的值,从而可以求得所求式子的值.解:∵ab =1,b =2a -1,∵b -2a =-1,∵122111b a a b ab ---===- 【点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 62【分析】直接利用特殊角的三角函数值、绝对值的性质、零指数幂的性质分别化简得出答案. 解:()020191sin6011π-+-︒== 【点拨】此题主要考查了实数运算,正确化简各数是解题关键.63.34. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求出其整数解, 继而代入计算可得. 解:原式211(1)(1)11x x x x x x -⎛⎫=÷+ ⎪+---⎝⎭ 21•(1)(1)x x x x x-=+-1x x =+, 解不等式组11,{52 2.x x ->-≥-得722x <≤,则不等式组的整数解为3,当3x =时,原式33314==+. 【点拨】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算 法则及解一元一次不等式组的能力.64.4【分析】根据实数的混合运算顺序和运算法则计算可得解:原式21414=-+-=【点拨】此题考查实数的混合运算,掌握运算法则是解题关键65.a -2【分析】先去括号,再注意到(a+1)(a -1)可以利用平方差公式进行化简,最后合并同类项即可解:原式2222(1)a a a =-+-22222a a a =-+-2a =-【点拨】此题考查代数式的化简,掌握运算法则是解题关键66.(1)2020;(2)1【分析】(1)根据负指数幂、零指数幂、绝对值和三角函数、二次根式,即可得到答案;(2)根据分式的性质进行化简,再代入1a =-,即可得到答案.解:1()原式201912++=2020+= 2020=;2()原式()()222a b a a a b a b -=-+ ()()()()2a b a b aa ab a b -+=-+ 1a b =+, 当1a =-时,取2b =,原式1112==-+. 【点拨】本题负指数幂、零指数幂、绝对值、三角函数、二次根式和分式的化简,解题的关键是掌握负指数幂、零指数幂、绝对值、三角函数、二次根式和分式的化简.67.3【分析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.解:20()||243()225cos π---︒+-,4(221=--,421=-,3=.【点拨】本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.68.【分析】根据实数的性质进行化简,即可求解.解:原式11=+=【点拨】此题主要考查实数的运算,解题的关键是熟知实数的性质.69.1a b-+,-1 【分析】根据平方差公式进行变形,再根据分式混合运算法则进行计算,再根据平方差公式的性质和二次根式的性质进行求解,即可得到答案. 解:原式2()2()()()a b a a b a b a a b a b-=-+--+ 12a b a b=-++ 1a b =-+,∵a ,b 满足2(2)0a -+=,∵20a -=,10b +=,2a =,1b =-,原式1121=-=--.【点拨】本题考查平方差公式和二次根式的性质,解题的关键是掌握平方差公式和二次根式的性质.70.12a +,12- 【分析】直接将括号里面通分进而利用分式的混合运算法则计算得出答案. 解:原式()()1112a a a a a +-=⨯- 12a +=, 当2a =-时,原式21122-+==-. 【点拨】此题主要考查了分式的化简求值,正确掌握运算法则是解题关键.71【分析】直接利用负指数幂的性质和零指数幂的性质、绝对值的性质分别化简得出答案.解:原式211=-【点拨】此题主要考查了实数运算,正确化简各数是解题关键.72.4.【分析】直接利用根式计算,绝对值计算和零指数幂的运算进行逐一计算即可解:321=+-原式4=【点拨】本题考查实数的简单计算,掌握计算法则是解题关键73.13x +. 【分析】先利用分式的运算规则将分式进行化简,然后将x 值带入即可解:原式()233633x x x x -+-=÷++()23333x x x x --=÷++ ()23333x x x x -+=⋅-+ 13x =+ 代入3x 原式。
专题01 实数【中考考向导航】目录【直击中考】 (1)【考向一 正数和负数】 .................................................................................................................................... 1 【考向二 与数轴上的有关问题】 .................................................................................................................... 2 【考向三 相反数、绝对值】 ............................................................................................................................ 3 【考向四 科学计数法】 .................................................................................................................................... 4 【考向五 平方根、立方根】 ............................................................................................................................ 4 【考向六 无理数的概念理解】 ........................................................................................................................ 5 【考向七 无理数的估算】 ................................................................................................................................ 5 【考向八 实数的运算】 (6)【直击中考】【考向一 正数和负数】例题1.(2022·江苏扬州·校考模拟预测)下列各数3-,()1--,12⎛⎫+- ⎪⎝⎭,0,23,2--中,是正数的有( )A .1个B .2个C .3个D .4个例题2.(2022·四川绵阳·校考模拟预测)在跳远测验中,合格标准是4米,张丰跳出了4.25米,记为0.25+米,李敏跳出了3.95米,记作( ) A .0.25+米B .0.05-米C . 3.95+米D . 3.95-米1.(2022·福建厦门·统考模拟预测)下列四个数中,是负数的是( ) A .3-B .()3--C .()23-D .3-2.(2022·四川巴中·统考中考真题)下列各数是负数的是( ) A .2(1)-B .|3|-C .(5)--D .38-3.(2022·江苏南通·统考中考真题)若气温零上2℃记作2+℃,则气温零下3℃记作( ) A .3-℃B .1-℃C .1+℃D .5+℃4.(2022·广西河池·统考中考真题)如果将“收入50元”记作“+50元”,那么“支出20元”记作( ) A .+20元B .﹣20元C .+30元D .﹣30元5.(2022·广西柳州·统考中考真题)如果水位升高2m 时水位变化记作+2m ,那么水位下降2m 时水位变化记作 _____.6.(2022·广西·中考真题)负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走了5米,记作+5米,那么向西走5米,可记作______米. 7.(2022·江苏镇江·统考中考真题)“五月天山雪,无花只有寒”,反映出地形对气温的影响.大致海拔每升高100米,气温约下降0.6C ︒.有一座海拔为2350米的山,在这座山上海拔为350米的地方测得气温是6C ︒,则此时山顶的气温约为_________C ︒.【考向二 与数轴上的有关问题】例题1.(2022·江苏镇江·统考中考真题)如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a -<C .22a b >D .22a b +<+例题2.(2022·四川德阳·模拟预测)实数a ,b 在数轴上的位置如图所示,化简a b a b --+的结果为( )A .2aB .0C .2bD .22a b -1.(2022·四川攀枝花·统考中考真题)实数a 、b 在数轴.上的对应点位置如图所示,下列结论中正确的是( )A .2b >-B .||b a >C .0a b +>D .0a b -<2.(2022·内蒙古·中考真题)实数a 在数轴上的对应位置如图所示,则21|1|a a ++-的化简结果是( )A .1B .2C .2aD .1﹣2a3.(2022·宁夏·中考真题)已知实数a ,b 在数轴上的位置如图所示,则a ba b+的值是( )A .2-B .1-C .0D .24.(2022·江苏常州·统考中考真题)如图,数轴上的点A 、B 分别表示实数a 、b ,则1a ______1b.(填“>”、“=”或“<”)5.(2022·浙江金华·一模)如图所示,数轴上表示1,3的点分别为A ,B ,且2CA AB =(C 在A 的左侧),则点C 所表示的数是________.6.(2022·四川遂宁·模拟预测)实数a ,b 在数轴上对应点的位置如图所示,则化简()()2222a b ++-的结果是 _____.7.(2022·河北廊坊·统考二模)如图,在数轴上点A ,B 表示的数分别为-2,1,P 为A 点左侧上的一点,它表示的数为x .(1)用含x 的代数式表示2PB PA+的值. (2)若以PO ,PA ,AB 的长为边长能构成等腰三角形,请求出符合条件的x 的值.例题1.(2022·浙江宁波·统考中考真题)-2022的相反数是( ) A .2022B .-2022C .12022D .-12022例题2.(2022·辽宁锦州·统考中考真题)有理数﹣2022的绝对值为( ) A .﹣2022B .12022C .2022D .﹣120221.(2022·河南洛阳·统考一模)实数3-的相反数是( ) A .3B .3C .3-D .33-2.(2022·吉林长春·模拟预测)下列各组数中,互为相反数的是( ) A .1+与1-B .()1--与1C .()3--与3--D .2-+与()2+-3.