2020年中考数学试题分类专题之 最值类题
- 格式:pdf
- 大小:1.22 MB
- 文档页数:37
中考数学专题:线段/路径最值问题线段最值问题解法分类一、定点到定点⇒连线段点P在直线l上,AP+BP何时最小?二、定点到定线⇒作垂线点P在直线l上,AP何时最小?三、定点到定圆⇒连心线点P在圆O上,AP何时最小?线段最值问题一般转化为上述三个问题.例题赏析:1.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN 的周长最小值为.思路:把点P分别沿OA、OB翻折得P1、P2,周长即为P1M+MN+P2N,转化为求P1、P2两点之间最小值,得△PMN最小值为P1P2=OP=6.2.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.思路:点N沿AD翻折至AC上,BM+MN=BM+MN',转化为求点B到直线AC的连线最小值,即BN'⊥AC时,最小值为2√2.3.如图,矩形ABCD中,AB=2,BC=3,以A为圆心、1为半径画圆,E是⊙A上一动点,F是BC 上的一动点,则FE+FD的最小值是.思路:点D沿BC翻折至D',DF+EF=D'F+EF,转化为求点D'到圆A上各点的最小距离,易求D'E=4.4.抛物线y=3/5x2-18/5x+3与直线y=3/5x+3相交于A、B两点,点M是线段AB上的动点,直线PM∥y轴,交抛物线于点N.在点M运动过程中,求出MN的最大值.思路:设M(m,3/5m2-18/5m+3),N(m,3/5m+3),用函数关系式表示MN=(3/5m+3)-(3/5m2-18/5m+3)=21/5m-3/5m2,求得最大值即可.5.在菱形ABCD中,对角线AC=8,BD=6,点E、F分别是边 AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是思路:点E沿AC翻折,转化为点到点的距离.(将军饮马问题实质就是通过翻折转化为定点到定点的问题)6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O 的最大距离为 .思路:取AB中点E,连接DE、OE,由两点间线段最短,得OD≤OE+DE,最大为1+√2.7.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP 沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是简解:B'点运动路径为以C为圆心,BC为半径的圆弧,转化为点到圆的最短距离AC-B'C=1.8.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个六边形的边长最大时,AE的最小值为 .思路:正六边形最大半径为1/2,与正方形中心重合,E点运动路径为圆,转化为求点到圆的最短距离,如下图.9.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是 .思路:D是定点,C是直线AC上的动点,转化为求点到线的最短距离.10.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上的动点,在△A'B'C绕点C顺时针旋转过程中,点F的对应点是F',求线段EF'长度的最大值与最小值的差.思路:先确定线段A'B'的运动轨迹是圆环,外圆半径为BC,内圆半径为AB边上的高,F'是A'B'上任意一点,因此F'的运动轨迹是圆环内的任意一点,由此转化为点E到圆环的最短和最长距离.E到圆环的最短距离为EF2=CF2-CE=4.8-3=1.8,E到圆环的最长距离为EF1=EC+CF1=3+6=9,其差为7.2.问:何时需要作辅助线翻折其中的定点(定线或定圆)?答:当动点所在直线不在定点(定线或定圆)之间时,需把定点(定线或定圆)沿动点所在直线翻折以使定点(定线或定圆)处于动点所在直线的两侧,从而便于连接相关线段或作垂线与动点所在直线找到交点.如上述例3,动点F所在直线不在定圆A和定点D之间,因而需把D点沿BC翻折至D',即可转化为定点D'到定圆A的最短距离,另外亦可把圆A沿BC翻折至另一侧,同样可以转化为定点D到定圆A'的最短距离,如下图.关键方法:动中求定,动点化定线;以定制动,定点翻两边.(1)动中求定,动点化定线:如例7、例8、例10,动点所在路径未画出时需先画出动点所在轨迹,一般动点所在轨迹为线或圆.(2)以定制动,定点翻两边:如例1、例2、例3、例5,定点(线或圆)在动点所在直线同侧时需翻折至两侧,转化为上述三种关系.练1、如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
备战2020中考数学之解密压轴解答题命题规律专题10 二次函数与线段关系及最值定值问题【类型综述】图形运动的过程中,求两条线段之间的函数关系,是中考数学的热点问题.产生两条线段间的函数关系,常见的情况有两种,一是勾股定理,二是比例关系.还有一种不常见的,就是线段全长等于部分线段之和.由比例线段产生的函数关系问题,在两种类型的题目中比较常用. 一是由平行线产生的对于线段成比例,二是相似三角形的对应边成比例.一般步骤是先说理产生比例关系,再代入数值或表示数的字母,最后整理、变形,根据要求写出定义域.关键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错.【方法揭秘】由勾股定理产生的函数关系,在两种类型的题目中比较常用.类型一,已知“边角边”,至少一边是动态的,求角的对边.如图1,已知点A 的坐标为(3, 4),点B 是x 轴正半轴上的一个动点,设OB =x ,AB =y ,那么我们在直角三角形ABH 中用勾股定理,就可以得到y 关于x 的函数关系式.类型二,图形的翻折.