(2022·青海西宁·统考中考真题)6-的绝对值是________.4.(2022·河南郑州·郑州外国语中学校考模拟预测)计算:32-+=______.5.(2022·浙江嘉兴·一模)计算:0|2|(3)-+-=____________. 6.(2022·西藏·统考中考真题)已知a ,b 都是实数,若2120220a b ,则b a =_____.【考向四 科学计数法】例题:(2022·辽宁鞍山·统考中考真题)教育部2022年5月17日召开第二场“教育这十年”“1+1”系列新闻发布会,会上介绍我国已建成世界最大规模高等教育体系,在学总人数超过44300000人.将数据44300000用科学记数法表示为_________.【变式训练】1.(2022·山东德州·德州市同济中学校考模拟预测)人的大脑每天能记录大约8600万条信息,8600万用科学计数法表示为( ) A .38.610⨯B .80.8610⨯C .68610⨯D .78.610⨯2.(2022·河南郑州·郑州外国语中学校考模拟预测)年初,某官网发布了2021年通信运营业统计公报,数据显示,2021年,4G .5G 用户数呈爆发式增长,全年新增3.4亿户,总数达到770000000亿户,将770000000用科学记数法表示应为( ) A .90.7710⨯B .77.710⨯C .87.710⨯D .97.710⨯3.(2022·吉林长春·校考二模)第24届冬季奥林匹克运动会,于2022年2月4日在我国首都北京开幕,据统计,北京冬奥会开幕式电视直播观众规模达3.16亿,是历史上收视率最高的一届冬奥会,数据3.16亿用科学记数法可以表示为( ) A .93.1610⨯B .90.31610⨯C .731.610⨯D .83.1610⨯4.(2022·贵州黔西·校考一模)2022年我市地区生产总值逼近14000亿元,用科学记数法表示14000是______. 5.(2022·江苏徐州·统考中考真题)我国2021年粮食产量约为13700亿斤,创历史新高,其中13700亿斤用科学记数法表示为________亿斤.6.(2022·辽宁丹东·校考二模)截止到2021年1月22日9时30分,天问一号探测器已经在轨飞行182天,距离火星约4200000公里,4200000用科学记数法表示应为________.7.(2022·山东东营·统考中考真题)2022年2月20日,北京冬奥会圆满落幕,赛事获得了数十亿次数字平台互动,在中国仅电视收视人数就超6亿.6亿用科学记数法表示为____________.8.(2022·湖北黄石·统考中考真题)据新华社2022年1月26日报道,2021年全年新增减税降费约1.1万亿元,有力支持国民经济持续稳定恢复用科学记数法表示1.1万亿元,可以表示为__________元. 【考向五 平方根、立方根】例题:(2022·广东东莞·东莞市万江第三中学校考三模)计算下列各题:(1)4的平方根是______;(2)25的算术平方根是______;(3)8-的立方根是______;【变式训练】1.(2022·浙江衢州·统考中考真题)计算:22=____. 2.(2022·吉林·统考一模)计算:251-=______.3.(2022·浙江杭州·统考中考真题)计算:4=_________;()22-=_________. 4.(2022·内蒙古鄂尔多斯·统考一模)()13127122-⎛⎫---+-= ⎪⎝⎭______. 5.(2022·广西贺州·统考中考真题)若实数m ,n 满足5240m n m n --++-=∣∣,则3m n +=__________.例题:(2022·甘肃武威·统考模拟预测)下列各数:π3,sin30︒,3-,4.其中是无理数的有______个1.(2022·广西玉林·统考中考真题)下列各数中为无理数的是( ) A .2B .1.5C .0D .1-2.(2022·四川遂宁·校联考一模)下面四个数中的无理数是( ) A .0.7B .227C .9D .7π 3.(2022·江苏无锡·校考模拟预测)下列各数中:4-、12π、39、0.010010001、37、0是无理数的有( )A .1个B .2个C .3个D .4个4.(2022·湖南湘潭·统考中考真题)四个数-1,0,12,3中,为无理数的是_________.5.(2022·陕西西安·校考三模)在3π+,6,9,47,3.121231234⋯,35-中,无理数的个数是______.6.(2022·江苏苏州·苏州中学校考二模)下列各数:3.14、9、381、-127、2π、22、0、3.12112111211112……中,无理数有______个. 【考向七 无理数的估算】例题:(2022·湖北荆州·统考中考真题)若32-的整数部分为a ,小数部分为b ,则代数式()22a b +⋅的值是______.1.(2022·湖南株洲·统考一模)下列实数中,在3和4之间的是( ) A .π+1B .2+1C .22D .232.(2022·四川资阳·中考真题)如图,M 、N 、P 、Q 是数轴上的点,那么3在数轴上对应的点可能是( )A .点AB .点NC .点PD .点Q3.(2022·福建南平·统考模拟预测)若a ,b 分别是65-的整数部分和小数部分,则23a b -的值为( ) A .565-+B .935-C .535-+D .965-+4.(2022·湖南永州·统考中考真题)请写出一个比5大且比10小的无理数:______. 5.(2022·海南·统考中考真题)写出一个比3大且比10小的整数是___________.6.(2022·云南昆明·云大附中校考模拟预测)若26的整数部分为a ,小数部分为b ,则a b -的值为______. 7.(2022·湖北随州·统考中考真题)已知m 为正整数,若189m 是整数,则根据1893337337m m m =⨯⨯⨯=⨯可知m 有最小值3721⨯=.设n 为正整数,若300n是大于1的整数,则n 的最小值为______,最大值为______. 【考向八 实数的运算】例题:(2022·湖南株洲·统考一模)计算:1312(82022)2sin 306-⎛⎫-+--︒ ⎪ ⎪⎝⎭.【变式训练】1.(2022·山东济南·统考模拟预测)计算:01112(2022)2cos30()2π----⨯︒+-.2.(2022·四川乐山·统考二模)计算: ()2038323tan 60+3(2022)π+--︒+-3.(2022·江苏盐城·校考三模)计算:13164sin 45tan 452-⎛⎫+︒-︒+- ⎪⎝⎭.4.(2022·湖南长沙·长沙市南雅中学校联考一模)计算:()01332cos 60820222π-+︒-⨯--.5.(2022·北京西城·校考模拟预测)计算:011(2019)31()2tan302π--+-+--︒.6.(2022春·九年级单元测试)计算:()301236020222tan -︒⎛⎫+-+- ⎪⎝⎭.7.(2022春·九年级单元测试)计算:()20120222sin 6032123π-⎛⎫+-+︒+-- ⎪⎝⎭.8.(2022·广东佛山·校考三模)计算:101|3|tan 60()12( 3.14)3π---︒-----.9.(2022·广东韶关·校考二模)计算:01|32|(3)()2cos30π2-+-+--︒.。
中考数学一次函数专题在中考数学中,一次函数是一个非常重要的知识点,它不仅在数学学科中有着广泛的应用,还与我们的实际生活密切相关。
接下来,让我们一起深入探讨一下中考数学中的一次函数。
一、什么是一次函数一次函数的一般形式为 y = kx + b(k,b 为常数,k ≠ 0)。
其中,k 被称为斜率,它决定了直线的倾斜程度;b 被称为截距,它是直线与y 轴的交点纵坐标。
例如,函数 y = 2x + 1 就是一个一次函数,其中斜率 k = 2,截距b = 1。
二、一次函数的图像一次函数的图像是一条直线。
当 k > 0 时,直线从左到右上升;当k < 0 时,直线从左到右下降。
截距 b 决定了直线与 y 轴的交点位置。
当 b > 0 时,交点在 y 轴正半轴;当 b < 0 时,交点在 y 轴负半轴;当 b = 0 时,直线经过原点。
例如,对于函数 y = 2x + 1,因为 k = 2 > 0,所以直线从左到右上升;又因为 b = 1 > 0,所以直线与 y 轴的交点在正半轴。
三、一次函数的性质1、增减性当 k > 0 时,函数值 y 随自变量 x 的增大而增大;当 k < 0 时,函数值 y 随自变量 x 的增大而减小。
2、与坐标轴的交点与 x 轴的交点:令 y = 0,解得 x = b/k,所以与 x 轴的交点坐标为(b/k,0)。
与 y 轴的交点:令 x = 0,得 y = b,所以与 y 轴的交点坐标为(0,b)。
四、一次函数的应用一次函数在实际生活中有很多应用,比如行程问题、销售问题、工程问题等。
例如,在行程问题中,假设汽车以匀速行驶,速度为 v,行驶时间为 t,行驶路程为 s,则 s = vt 就是一个一次函数。
再比如,在销售问题中,如果某种商品的单价为 p,销售量为 x,销售额为 y,那么 y = px 也是一个一次函数。
五、求解一次函数解析式要确定一个一次函数,需要知道两个点的坐标或者一个点的坐标和函数的斜率。
实数一、单选题1.(2022·湖北鄂州)实数9的相反数等于()A.﹣9B.+9C.19D.﹣19【答案】A【解析】【分析】根据相反数的定义:如果两个数只有符号不同.我们称其中一个数为另一个数的相反数.进行求解即可.【详解】解:实数9的相反数是-9.故选A.【点睛】本题主要考查了相反数的定义.熟知相反数的定义是解题的关键.2.(2022·湖南永州)如图.数轴上点E对应的实数是()A.2-B.1-C.1D.2【答案】A【解析】【分析】根据数轴上点E所在位置.判断出点E所对应的值即可.【详解】解:根据数轴上点E所在位置可知.点E在-1到-3之间.符合题意的只有-2.故选:A.【点睛】本题主要考查数轴上的点的位置问题.根据数轴上点所在位置对点的数值进行判断是解题的关键.3.(2022·21-.2这四个实数中.最大的数是()A.0B.1-C.2D2【答案】C【分析】正实数都大于0.负实数都小于0.正实数大于一切负实数.两个负实数绝对值大的反而小.据此判断即可.【详解】解:∵220>-1.∵2-1.2这四个实数中.最大的数是2.故选:C .【点睛】此题主要考查了实数大小比较的方法.解答此题的关键是要明确:正实数>0>负实数.两个负实数绝对值大的反而小.4.(2022·黑龙江绥化)下列计算中.结果正确的是( )A .22423x x x +=B .()325x x =C 3322-=-D 42=±【答案】C【解析】【分析】根据合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根.即可一一判定.【详解】解:A.22223x x x +=.故该选项不正确.不符合题意.B.()326x x =.故该选项不正确.不符合题意. 3322--.故该选项正确.符合题意. 42.故该选项不正确.不符合题意.故选:C .【点睛】本题考查了合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根.熟练掌握和运用各运算法则是解决本题的关键.5.(2021·81 ) A .±3B .3C .±9D .9 【答案】A【解析】81.再求平方根即可.【详解】解:81=9.9的平方根是±3. 81±3.故选:A .【点睛】本题考查了算术平方根.平方根.熟练掌握相关知识是解题的关键.6.(2021·广西河池)下列4个实数中.为无理数的是( )A .-2B .0C 5D .3.14 【答案】C【解析】【分析】根据无理数的定义.无限不循环小数是无理数.即可解答.【详解】解:-2.0是整数.属于有理数.3.14是有限小数.属于有理数5.属于无理数.故C 符合题意.故选:C .【点睛】本题主要考查了无理数的定义.熟练掌握无限不循环小数是无理数是解题的关键. 7.(2021·贵州毕节)下列运算正确的是( )A .()031π-=-B 93=±C .133-=-D .()236a a -= 【答案】D【解析】【分析】直接计算后判断即可.【详解】 ()031π-=93=;1133-=;()236a a -=.故选D本题考查了零指数幂、算数平方根.负整数指数幂和幂的运算.关键是掌握概念和运算规则.8.(2020·贵州黔南)已知171a .a 介于两个连续自然数之间.则下列结论正确的是( )A .12a <<B .23a <<C .34a <<D .45a << 【答案】C【解析】【分析】 17.即可得出答案.【详解】解:∵4175<. ∵31714<. 171在3和4之间.即34a <<.故选:C .【点睛】 179.(2020·山东东营)利用科学计算器求值时.小明的按键顺序为.则计算器面板显示的结果为( )A .2-B .2C .2±D .4 【答案】B【解析】【分析】根据算术平方根的求解方法进行计算即可得解.【详解】 42=.故选:B .【点睛】本题主要考查了算术平方根的求解方法.考生需要将其与平方根进行对比掌握. 10.(2022·3(235)的值应在( )A .10和11之间B .9和10之间C .8和9之间D .7和8之间【答案】B【解析】【分析】 3(235)615=91516<<从而判定即可.【详解】 335)615= 91516<< ∵1543<<. ∵91510<6+<.故选:B .【点睛】本题考查了二次根式混合运算及无理数的估算.熟练掌握无理数估算方法是解题的关键.11.(2020·湖北荆州)若x 为实数.在)31x的“”中添上一种运算符号(在+.-.×.÷中选择)后.其运算的结果是有理数.则x 不可能的是( )A 31B 31C .23D .13【答案】C【解析】【分析】根据题意填上运算符计算即可.【详解】 A.())31310-=,结果为有理数; B.())31312⋅= ,结果为有理数; C.无论填上任何运算符结果都不为有理数; D.()(31132+=,结果为有理数; 故选C .【点睛】本题考查实数的运算,关键在于牢记运算法则.12.(2022·广东广州)实数a .b 在数轴上的位置如图所示.则 ( )A .a b =B .a b >C .a b <D .a b >【答案】C【解析】【分析】根据数轴上点的位置.可得11a b -<<<.进而逐项分析判断即可求解.【详解】解:根据数轴上点的位置.可得11a b -<<<. ∴a b <. 故选C .【点睛】本题考查了实数与数轴.根据数轴上点的位置判断实数的大小.数形结合是解题的关键. 13.(2022·广东广州)下列运算正确的是( )A 382-=B .11a a a a +-=(0a ≠)C 5510D .235a a a ⋅= 【答案】D【解析】【分析】根据求一个数的立方根.分式的加减.二次根式的加法.同底数幂的乘法运算.逐项分析判断即可求解.【详解】 A.382-=-.故该选项不正确.不符合题意. B.111a a a +-=(0a ≠).故该选项不正确.不符合题意. C. 5525该选项不正确.不符合题意.D.235a a a ⋅=.故该选项正确.符合题意.故选D【点睛】本题考查了求一个数的立方根.分式的加减.二次根式的加法.同底数幂的乘法运算.正确的计算是解题的关键.14.(2021·17 )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 【答案】C【解析】【分析】直接利用估算无理数的方法分析得出答案.【详解】解:∵16<17<25.∵417 5. 174和5之间.故选:C .【点睛】此题主要考查了估算无理数的大小.1715.(2021·四川绵阳)下列数中.3803200 )A .3B .4C .5D .6【答案】C【解析】【分析】 3331258064>364=431255=333125200216<32166.即可得出结果.【详解】33364801253364=41255,.34805∴<. 又333125200216<32166.∴352006<<.3348052006∴<<.故选:C .【点睛】本题考查了估算无理数的大小.立方根.解决本题的关键是用有理数逼近无理数.求无理数的近似值.16.(2021·山东日照)下列命题:4的算术平方根是2.∵菱形既是中心对称图形又是轴对称图形.∵天气预报说明天的降水概率是95%.则明天一定会下雨.∵若一个多边形的各内角都等于108︒.则它是正五边形.其中真命题的个数是()A.0B.1C.2D.3【答案】B【解析】【分析】利用算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识分别判断后即可确定正确的选项.【详解】解:42故原命题错误.是假命题.∵菱形既是中心对称图形又是轴对称图形.正确.是真命题.∵天气预报说明天的降水概率是95%.则明天下雨可能性很大.但不确定是否一定下雨.故原命题错误.是假命题.∵若一个多边形的各内角都等于108︒.各边也相等.则它是正五边形.故原命题错误.是假命题.真命题有1个.故选:B.【点睛】本题考查了命题与定理的知识.解题的关键是了解算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识.难度不大.17.(2020·广西贵港)下列命题中真命题是()A42B.数据2.0.3.2.3的方差是6 5C.正六边形的内角和为360°D.对角线互相垂直的四边形是菱形【答案】B【解析】【分析】A.根据算术平方根解题.B.根据方差、平均数的定义解题.C.根据多边形的内角和为180(n2)︒⨯-解题.D.根据菱形、梯形的性质解题.【详解】A. 42=.22.故A错误.B. 数据2.0.3.2.3的平均数是20323=25++++.方差是 2222216(22)(02)(32)(22)(32)55⎡⎤-+-+-+-+-=⎣⎦.故B 正确. C. 正六边形的内角和为180(62)720︒⨯-=︒.故C 错误.D. 对角线互相垂直的四边形不一定是菱形.可能是梯形.故D 错误.故选:B .【点睛】本题考查判断真命题.其中涉及算术平方根、方差、多边形内角和、梯形性质、菱形性质等知识.是基础考点.难度较易.掌握相关知识是解题关键.18.(2020·内蒙古赤峰)估计(123323 ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】A【解析】【分析】根据二次根式的混合运算法则进行计算.再估算无理数的大小.【详解】 (123323=11332336 ∵4<6<9. 6<3. 6故选:A.【点睛】此题考查了二次根式的混合运算.无理数的估算.正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.19.(2020·山东烟台)利用如图所示的计算器进行计算.按键操作不正确的是( )A .按键即可进入统计计算状态B .计算8的值.按键顺序为:C .计算结果以“度”为单位.按键可显示以“度”“分”“秒”为单位的结果D .计算器显示结果为13时.若按键.则结果切换为小数格式0.333333333 【答案】B【解析】【分析】根据计算器的按键写出计算的式子.然后求值.【详解】解:A 、按键即可进入统计计算状态是正确的.故选项A 不符合题意. B 、计算8的值.按键顺序为:.故选项B 符合题意. C 、计算结果以“度”为单位.按键可显示以“度”“分”“秒”为单位的结果是正确的.故选项C 不符合题意.D 、计算器显示结果为13时.若按键.则结果切换为小数格式0.333333333是正确的.故选项D 不符合题意.故选:B .【点睛】 本题考查了科学计算器.熟练了解按键的含义是解题的关键.20.(2020·湖北荆州)定义新运算a b *.对于任意实数a.b 满足()()1a b a b a b *=+--.其中等式右边是通常的加法、减法、乘法运算.例如43(43)(43)1716*=+--=-=.若x k x *=(k 为实数) 是关于x 的方程.则它的根的情况是( ) A .有一个实根 B .有两个不相等的实数根 C .有两个相等的实数根 D .没有实数根【答案】B 【解析】 【分析】将x k *按照题中的新运算方法展开.可得()()1x k x k x k *=+--.所以x k x *=可得()()1x k x k x +--=.化简得:2210x x k ---=.()()222141145k k ∆=--⨯⋅--=+.可得0∆>.即可得出答案. 【详解】解:根据新运算法则可得:()()2211x k x k x k x k *=+--=--.则x k x *=即为221x k x --=. 整理得:2210x x k ---=. 则21,1,1a b c k ==-=--.可得:()()222141145k k ∆=--⨯⋅--=+20k ≥.2455k ∴+≥.0∴∆>.∴方程有两个不相等的实数根.故答案选:B. 【点睛】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法.不能出错.在求一元二次方程根的判别式时.含有参数的一元二次方程要尤其注意各项系数的符号.21.(2022·重庆)对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简.称之为“加算操作”.例如:()()x y z m n x y z m n ----=--++.()x y z m n x y z m n ----=--+-.….给出下列说法:∵至少存在一种“加算操作”.使其结果与原多项式相等. ∵不存在任何“加算操作”.使其结果与原多项式之和为0. ∵所有的“加算操作”共有8种不同的结果. 以上说法中正确的个数为( )A .0B .1C .2D .3【答案】D 【解析】 【分析】给x y -添加括号.即可判断∵说法是否正确.根据无论如何添加括号.无法使得x 的符号为负号.即可判断∵说法是否正确.列举出所有情况即可判断∵说法是否正确. 【详解】解:∵()x y z m n x y z m n ----=---- ∵∵说法正确∵0x y z m n x y z m n -----++++=又∵无论如何添加括号.无法使得x 的符号为负号 ∵∵说法正确∵当括号中有两个字母.