已知矩形OABC 在坐标平面内如图2所示,AB =5,点O 沿直线EF 翻折后,点O 的对应点D 落在AB 边上,设AD =x ,OE =y ,那么在直角三角形AED 中用勾股定理就可以得到y 关于x 的函数关系式.图1 图2【典例分析】【例1】如图①,矩形ABCD 中,2,5,1AB BC BP ===,090MPN ∠=,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F .当PN 旋转至PC 处时,MPN ∠的旋转随即停止.(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D ,此时ABP ∆是否与PCD ∆相似?并说明理由;(2)类比探究:如图③,在旋转过程中,PEPF的值是否为定值?若是,请求出该定值;若不是,请说明理由; (3)拓展延伸:设AE t =时,EPF ∆的面积为S ,试用含t 的代数式表示S ;①在旋转过程中,若1t =时,求对应的EPF ∆的面积; ②在旋转过程中,当EPF ∆的面积为4.2时,求对应的t 的值.【例2】如图1,在矩形ABCD 中,AB =8,AD =10,E 是CD 边上一点,连接AE ,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点F 处,延长AE 交BC 的延长线于点G . (1)求线段CE 的长;(2)如图2,M ,N 分别是线段AG ,DG 上的动点(与端点不重合),且∠DMN =∠DAM ,设AM =x ,DN =y . ①写出y 关于x 的函数解析式,并求出y 的最小值;②是否存在这样的点M ,使△DMN 是等腰三角形?若存在,请求出x 的值;若不存在,请说明理由.【例3】抛物线2(0)y ax bx c a =++≠与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点(0,4)C -.已知(2,0)A -,抛物线的对称轴l 交x 轴于点(1,0)D . (1)求出,,a b c 的值;(2)如图1,连接BC ,点P 是线段BC 下方抛物线上的动点,连接,PB PC .点,M N 分别在y 轴,对称轴l 上,且MN y ⊥轴.连接,AM PN .当PBC ∆的面积最大时,请求出点P 的坐标及此时AM MN NP ++的最小值;(3)如图2,连接AC ,把AOC ∆按照直线y x =对折,对折后的三角形记为A OC ∆'',把A OC ∆''沿着直线BC 的方向平行移动,移动后三角形的记为A O C ∆''''',连接DA '',DC '',在移动过程中,是否存在DA C ∆''''为等腰三角形的情形?若存在,直接写出点C ''的坐标;若不存在,请说明理由.【例4】如图在锐角△ABC 中,BC =6,高AD =4,两动点M 、N 分别在AB 、AC 上滑动(不包含端点),且MN ∥BC,以MN 为边长向下作正方形MPQN,设MN =x,正方形MPQN 与△ABC 公共部分的面积为y . (1)如图(1),当正方形MPQN 的边P 恰好落在BC 边上时,求x 的值;(2)如图(2),当PQ 落△ABC 外部时,求出y 与x 的函数关系式(写出x 的取值范围)并求出x 为何值时y 最大,最大是多少?【例5】如图,抛物线y=12-x2+mx+m(m>0)的顶点为A,交y轴于点C.(1)求出点A的坐标(用含m的式子表示);(2)若直线y=﹣x+n经过点A,与抛物线交于另一点B,证明:AB的长是定值;(3)连接AC,延长AC交x轴于点D,作直线AD关于x轴对称的直线,与抛物线分别交于E、F两点.若∠ECF=90°,求m的值.【例6】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B 点的坐标为(3,0),与y轴交于点C(0,﹣3).(1)求二次函数解析式;(2)若点Q为抛物线上一点,且S△ABQ=12S△ACQ,求点Q的坐标;(3)若直线l:y=mx+n与抛物线有两个交点M,N(M在N的左边),P为抛物线上一动点(不与M,N重合).过P作PH平行于y轴交直线l于点H,若HM HNHP⋅=5,求m的值.【变式训练】1.如图,抛物线y =ax 2+4x +c (a ≠0)与反比例函数y =5x的图象相交于点B ,且点B 的横坐标为5,抛物线与y 轴交于点C (0,6),A 是抛物线的顶点,P 和Q 分别是x 轴和y 轴上的两个动点,则AQ +QP +PB 的最小值为_____.2.如图,在平面直角坐标系中,菱形OABC 的顶点 A 在 x 轴正半轴上,顶点 C 的坐标为(4,3),D 是抛物线 y =﹣x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为__________3.己知抛物线2114y x =+具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线2114y x =+上一个动点,则△PMF 周长的最小值是__________.4.如图,在Rt △ABC 中,∠BAC =90°,AB =AC =16cm ,AD 为BC 边上的高,动点P 从点A 出发,沿A →D 方向以2/s 的速度向点D 运动,过P 点作PE ∥BC 交AC 于点E ,过E 点作EF ⊥BC 于点F ,设△ABP 的面积为S 1,四边形PDFE 的面积为S 2,则点P 在运动过程中,S 1+S 2的最大值为______.5.在平面直角坐标系中,已知()A 2,4、()P 1,0,B 为y 轴上的动点,以AB 为边构造ABC V ,使点C 在x 轴上,BAC 90.M ∠=o 为BC 的中点,则PM 的最小值为______.6.如图,在平面直角坐标系中,抛物线y=﹣x 2+4x 与x 轴交于点A,点M 是x 轴上方抛物线上一点,过点M 作MP ⊥x 轴于点P,以MP 为对角线作矩形MNPQ,连结NQ,则对角线NQ 的最大值为_________.7.