共有4种情况.分别是()x y z m n ----、()x y z m n ----、()x y z m n ----、()x y z m n ----.当括号中有三个字母.共有3种情况.分别是()x y z m n ----、()x y z m n ----、()x y z m n ----.当括号中有四个字母.共有1种情况.()x y z m n ---- ∵共有8种情况 ∵∵说法正确 ∵正确的个数为3 故选D . 【点睛】本题考查了新定义运算.认真阅读.理解题意是解答此题的关键.22.(2021·广东)设610的整数部分为a .小数部分为b .则(210a b +的值是( ) A .6 B .10C .12D .10【答案】A 【解析】 【分析】10a 的值.进而确定b 的值.然后将a 与b 的值代入计算即可得到所求代数式的值. 【详解】∵3104. ∵26103<.∵6102a =. ∵小数部分6102410b ==∵(((210221041041041016106a b =⨯==-=. 故选:A . 【点睛】本题考查了二次根式的运算.正确确定610a 与小数部分b 的值是解题关键.23.(2021·湖北鄂州)已知1a 为实数﹐规定运算:2111a a =-.3211a a =-.4311a a =-.5411a a =- (1)11n n a a -=-.按上述方法计算:当13a =时.2021a 的值等于( )A .23- B .13C .12-D .23【答案】D 【解析】 【分析】当13a =时.计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅.会发现呈周期性出现.即可得到2021a 的值.【详解】解:当13a =时.计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅.会发现是以:213,,32-.循环出现的规律.202136732=⨯+.2021223a a ∴==. 故选:D . 【点睛】本题考查了实数运算规律的问题.解题的关键是:通过条件.先计算出部分数的值.从中找到相应的规律.利用其规律来解答.24.(2020·四川巴中)定义运算:若am =b .则log ab =m (a >0).例如23=8.则log 28=3.运用以上定义.计算:log 5125﹣log 381=( )A .﹣1B .2C .1D .44【答案】A 【解析】 【分析】先根据乘方确定53=125.34=81.根据新定义求出log 5125=3.log 381=4.再计算出所求式子的值即可. 【详解】解:∵53=125.34=81. ∵log 5125=3.log 381=4. ∵log 5125﹣log 381. =3﹣4. =﹣1. 故选:A . 【点睛】本题考查新定义对数函数运算.仔细阅读题目中的定义.找出新定义运算的实质.掌握新定义对数函数运算.仔细阅读题目中的定义.找出新定义运算的实质.解题关键理解新定义就是乘方的逆运算.25.(2021·湖北荆州)定义新运算“∵”:对于实数m .n .p .q .有[][],,m p q n mn pq =+※.其中等式右边是通常的加法和乘法运算.如:[][]2,34,5253422=⨯+⨯=※.若关于x 的方程[]21,52,0x x k k ⎡⎤⎣⎦+-=※有两个实数根.则k 的取值范围是( )A .54k <且0k ≠ B .54k ≤C .54k ≤且0k ≠ D .54k ≥【答案】C 【解析】 【分析】按新定义规定的运算法则.将其化为关于x 的一元二次方程.从二次项系数和判别式两个方面入手.即可解决. 【详解】解:∵[x 2+1.x ]∵[5−2k .k ]=0.∵()()21520k x k x ++-=.整理得.()2520kx k x k +-+=.∵方程有两个实数根.∵判别式0≥且0k ≠. 由0≥得.()225240k k --≥. 解得.54k ≤. ∵k 的取值范围是54k ≤且0k ≠. 故选:C 【点睛】本题考查了新定义运算、一元二次方程的根的判别等知识点.正确理解新定义的运算法则是解题的基础.熟知一元二次方程的条件、根的不同情况与判别式符号之间的对应关系是解题的关键.此类题目容易忽略之处在于二次项系数不能为零的条件限制.要引起高度重视.26.(2022·广西贺州)某餐厅为了追求时间效率.推出一种液体“沙漏”免单方案(即点单完成后.开始倒转“沙漏”. “沙漏”漏完前.客人所点的菜需全部上桌.否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示.已知圆锥体底面半径是6cm .高是6cm .圆柱体底面半径是3cm .液体高是7cm .计时结束后如图(2)所示.求此时“沙漏”中液体的高度为( )A .2cmB .3cmC .4cmD .5cm【答案】B 【解析】 【分析】由圆锥的圆锥体底面半径是6cm.高是6cm.可得CD =DE .根据园锥、圆柱体积公式可得液体的体积为63πcm 3.圆锥的体积为72πcm 3.设此时“沙漏”中液体的高度AD =x cm.则DE =CD =(6-x )cm.根据题意.列出方程.即可求解. 【详解】解:如图.作圆锥的高AC .在BC 上取点E .过点E 作DE ∵AC 于点D .则AB =6cm.AC =6cm.∵∵ABC 为等腰直角三角形. ∵DE ∵AB . ∵∵CDE ∵∵CAB .∵∵CDE 为等腰直角三角形. ∵CD =DE .圆柱体内液体的体积为:233763cm ππ⨯⨯=圆锥的体积为2316672cm 3ππ⨯⨯=.设此时“沙漏”中液体的高度AD =x cm.则DE =CD =(6-x )cm.∵21(6)(6)72633x x πππ⋅-⋅-=-. ∵3(6)27x -=. 解得:x =3.即此时“沙漏”中液体的高度3cm . 故选:B . 【点睛】本题考查圆柱体、圆锥体体积问题.解题的关键是掌握圆柱体、圆锥体体积公式.列出方程解决问题.27.(2020·湖南长沙)2020年3月14日.是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日.是因为3.14与圆周率的数值最接近的数字.在古代.一个国家所算的的圆周率的精确程度.可以作为衡量这个国家当时数学与科技发展的水平的主要标志.我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠.该成果领先世界一千多年.以下对圆周率的四个表述:∵圆周率是一个有理数.∵圆周率是一个无理数.∵圆周率是一个与圆的大小无关的常数.它等于该圆的周长与直径的比.∵圆周率是一个与圆大小有关的常数.它等于该圆的周长与半径的比.其中正确的是( ) A .∵∵ B .∵∵C .∵∵D .∵∵【答案】A【解析】【分析】圆周率的含义:圆的周长和它直径的比值.叫做圆周率.用字母π表示.π是一个无限不循环小数.据此进行分析解答即可.【详解】解:∵圆周率是一个有理数.错误.∵π是一个无限不循环小数.因此圆周率是一个无理数.说法正确.∵圆周率是一个与圆的大小无关的常数.它等于该圆的周长与直径的比.说法正确.∵圆周率是一个与圆大小有关的常数.它等于该圆的周长与半径的比.说法错误.故选:A.【点睛】本题考查了对圆周率的理解.解题的关键是明确其意义.并知道圆周率一个无限不循环小数.3.14只是取它的近似值.二、填空题28.(2022·湖南)2.1-.π.0.3这五个数中随机抽取一个数.恰好是无理数的概率是__.【答案】25##0.4【解析】【分析】先确定无理数的个数.再除以总个数.【详解】2π是无理数.P(恰好是无理数)25 =.故答案为:25.【点睛】本题主要考查了概率公式及无理数.熟练掌握概率公式及无理数的定义进行计算是解决本题的关键.29.(2022·山东威海)按照如图所示的程序计算.若输出y的值是2.则输入x的值是_____.【答案】1 【解析】 【分析】根据程序分析即可求解. 【详解】解:∵输出y 的值是2. ∵上一步计算为121x=+或221x =- 解得1x =(经检验.1x =是原方程的解).或32x = 当10x =>符合程序判断条件.302x =>不符合程序判断条件 故答案为:1 【点睛】本题考查了解分式方程.理解题意是解题的关键. 30.(2021·105______. 【答案】10 【解析】 【分析】根据1010511<<.105 【详解】 解:100105121<<即1010511<<. 10510. 故答案为:10. 【点睛】本题主要考查无理数的估算.解题的关键是确定无理数位于哪两个整数之间. 31.(2021·()131820213π-⎛⎫--+-= ⎪⎝⎭___________. 【答案】-4 【解析】 【分析】根据立方根、零指数幂、负整数指数幂的运算法则即可求解. 【详解】解:原式=()213-++- 51=-+4=-.故答案为:-4 【点睛】本题考查了立方根、零指数幂、负整数指数幂、实数的混合运算等知识点.熟知上述的各种运算法则是解题的基础.32.(2020·青海)(-3+8)的相反数是16________. 【答案】 5- 2± 【解析】 【分析】第1空:先计算-3+8的值.根据相反数的定义写出其相反数. 第216.再写出其平方根. 【详解】第1空:∵385-+=.则其相反数为:5- 第2空:164.则其平方根为:2± 故答案为:5-.2±. 【点睛】本题考查了相反数.平方根.熟知相反数.平方根的知识是解题的关键.33.(2020·四川遂宁)下列各数917.2﹣π.﹣34.无理数的个数有_____个. 【答案】3 【解析】 【分析】根据无理数的三种形式:∵开不尽的方根.∵无限不循环小数.∵含有π的绝大部分数.找出无理数的个数即可. 【详解】解:在所列实数中.无理数有1.212212221….2﹣343个. 故答案为:3. 【点睛】本题考查无理数的定义.熟练掌握无理数的概念是解题的关键.34.(2022·四川广安)若(a ﹣3)25-b 则以a 、b 为边长的等腰三角形的周长为________.【答案】11或13##13或11 【解析】 【分析】根据平方的非负性.算术平方根的非负性求得,a b 的值.进而根据等腰三角形的定义.分类讨论.根据构成三角形的条件取舍即可求解. 【详解】解:∵(a ﹣3)25-b ∵3a =.5b =.当3a =为腰时.周长为:26511a b +=+=. 当5b =为腰时.三角形的周长为231013a b +=+=. 故答案为:11或13. 【点睛】本题考查了等腰三角形的定义.非负数的性质.掌握以上知识是解题的关键.35.(2022·四川内江)对于非零实数a .b .规定a ∵b =11a b-.若(2x ﹣1)∵2=1.则x 的值为 _____. 【答案】56【解析】 【分析】根据题意列出方程.解方程即可求解. 【详解】 解:由题意得:11212x --=1.等式两边同时乘以2(21)x -得.2212(21)x x -+=-.解得:56x =.经检验.x =56是原方程的根. ∵x =56. 故答案为:56. 【点睛】本题考查了解分式方程.掌握分式方程的一般解法是解题的关键. 36.(2022·湖北随州)已知m 为正整数.189m .则根据1893337337m m m ⨯⨯⨯=⨯m 有最小值3721⨯=.设n 为正整数.300n于1的整数.则n 的最小值为______.最大值为______. 【答案】 3 75 【解析】 【分析】 根据n 为正整数.300n 1的整数.先求出n 的值可以为3、12、75.300.300n是大于1的整数来求解. 【详解】 解:30032525310n n n⨯⨯⨯⨯==300n 1的整数.30031n n=. ∵n 为正整数∵n 的值可以为3、12、75. n 的最小值是3.最大值是75. 故答案为:3.75. 【点睛】本题考查了无理数的估算.理解无理数的估算方法是解答关键.37.(2021·安徽)埃及胡夫金字塔是古代世界建筑奇迹之一.其底面是正方形.侧面是全等的等腰三角形.51.它介于整数n 和1n +之间.则n 的值是______. 【答案】1 【解析】 【分析】551即可完成求解. 【详解】 解:5 2.236. 51 1.236≈.因为1.236介于整数1和2之间. 所以1n =; 故答案为:1. 【点睛】本题考查了对算术平方根取值的估算.55的整数部分即可.该题题干前半部分涉及到数学文化.后半部分为解题的要点.考查了学生的读题、审题等能力.38.(2021·内蒙古呼和浩特)若把第n 个位置上的数记为n x .则称1x .2x .3x .….n x 有限个有序放置的数为一个数列A .定义数列A 的“伴生数列”B 是:1y ﹐2y .3y …n y 其中n y 是这个数列中第n 个位置上的数.1n =.2.…k 且111101n n n n n x x y x x -+-+=⎧=⎨≠⎩并规定0n x x =.11n x x +=.如果数列A 只有四个数.且1x .2x .3x .4x 依次为3.1.2.1.则其“伴生数列”B 是__________. 【答案】0.1.0.1 【解析】 【分析】根据定义先确定x 0=x 4=1与x 5=x 1=3.可得x 0.1x .2x .3x .4x . x 5依次为1.3.1.2.1.3.根据定义其“伴生数列”B 是y 1. y 2. y 3. y 4.依次为0. 1. 0. 1即可. 【详解】解:∵1x .2x .3x .4x 依次为3.1.2.1. ∵x 0=x 4=1.x 5=x 1=3.∵x 0.1x .2x .3x .4x . x 5依次为1.3.1.2.1.3.∵x 0=2x =1.y 1=0.x 1≠x 3.y 2=1.2x =4x =1.y 3=0.3x ≠x 5.y 4=1. ∵其“伴生数列”B 是y 1. y 2. y 3. y 4.依次为0. 1. 0. 1. 故答案为:0. 1. 0. 1.【点睛】本题考查新定义数列与伴生数列.仔细阅读题目.理解定义.抓住“伴生数列”中y n 与数列A 中11,n n x x -+关系是解题关键. 39.(2020·上海)已知f (x )=21x -.那么f (3)的值是____. 【答案】1. 【解析】 【分析】 根据f (x )=21x -.将3x =代入即可求解. 【详解】解:由题意得:f (x )=21x -. ∵将3x =代替表达式中的x . ∵f (3)=231-=1. 故答案为:1. 【点睛】本题考查函数值的求法.解答本题的关键是明确题意.利用题目中新定义解答. 40.(2020·浙江衢州)定义a ∵b =a (b +1).例如2∵3=2×(3+1)=2×4=8.则(x ﹣1)∵x 的结果为_____. 【答案】x 2﹣1 【解析】 【分析】根据规定的运算.直接代值后再根据平方差公式计算即可. 【详解】 解:根据题意得:(x ﹣1)∵x =(x ﹣1)(x +1)=x 2﹣1. 故答案为:x 2﹣1. 【点睛】本题考查了平方差公式.实数的运算.理解题目中的运算方法是解题关键. 41.(2020·青海)对于任意不相等的两个实数a.b ( a > b )定义一种新运算a ba b+-.如3232+-.那么12∵4=______ 2 【解析】 【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可. 【详解】 解:12∵41241621248+==- 2【点睛】此题考查二次根式的化简求值.理解规定的运算顺序与计算方法是解决问题的关键. 42.(2022·510.618-≈这个数叫做黄金比.著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设51a -=51b +=记11111S a b =+++.2222211S a b =+++ (100100100100100)11S a b=+++.则12100S S S +++=_______.【答案】5050 【解析】 【分析】利用分式的加减法则分别可求S 1=1.S 2=2.S 100=100.•••.利用规律求解即可. 【详解】 解:51a -=51b +=51511ab -+==∴. 1112211112a b a b a b b b a bS a a ++++=+===+++++++. 222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++.….10010010010010010010010010010010011100100111a b S a b a b a b+++=+=⨯=+++++ ∴12100S S S +++=121005050++⋯⋯+=故答案为:5050 【点睛】本题考查了分式的加减法.二次根式的混合运算.求得1ab =.找出的规律是本题的关键. 43.(2021·内蒙古鄂尔多斯)下列说法不正确的是___________ (只填序号) ∵717 2.174.∵外角为60︒且边长为23∵把直线23y x =-向左平移1个单位后得到的直线解析式为22y x =-. ∵新定义运算:2*21m n mn n =--.则方程1*0x -=有两个不相等的实数根. 【答案】∵∵∵ 【解析】 【分析】17∵.先判断出正多边形为正六边形.再求出其内切圆半径即可判断∵.根据直线的平移规律可判断∵.根据新定义运算列出方程即可判断∵. 【详解】解:∵∵161725<<. ∵4175< ∵5174-<-- ∵27173<<∵717 2.小数部分为517故∵错误. ∵外角为60︒的正多边形的边数为:36060=6︒÷︒ ∵这个正多边形是正六边形.设这个正六边形为ABCDEF .如图.O 为正六边形的中心.连接OA .过O 作OG ∵AB 于点G .∵AB =2.∵BAF =120° ∵AG =1.∵GAO =60°∵3OG =,即外角为60︒且边长为23故∵正确. ∵把直线23y x =-向左平移1个单位后得到的直线解析式为2(1)321y x x =+-=-.故∵错误.∵∵新定义运算:2*21m n mn n =--.∵方程21*(1)210x x x -=-⨯--=.即2210x x ++=. ∵2=24110∆-⨯⨯=∵方程1*0x -=有两个相等的实数根.故∵错误. ∵错误的结论是∵∵∵ 帮答案为∵∵∵. 【点睛】此题主要考查了无理数的估算.正多边形和圆.直线的平移以及根的判别式.熟练掌握以上相关知识是解答此题的关键.44.(2021·湖北随州)2021年5月7日.《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家.他是第一个将圆周率π精确到小数点后第七位的人.他给出π的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法.其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc (即有b d x ac <<.其中a .b .c .d 为正整数).则b da c ++是x 的更为精确的近似值.例如:已知15722507π<<.则利用一次“调日法”后可得到π的一个更为精确的近似分数为:1572217950757+=+.由于179 3.140457π≈<.再由17922577π<<.可以再次使用“调日法”得到π的更为精确的近似分数……现已知73252<<.则使用两次“调日法”2为______. 【答案】1712【解析】 【分析】根据“调日法”的定义.第一次结果为:107.2 .所以710257.根据第二次“调日法”进行计算即可. 【详解】解:∵73252<<∵第一次“调日法”.结果为:7+310=5+27∵101.42862 7≈>∵710257 <<∵第二次“调日法”.结果为:7+1017=5+712故答案为:17 12【点睛】本题考查无理数的估算.根据定义.严格按照例题步骤解题是重点.45.(2020·湖南邵阳)在如图方格中.若要使横、竖、斜对角的3个实数相乘都得到同样的结果.则2个空格的实数之积为________.32231632【答案】62【解析】【分析】先将表格中最上一行的3个数相乘得到66然后中间一行的三个数相乘以及最后一行的三个数相等都是66即可求解.【详解】解:由题意可知.第一行三个数的乘积为:322366=设第二行中间数为x.则166⨯⨯=x解得6x设第三行第一个数为y.则3266⨯=y解得3y=∵2个空格的实数之积为2182xy=故答案为:62【点睛】本题考查了二次根数的乘法运算法则.熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.三、解答题46.(2022·北京)计算:0(1)4sin 458 3.π-+-+- 【答案】4 【解析】 【分析】根据零次幂、特殊角的正弦值、二次根式和去绝对值即可求解. 【详解】解:0(1)4sin 458 3.π-+-+-2=142232+⨯- =4.【点睛】本题考查了实数的混合运算.掌握零次幂、特殊角的正弦值、二次根式的化简及去绝对值是解题的关键.47.(2022·江苏宿迁)计算:11122-⎛⎫ ⎪⎝⎭4sin 60°.【答案】2 【解析】 【分析】先计算负整数指数幂.二次根式的化简.特殊角的三角函数值.再计算乘法.再合并即可. 【详解】解:11124sin 6023=2+23422233=+2=【点睛】本题考查的是特殊角的三角函数值的运算.负整数指数幂的含义.二次根式的化简.掌握“运算基础运算”是解本题的关键. 48.(2021·湖南张家界)计算:2021(1)222cos608-+-︒2 【解析】 【分析】。