如图,在平面直角坐标系中,过A (-1,0)、B (3,0)两点的抛物线交y 轴于点C,其顶点为点D,设△ACD 的面积为S 1,△ABC 的面积为S 2.小芳经探究发现:S 1︰S 2是一个定值.这个定值为________.8.如图,在平面直角坐标系中,有二次函数23333y x x =--+,顶点为H ,与x 轴交于A 、B 两点(A 在B 左侧),易证点H 、B 关于直线3:33l y x =+对称,且A 在直线l 上.过点B 作直线//BK AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,则HN NM MK ++的最小值为________9.如图,抛物线2(0)y ax bx c a =++≠与直线1y x =+相交于(1,0)A -,(4,)B m 两点,且抛物线经过点(5,0)C(1)求抛物线的解析式.(2)点P 是抛物线上的一个动点(不与点A 点B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E .当2PE ED =时,求P 点坐标;(3)如图所示,设抛物线与y 轴交于点F ,在抛物线的第一象限内,是否存在一点Q ,使得四边形OFQC 的面积最大?若存在,请求出点Q 的坐标;若不存在,说明理由.10.如图,在矩形ABCD 中,AB=18,AD=12,点M 是边AB 的中点,连结DM,DM 与AC 交于点G ,点E,F 分别是CD 与DG 上的点,连结EF,(1)求证:CG=2AG .(2)若DE=6,当以E,F,D 为顶点的三角形与△CDG 相似时,求EF 的长.(3)若点E 从点D 出发,以每秒2个单位的速度向点C 运动,点F 从点G 出发,以每秒1个单位的速度向点D 运动.当一个点到达,另一个随即停止运动.在整个运动过程中,求四边形CEFG 的面积的最小值.11.如图①,抛物线y=a(x 2+2x-3)(a≠0)与x 轴交于点A 和点B,与y 轴交于点C,且OC=OB.(1)直接写出点B 的坐标是( , ),并求抛物线的解析式;(2)设点D 是抛物线的顶点,抛物线的对称轴是直线l,连接BD,线段OC 上的点E 关于直线l 的对称点E'恰好在线段BD 上,求点E 的坐标;(3)若点F 为抛物线第二象限图象上的一个动点,连接BF,CF,当△BCF 的面积是△ABC 面积的一半时,求此时点F 的坐标.12.如图,抛物线y =﹣x 2+mx +2与x 轴交于点A ,B ,与y 轴交于点C ,点A 的坐标为(1,0) (1)求抛物线的解析式(2)在抛物线的对称轴l 上找一点P ,使PA +PC 的值最小,求出点P 的坐标 (3)在第二象限内的抛物线上,是否存在点M ,使△MBC 的面积是△ABC 面积的12?若存在,求出点M 的坐标,若不存在,请说明理由.13.如图,抛物线212y x mx n =++交x 轴于A 、B 两点,直线y=kx+b 经过点A,与这条抛物线的对称轴交于点M (1,2),且点M 与抛物线的顶点N 关于x 轴对称.(1)求抛物线的函数关系式;(2)设题中的抛物线与直线的另一交点为C,已知P(x,y)为线段AC上一点,过点P作PQ⊥x轴,交抛物线于点Q.求线段PQ的最大值及此时P坐标;(3)在(2)的条件下,求△AQC面积的最大值.14.如图,抛物线y=﹣12x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.(3)连接AD并延长,过抛物线上一点Q(Q不与A重合)作QN⊥x轴,垂足为N,与射线交于点M,使得QM=3MN,若存在,请直接写出点Q的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,点A在抛物线y=- x2 + 4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB 的长.(2)点P 为线段AB .上方抛物线上的任意一点,过点P 作AB 的垂线交AB 于点H,点F 为y 轴上一点,当∆PBE 的面积最大时,求PH + HF + 12FO 的最小值. (3)在(2)中,PH+HF+12方FO 取得最小值时,将∆CFH 绕点C 顺时针旋转60°后得到∆CF'H',过点F'作CF'的垂线与直线AB 交于点Q,点R 为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S 为顶点的四边形为菱形,若存在,请直接写出点S 的坐标,若不存在,请说明理由.16.已知,二次函数24y x x c =-+的图像与x 轴的一个交点为O(0,0),点P (m,0)是x 轴正半轴上的一个动点.(1)如图1,求二次函数的图像与x 轴另一个交点的坐标; (2)如图2,过点P 作x 轴的垂线交直线33y x =与点C,交二次函数图像于点D, ①当PD=2PC 时,求m 的值;如图3,已知A (3,-3)在二次函数图像上,连结AP,求12AP OP +的最小值;(3如图4,在第(2)小题的基础上,作直线OD,作点C关于直线OD的对称点C’,当C’落在坐标轴上时,请直接写出m的值.17.如图1,已知抛物线y =ax2+bx +c 经过A(-3,0),B (1,0 ),C (0,3 )三点,其顶点为D,对称轴是直线l , l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求∆PBC 周长的最小值;(3)如图2,若 E 是线段AD 上的一个动点(E 与A, D 不重合),过 E 点作平行于y 轴的直线交抛物线于点 F ,交x 轴于点G ,设点 E 的横坐标为m ,四边形AODF 的面积为S 。
专题四几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。