专题1.2 实 数(真题专练)一、单选题1.(2021·湖北宜昌·中考真题)在六张卡片上分别写有6,227-,3.1415,π,0数,从中随机抽取一张,卡片上的数为无理数的概率是( ) A .23B .12C .13D .162.(2021·山东青岛·中考真题)2021年3月5 日,李克强总理在政府工作报告中指出,我国脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.5575万=55750000,用科学记数法将55750000表示为( ) A .4557510⨯B .555.7510⨯C .75.57510⨯D .80.557510⨯3.(2021·江苏徐州·中考真题)下列无理数,与3最接近的是( )ABC D 4.(2021·山东日照·中考真题)在下列四个实数中,最大的实数是( ) A.-2BC .12D .05.(2021·山东潍坊·中考真题)第七次全国人口普查数据显示,山东省常住人口约为10152.7万人,将101 527 000用科学记数法(精确到十万位)( ) A .1.02×108B .0.102×109C .1.015×108D .0.1015×1096.(2021·湖北随州·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p 的值为( )A .100B .121C .144D .1697.(2020·内蒙古呼伦贝尔·中考真题)已知实数a 在数轴上的对应点位置如图所示,则化简|1|a - )A .32a -B .1-C .1D .23a -8.(2015·新疆·中考真题)下列运算结果,错误的是( )A .11()22--=B .0(1)1-=C .(1)(3)4-+-=D9.(2021·吉林长春·中考真题)()2--的值为( ) A .2-B .2C .12-D .1210.(2016·贵州安顺·中考真题)已知有理数x ,y 满足4x -,则以x ,y 的值为两边长的等腰三角形的周长是( ) A .20或16 B .20 C .16 D .以上都不对二、填空题11.(2021·甘肃兰州·中考真题)《九章算术》中注有“今两算得失相反,要令正负以名之”大意为:今有两数若其意义相反,则分别叫做正数与负数.若水位上升1m 记作1m +,则下降2m 记作______m .12.(2021·青海西宁·中考真题)在平面直角坐标系xOy 中,点A 的坐标是(–2)1-,,若//AB y轴,且9AB =,则点B 的坐标是________.13.(2012·山东德州·中考真题)﹣1,0,0.2,17,3中正数一共有 _____个.14.(2019·福建·中考真题)如图,数轴上A 、B 两点所表示的数分别是-4和2, 点C 是线段AB 的中点,则点C 所表示的数是_______.15.(2020·青海·中考真题)(-3+8)的相反数是________________. 16.(2019·四川成都·中考真题)若1m +与2-互为相反数,则m 的值为_______. 17.(2021·山东潍坊·中考真题)若x <2,且12102x x x +-+-=-,则x =_______. 18.(2017·江苏镇江·中考真题)若实数a 满足1322a -=,则a 对应于图中数轴上的点可以是A 、B 、C 三点中的点__________.19.(2020·湖北荆州·中考真题)若()112020,,32a b c π-⎛⎫=-=-=- ⎪⎝⎭,则a ,b ,c 的大小关系是_______.(用<号连接)20.(2021·辽宁盘锦·中考真题)建党100周年期间,我市人社系统不断提升服务能力和水平,让我市约1 300 000参保人员获得更高质量的社会保障福祉.数据1 300 000用科学记数法表示为________21.(2021·内蒙古鄂尔多斯·中考真题)下列说法不正确的是___________ (只填序号)①724.①外角为60︒且边长为2①把直线23y x =-向左平移1个单位后得到的直线解析式为22y x =-. ①新定义运算:2*21m n mn n =--,则方程1*0x -=有两个不相等的实数根.22.(2021·内蒙古呼和浩特·中考真题)若把第n 个位置上的数记为n x ,则称1x ,2x ,3x ,…,n x 有限个有序放置的数为一个数列A .定义数列A 的“伴生数列”B 是:1y ﹐2y ,3y …n y 其中n y 是这个数列中第n 个位置上的数,1n =,2,…k 且111101n n n n n x x y x x -+-+=⎧=⎨≠⎩并规定0n x x =,11n x x +=.如果数列A 只有四个数,且1x ,2x ,3x ,4x 依次为3,1,2,1,则其“伴生数列”B是__________.三、解答题23.(2006·江苏无锡·中考真题)计算:0(tan 45π-+º24.(2012·广东梅州·中考真题)计算:1160+3-⎛⎫⎪⎝⎭.25.(2021·山西·中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭.(2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步49662x x ->--+第三步 510x ->-第四步2x >第五步 任务一:填空:①以上解题过程中,第二步是依据______________(运算律)进行变形的; ①第__________步开始出现错误,这一步错误的原因是________________; 任务二:请直接写出该不等式的正确解集.26.(2020·四川自贡·中考真题)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1,所以1x +的几何意义就是数轴上x 所对应的点与1-所对应的点之间的距离. ①. 发现问题:代数式12x x ++-的最小值是多少?①. 探究问题:如图,点,,A B P 分别表示的是-1,2,x ,3AB =.①12x x ++-的几何意义是线段PA 与PB 的长度之和①当点P 在线段AB 上时,+=PA PB 3;当点点P 在点A 的左侧或点B 的右侧时 +>PA PB 3 ①12x x ++-的最小值是3. ①.解决问题:①.-++x 4x 2的最小值是 ;①.利用上述思想方法解不等式:314x x ++->①.当a 为何值时,代数式++-x a x 3的最小值是2.27.(2021·湖南张家界·中考真题)阅读下面的材料:如果函数()y f x =满足:对于自变量x 取值范围内的任意1x ,2x , (1)若12x x <,都有12()()f x f x <,则称()f x 是增函数; (2)若12x x <,都有12()()f x f x >,则称()f x 是减函数. 例题:证明函数2()(0)f x x x =>是增函数. 证明:任取12x x <,且1>0x ,20x >则2212121212()()()()f x f x x x x x x x -=-=+-①12x x <且1>0x ,20x > ①120x x +>,120x x -<①1212()()0x x x x +-<,即12())0(f x f x -<,12()()f x f x < ①函数2()(0)f x x x =>是增函数. 根据以上材料解答下列问题:(1)函数1()(0)f x x x =>,1(1)11f ==,1(2)2f =,(3)f =_______,(4)f =_______;(2)猜想1()(0)f x x x=>是函数_________(填“增”或“减”),并证明你的猜想.28.(2021·江苏盐城·中考真题)如图,点A 是数轴上表示实数a 的点.(1的点P ;(保留作图痕迹,不写作法)(2和a 的大小,并说明理由.29.(2021·重庆·中考真题)如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,并把数M 分解成M A B =⨯的过程,称为“合分解”.例如6092129=⨯,21和29的十位数字相同,个位数字之和为10,609∴是“合和数”.又如2341813=⨯,18和13的十位数相同,但个位数字之和不等于10,234∴不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M 进行“合分解”,即M A B =⨯.A 的各个数位数字之和与B 的各个数位数字之和的和记为()P M ;A 的各个数位数字之和与B 的各个数位数字之和的差的绝对值记为()Q M .令()()()P M G M Q M =,当()G M 能被4整除时,求出所有满足条件的M .参考答案1.C【分析】首先根据无理数定义确定哪些是无理数,再根据概率的公式计算即可.解:在6,227-,3.1415,π,0π2个, ①从中随机抽取一张,卡片上的数为无理数的概率是2163=, 故选:C .【点拨】此题考查概率的计算公式,正确掌握无理数的定义会判断无理数是解题的关键. 2.C【分析】根据科学记数法的定义“把一个大于10的数表示成10n a ⨯的形式(其中a 是整数位只有一位的数,即a 大于或等于1且小于10,n 是正整数),这样的记数方法叫做科学记数法”进行解答即可得. 解:755750000 5.57510=⨯, 故选C .【点拨】本题考查了科学记数法,解题的关键是熟记科学记数法的定义. 3.C【分析】先比较各个数平方后的结果,进而即可得到答案.解:①32=9,2=6,)2=7,2=10,)2=11,①与3, 故选C .【点拨】本题主要考查无理数的估计,理解算术平方根与平方的关系,是解题的关键. 4.B【分析】根据实数的大小比较方法进行比较即可. 解:正数大于0,负数小于0,正数大于负数,∴1022>>-, 故选:B .【点拨】本题考查了实数的大小比较,理解“正数大于0,负数小于0,正数大于负数”是正确判断的关键.【分析】先用四舍五入法精确到十万位,再按科学记数法的形式和要求改写即可. 解:8101527000101500000 1.01510≈=⨯. 故选:C【点拨】本题考查了近似数和科学记数法的知识点,取近似数是本题的基础,熟知科学记数法的形式和要求是解题的关键. 6.B【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可. 解:根据图中数据可知: 1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-, ①第n 个图中的143q =, ①2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去) ①2=121p n =, 故选:B .【点拨】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键. 7.D【分析】根据数轴上a 点的位置,判断出(a−1)和(a−2)的符号,再根据非负数的性质进行化简.解:由图知:1<a <2, ①a−1>0,a−2<0,原式=a−1-2a =a−1+(a−2)=2a−3. 故选D .【点拨】此题主要考查了二次根式的性质与化简,正确得出a−1>0,a−2<0是解题关键.解:试题分析:A .11()22--=,正确,不合题意;B .0(1)1-=,正确,不合题意;C .(1)(3)4-+-=-,错误,符合题意;D = 故选C .考点:1.二次根式的乘除法;2.相反数;3.有理数的加法;4.零指数幂. 9.B【分析】根据相反数概念求解即可.解:化简多重负号,就看负号的个数,此时有两个符号,偶数个则为正, 故选:B .【点拨】本题考查了多重负号的化简问题,掌握基本法则是解题关键. 10.B【分析】根据绝对值和二次根式的非负性求出x ,y ,再根据等腰三角形的性质和三角形三边关系判断即可;解:①4x -,①4080x y -=⎧⎨-=⎩,①4x =,8y =,设以4,8为两边长的等腰三角形的三边长分别为a ,b ,c ,且4a =,8b =,则有两种情况: 当a 为等腰三角形的腰时,有4c a ==,此时a c b +=,该等腰三角形不存在; 当b 为等腰三角形的腰时,有8c b ==,4a =,该等腰三角形存在,周长为48820a b c ++=++=.故答案选B .【点拨】本题主要考查了三角形三边关系,等腰三角形的定义,绝对值和二次根式的非负性,准确分析计算是解题的关键. 11.-2【分析】根据正负数的意义即可解答. 解:下降2m 记作-2m . 故答案为:-2【点拨】本题考查了正负数的意义,正确理解正负数的意义是解题的关键. 12.(2,8)-或(2,10)--【分析】由题意,设点B 的坐标为(-2,y ),则由AB =9可得(1)9y --=,解方程即可求得y 的值,从而可得点B 的坐标. 解:①//AB y 轴 ①设点B 的坐标为(-2,y ) ①AB =9 ①(1)9y --= 解得:y =8或y =-10①点B 的坐标为(2,8)-或(2,10)-- 故答案为:(2,8)-或(2,10)--【点拨】本题考查了平面直角坐标系求点的坐标,解含绝对值方程,关键是抓住平行于坐标轴的线段长度只与两点的横坐标或纵坐标有关,易错点则是考虑不周,忽略其中一种情况. 13.3.解:根据正、负数的定义对各数分析判断即可:﹣1,0,0.2,17,3中正数有0.2,17,3,共有3个. 14.-1【分析】根据A 、B 两点所表示的数分别为−4和2,利用中点公式求出线段AB 的中点所表示的数即可.解:①数轴上A ,B 两点所表示的数分别是−4和2, ①线段AB 的中点所表示的数=12(−4+2)=−1. 即点C 所表示的数是−1. 故答案为−1【点拨】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键. 15.5- 2±【分析】第1空:先计算-3+8的值,根据相反数的定义写出其相反数;第2解:第1空:①385-+=,则其相反数为:5-第2空:4,则其平方根为:2±故答案为:5-,2±.【点拨】本题考查了相反数,平方根,熟知相反数,平方根的知识是解题的关键.16.1.【分析】根据相反数的性质即可求解.解:m+1+(-2)=0,所以m=1.【点拨】此题主要考查相反数的应用,解题的关键是熟知相反数的性质.17.1【分析】先去掉绝对值符号,整理后方程两边都乘以x﹣2,求出方程的解,再进行检验即可.解:12x+-|x﹣2|+x﹣1=0,①x<2,①方程为12x+-2﹣x+x﹣1=0,即12x=--1,方程两边都乘以x﹣2,得1=﹣(x﹣2),解得:x=1,经检验x=1是原方程的解,故答案为:1.【点拨】本题考查了解分式方程和绝对值,能把分式方程转化成整式方程是解此题的关键.18.B【分析】由|a-12|=32求出a的值,对应数轴上的点即可得出结论.解:①|a-12|=32①a=-1或a=2.故选B.【点拨】考查了实数与数轴以及解含绝对值符号的一元一次方程,解方程求出a 值是解题的关键.19.b a c <<【分析】分别计算零次幂,负整数指数幂,绝对值,再比较大小即可.解:()020201,a π=-= 112,2b -⎛⎫=-=- ⎪⎝⎭ 33,c =-=∴ b a c <<.故答案为:b a c <<.【点拨】本题考查的是零次幂,负整数指数幂,绝对值的运算,有理数的大小比较,掌握以上知识是解题的关键.20.1.3×106【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.解: 1300000=61.310⨯故答案为:61.310⨯.【点拨】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义. 21.①①①①;先判断出正多边形为正六边形,再求出其内切圆半径即可判断①;根据直线的平移规律可判断①;根据新定义运算列出方程即可判断①. 解:①①161725<<,①45<< ①54-<-①273<①72,小数部分为5①错误;①外角为60︒的正多边形的边数为:36060=6︒÷︒①这个正多边形是正六边形,设这个正六边形为ABCDEF ,如图,O 为正六边形的中心,连接OA ,过O 作OG ①AB 于点G ,①AB =2,①BAF =120°①AG =1,①GAO =60°①OG =即外角为60︒且边长为2①正确; ①把直线23y x =-向左平移1个单位后得到的直线解析式为2(1)321y x x =+-=-,故①错误;①①新定义运算:2*21m n mn n =--,①方程21*(1)210x x x -=-⨯--=,即2210x x ++=,①2=24110∆-⨯⨯=①方程1*0x -=有两个相等的实数根,故①错误,①错误的结论是①①①帮答案为①①①.【点拨】此题主要考查了无理数的估算,正多边形和圆,直线的平移以及根的判别式,熟练掌握以上相关知识是解答此题的关键.22.0,1,0,1【分析】根据定义先确定x 0=x 4=1与x 5=x 1=3,可得x 0,1x ,2x ,3x ,4x , x 5依次为1,3,1,2,1,3,根据定义其“伴生数列”B 是y 1, y 2, y 3, y 4;依次为0, 1, 0, 1即可. 解:①1x ,2x ,3x ,4x 依次为3,1,2,1,①x 0=x 4=1,x 5=x 1=3,①x 0,1x ,2x ,3x ,4x , x 5依次为1,3,1,2,1,3,①x 0=2x =1,y 1=0;x 1≠x 3,y 2=1;2x =4x =1,y 3=0;3x ≠x 5,y 4=1;①其“伴生数列”B 是y 1, y 2, y 3, y 4;依次为0, 1, 0, 1.故答案为:0, 1, 0, 1.【点拨】本题考查新定义数列与伴生数列,仔细阅读题目,理解定义,抓住“伴生数列”中y n 与数列A 中11,n n x x -+关系是解题关键.23【分析】特殊角的三角函数值:tan45°=1;任何除零以外的数0次方等于1,负数的绝对值等于它的相反数.解:原式11+【点拨】本题比较简单,只要掌握零指数幂,绝对值的概念以及熟记特殊角的三角函数值即可.24.解:原式. 解:实数的运算,绝对值,算术平方根,特殊角的三角函数值,负整数指数幂.针对绝对值,算术平方根,特殊角的三角函数值,负整数指数幂4个解析分别进行计算,然后根据实数的运算法则求得计算结果.25.(1)6;(2)任务一:①乘法分配律(或分配律);①五;不等式两边都除以-5,不等号的方向没有改变(或不符合不等式的性质3);任务二:2x <【分析】(1)根据实数的运算法则计算即可;(2)根据不等式的性质3判断并计算即可.解:(1)解:原式118(8)4=⨯+-⨯ ()826=+-=.(2)①乘法分配律(或分配律)①五 不等式两边都除以-5,不等号的方向没有改变(或不符合不等式的性质3); 任务二:不等式两边都除以-5,改变不等号的方向得:2x <.【点拨】本题主要考查实数的运算,不等式的性质等知识点,熟练掌握实数的运算法则以及不等式的性质是解题关键.26.①6;①3x <-或1x >;①1a =-或5a =-【分析】(3)①根据绝对值的几何意义可知,变成数轴上的点到-2的距离和到4的距离之和的最小值;①根据题意画出相应的图形,确定出所求不等式的解集即可;①根据原式的最小值为2,得到3左边和右边,且到3距离为2的点即可.解:(3)①设A 表示的数为4,B 表示的数为-2,P 表示的数为x ,①|4|x -表示数轴上的点P 到4的距离,用线段PA 表示,|2||(2)|+=--x x 表示数轴上的点P 到-2的距离,用线段PB 表示,①|4||2|x x -++的几何意义表示为PA+PB ,当P 在线段AB 上时取得最小值为AB , 且线段AB 的长度为6,①|4||2|x x -++的最小值为6.故答案为:6.①设A 表示-3,B 表示1,P 表示x ,①线段AB 的长度为4,则,|3||1|x x ++-的几何意义表示为PA+PB ,①不等式的几何意义是PA+PB >AB ,①P 不能在线段AB 上,应该在A 的左侧或者B 的右侧,即不等式的解集为3x <-或1x >.故答案为:3x <-或1x >.①设A 表示-a ,B 表示3,P 表示x ,则线段AB 的长度为3a --,++-x a x 3的几何意义表示为PA+PB ,当P 在线段AB 上时PA+PB 取得最小值, ①32a --=①32a +=或32a +=-,即1a =-或5a =-;故答案为:1a =-或5a =-.【点拨】此题考查了解一元一次不等式,数轴,绝对值,以及数学常识,掌握绝对值的几何意义,学会分类讨论是解决本题的关键.27.(1)13,14;(2)减,证明见解析【分析】(1)根据题目中函数解析式可以解答本题;(2)根据题目中例子的证明方法可以证明(1) 中的猜想成立.解:(1)1(3)3f =,1(4)4f = (2)猜想:1()(0)f x x x=>是减函数; 证明:任取12x x <,1>0x ,20x >,则2112121211()()x x f x f x x x x x --=-= ①12x x <且1>0x ,20x >①210x x ->,120x x > ①2112x x x x ->0,即12())0(f x f x -> ①函数1()(0)f x x x=>是减函数. 【点拨】本题考查反比例函数图象上的坐标特征、反比例函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.28.(1)见解析;(2)a >【分析】(1P .(2)在数轴上比较,越靠右边的数越大.解:(1)如图所示,点P 即为所求.(2)如图所示,点A 在点P的右侧,所以a >【点拨】本题考查无理数与数轴上一一对应的关系、勾股定理、尺规作图法、熟练掌握无理数在数轴上的表示是关键.29.(1)168不是“合和数”,621是“合和数,理由见解析;(2)M 有1224,1221,5624,5616.【分析】(1)首先根据题目内容,理解“合和数”的定义:如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,再判断168,621是否是“合和数”;(2)首先根据题目内容,理解“合分解”的定义.引进未知数来表示A 个位及十位上的数,同时也可以用来表示B .然后整理出:()()()P M G M Q M =,根据能被4整除时,通过分类讨论,求出所有满足条件的M .解:(1) 168不是“合和数”,621是“合和数”.1681214=⨯,2410+≠,168∴不是“合和数”,6212327=⨯,十位数字相同,且个位数字3710+=,621∴是“合和数”.(2)设A 的十位数字为m ,个位数字为n (m ,n 为自然数,且39m ≤≤,19n ≤≤), 则10,1010A m n B m n =+=+-. ①()10210,()()(10)210P M m n m n m Q M m n m n n =+++-=+=+-+-=-.①()()21054()2105P M m m G M k Q M n n ++====--(k 是整数). 39m ≤≤,8514m ∴≤+≤, k 是整数,58m ∴+=或512m +=,①当58m +=时,5851m n +=⎧⎨-=⎩或5852m n +=⎧⎨-=⎩, 36341224M ∴=⨯=或3733=1221M =⨯.①当512m +=时,51251m n +=⎧⎨-=⎩或51253m n +=⎧⎨-=⎩, 76745623M ∴=⨯=或78725616M =⨯=.综上,满足条件的M 有1224,1221,5624,5616.【点拨】本题考查了新定义问题,解题的关键是:首先要理解题中给出的新定义和会操作题目中所涉及的过程,结合所学知识去解决问题,充分考察同学们自主学习和运用新知识的能力.。
有理数易错点梳理易错点01 误把0当成正数0既不是正数也不是负数.0是正数与负数的分界点。
易错点02 误以为带“+”号的数就是正数.带“-”号的数就是负数不能简单地理解为带“+”号的数就是正数.带“-”号的数就是负数。
例如:当0>a 时.a 表示正数.a -表示负数;当0=a 时.a 与a -都表示0;当0<a 时.a 表示负数.a -表示正数。
易错点03 误把无限循环小数看成无理数有限小数和无限循环小数都可以写成分数形式.所以有限小数和无限循环小数都是有理数;无限不循环小数是无理数。
易错点04 误把数轴当成线段数轴是规定了原点、正方向和单位长度的直线。
易错点05 混淆“单位长度”和“长度单位”单位长度是指具体的时间内具体的长度为1;长度单位是指毫米、厘米、分米、米、千米等。
它们是完全不同的概念。
易错点06 误认为0的倒数是00的相反数是0,0的绝对值为0,0没有倒数。
易错点07 混淆na -与na )(-的意义n a -表示n a 的相反数.n a )(-表示n 个a -相乘。
易错点08 运用加法交换律时弄错符号运用加法交换律时.在交换各加数的位置时.要连同它前面的符号一起交换.不能漏掉符号。
易错点09 运用分配律时易漏乘运用分配律时.括号内的每一项都要乘以括号外的数.不要漏乘。
考向01 正负数的概念易错点梳理例题分析例题1:(2021·青海西宁·中考真题)中国人最先使用负数.魏晋时期的数学家刘徽在其著作《九章算术注》中.用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正.黑色为负).如图1表示的是(+2)+(-2).根据这种表示法.可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-【答案】B【思路分析】根据题意图2中.红色的有三根.黑色的有六根可得答案.【解析】解:由题知. 图2红色的有三根.黑色的有六根.故图2表示的算式是(+3)+ (-6) .故选:B .【点拨】本题主要考查正负数的含义.解题的关键是理解正负数的含义.考向02 数轴的概念例题2:(2021·广东广州·中考真题)如图.在数轴上.点A 、B 分别表示a 、b .且0a b +=.若6AB =.则点A 表示的数为( )A .3-B .0C .3D .6-【答案】A【思路分析】由AB 的长度结合A 、B 表示的数互为相反数.即可得出A .B 表示的数 【解析】解:∵0a b += ∴A .B 两点对应的数互为相反数.∴可设A 表示的数为a .则B 表示的数为a -. ∵6AB = ∴6a a --=. 解得:3a =-.∴点A 表示的数为-3.故选:A .【点拨】本题考查了绝对值.相反数的应用.关键是能根据题意得出方程6a a --=.考向03 相反数的概念例题3:(2021·湖南永州·中考真题)1||202--的相反数为( ) A .2021- B .2021C .12021-D .12021【答案】B【思路分析】根据绝对值、相反数的概念求解即可.【解析】解:由题意可知:||=22110202-.故1||202--的相反数为2021.故选:B . 【点拨】本题考查相反数、绝对值的概念.属于基础题.熟练掌握概念是解决本题的关键.考向04 绝对值和概念和非负性例题4:(2021·黑龙江大庆·中考真题)下列说法正确的是( ) A .||x x <B .若|1|2x -+取最小值.则0x =C .若11x y >>>-.则||||x y <D .若|1|0x +≤.则1x =-【答案】D【思路分析】根据绝对值的定义和绝对值的非负性逐一分析判定即可.【解析】解:A .当0x =时.||=x x .故该项错误;B .∵10x -≥.∴当1x =时|1|2x -+取最小值.故该项错误;C .∵11x y >>>-.∴1x >.1y <.∴||||x y .故该项错误;D .∵|1|0x +≤且|1|0x +≥.∴|1|0x +=.∴1x =-.故该项正确;故选:D .【点拨】本题考查绝对值.掌握绝对值的定义和绝对值的非负性是解题的关键.考向05 有理数大小的比较例题5:(2021·四川巴中·中考真题)下列各式的值最小的是( ) A .20 B .|﹣2| C .2﹣1 D .﹣(﹣2)【答案】C【思路分析】直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数分别化简得出答案.【解析】解:20=1.|-2|=2.2-1=12.-(-2)=2. ∵12<1<2. ∴最小的是2-1. 故选:C .【点拨】此题主要考查了零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数.正确化简各数是解题关键.考向06 有理数加减法的运算例题6:(2021·四川广元·中考真题)计算()32---的最后结果是( ) A .1B .1-C .5D .5-【答案】C【思路分析】先计算绝对值.再将减法转化为加法运算即可得到最后结果. 【解析】解:原式325=+=.故选:C .【点拨】本题考查了绝对值化简和有理数的加减法运算.解决本题的关键是牢记绝对值定义与有理数运算法则.本题较基础.考查了学生对概念的理解与应用.考向07 科学计数法例题7:(2021·山东青岛·中考真题)2021年3月5 日.李克强总理在政府工作报告中指出.我国脱贫攻坚成果举世瞩目.5575万农村贫困人口实现脱贫.5575万=55750000.用科学记数法将55750000表示为( ) A .4557510⨯ B .555.7510⨯C .75.57510⨯D .80.557510⨯【答案】C【思路分析】根据科学记数法的定义“把一个大于10的数表示成10n a ⨯的形式(其中a 是整数位只有一位的数.即a 大于或等于1且小于10.n 是正整数).这样的记数方法叫做科学记数法”进行解答即可得.【解析】解:755750000 5.57510=⨯.故选C .【点拨】本题考查了科学记数法.解题的关键是熟记科学记数法的定义.一、单选题1.(2021·湖南·长沙市开福区青竹湖湘一外国语学校三模)-2021的绝对值是( ) A .2021- B .12021-C .2021D .12020【答案】C【解析】-2021的绝对值是2021.故选:C2.(2021·浙江·温州市教育教学研究院一模)2的相反数是( ) A .2 B .12C .2-D .4-【答案】C【解析】解:2的相反数是-2.故选C .3.(2021·安徽·合肥一六八中学模拟预测)下列是有理数的是( ) A .tan 45︒ B .sin 45︒C .cos45︒D .sin 60︒【答案】A微练习【解析】解:A 、tan 451︒=.是有理数.符合题意;B 、2sin 452=°.不是有理数.不符合题意;C 、2cos 452=°.不是有理数.不符合题意;D 、3sin 602︒=.不是有理数.不符合题意;故选:A .4.(2021·陕西·交大附中分校模拟预测)如图.数轴上点A 表示的数为( )A .﹣2B .﹣1C .0D .1【答案】B【解析】解:由图可知:点A 在﹣1的位置.表示的数为﹣1.故选:B .5.(2021·广东·佛山市华英学校一模)在2. 1.5-.0.23-这四个数中最小的数是( )A .2B . 1.5-C .0D .23-【答案】B【解析】解:∵2>0.0>﹣1.5.0>﹣23.又∵|﹣1.5|=32.|﹣23|=23.∴32>23.∴﹣1.5<﹣23.综上所述.﹣1.5<﹣23<0<2.故选:B .6.(2021·浙江·翠苑中学二模)计算42=( ) A .8 B .18C .16D .116【答案】C【解析】解:24=2×2×2×2=16.故选:C . 7.(2021·内蒙古东胜·二模)截止2021年4月17日.全国接种新冠病毒疫苗达到81.89810⨯剂次.则数据81.89810⨯表示的原数是( ) A .1898000 B .18980000 C .189800000 D .1898000000【答案】C【解析】解:81.89810⨯=189800000. 故选C .8.(2021·安徽·安庆市第四中学二模)计算:2﹣(﹣2)等于( ) A .﹣4 B .4 C .0 D .1【答案】B【解析】解:2﹣(﹣2)=2+2=4.故选择B . 二、填空题9.(2021·福建·泉州五中模拟预测)计算:1012(3)2--+-=_______.【答案】0 【解析】原式111022=-+=.故答案为:0. 10.(2021·福建·厦门双十中学思明分校二模)实数a 与b 在数轴上对应点的位置如图所示.a <c <﹣b .且c 为整数.则实数c 的值为________.【答案】3 【解析】解:如图由a <c <﹣b .且c 为整数.故实数c 的值为3.故答案为:3.11.(2021·广东·执信中学模拟预测)()0222cos4512 3.14π--+︒-+--=____________【答案】314【解析】解:()0222cos4512 3.14π--+︒---122(21)14=-++122114=-+314=.故答案为:314.12.(2021·福建·重庆实验外国语学校模拟预测)新华社北京5月11日电11日发布的第七次全国人口普查结果显示.全国人口共141178万人.与2010年第六次全国人口普查数据相比.增加7206万人.增长5.38%.年平均增长率为0.53%.数据表明.我国人口10年来继续保持低速增长态势.用科学记数法将数据“7206万”表示为 __. 【答案】77.20610⨯【解析】解:7206万77.20610=⨯故答案为:77.20610⨯. 三、解答题13.(2021·广西·南宁十四中三模)计算:()()3425284+-⨯--÷. 【答案】29-【解析】()()3425284+-⨯--÷485(7)=-⨯--1140=- 29=-14.(2021·云南昭通·二模)计算:1020211(1)|2|3-⎛⎫+-+--- ⎪⎝⎭(-2021). 【答案】-5【解析】原式1(1)(3)2=+-+--5=-.15.(2021·黑龙江·二模)计算: 120201(1)3-⎛⎫-+ ⎪⎝⎭【答案】2.【解析】原式132=+-2=.16.(2021·吉林长春·二模)计算:()()2111323π--+---+⎛⎫⎪⎝⎭【答案】3【解析】解:原式11233=+-+=.。