几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。
【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB 的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN 最小,请直接写出这个最小值.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.类型二 【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线k y x=相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.类型三 【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y =x 2+bx +c 的图象与x 轴交于点A (1,0)、B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;(3)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.B C M N为顶点(4)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以,,,的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.【新题训练】1.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x +c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND 长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标.2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y =x (x ﹣b )﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h 有最大值或最小值,直接写出这个最大值或最小值.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.9.(2020·山东初三期末)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q (2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P 点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.10.(2020·盘锦市双台子区第一中学初三月考)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB 的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.11.(2020·四川初三)如图,一次函数122y x=-+的图像与坐标轴交于A、B两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.12.(2019·广东初三)如图,已知抛物线y =﹣3x 2+bx +c 与x 轴交于原点O 和点A (6,0),抛物线的顶点为B .(1)求该抛物线的解析式和顶点B 的坐标;(2)若动点P 从原点O 出发,以每秒1个长度单位的速度沿线段OB 运动,设点P 运动的时间为t (s ).问当t 为何值时,△OPA 是直角三角形?(3)若同时有一动点M 从点A 出发,以2个长度单位的速度沿线段AO 运动,当P 、M 其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t (s ),连接MP ,当t 为何值时,四边形ABPM 的面积最小?并求此最小值.13.(2019·山东初三期中)如图,已知抛物线经过两点A (﹣3,0),B (0,3),且其对称轴为直线x =﹣1.(1)求此抛物线的解析式.(2)若点Q 是对称轴上一动点,当OQ +BQ 最小时,求点Q 的坐标.(3)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点B ),求△PAB 面积的最大值,并求出此时点P 的坐标.14.(2019·四川中考真题)如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q的坐标;若不存在,请说明理由.15.(2019·天津中考真题)已知抛物线2y x bx c =-+(b c ,为常数,0b >)经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点. (Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值; (Ⅲ)点1(,)2Q Q b y +在抛物线上,当22AM QM +的最小值为332时,求b 的值. 16.(2019·湖南中考真题)如图,抛物线y =ax 2+bx (a >0)过点E (8,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左侧),点C 、D 在抛物线上,∠BAD 的平分线AM 交BC 于点M ,点N 是CD 的中点,已知OA =2,且OA :AD =1:3.(1)求抛物线的解析式;(2)F 、G 分别为x 轴,y 轴上的动点,顺次连接M 、N 、G 、F 构成四边形MNGF ,求四边形MNGF 周长的最小值;(3)在x 轴下方且在抛物线上是否存在点P ,使△ODP 中OD 610求出点P 的坐标;若不存在,请说明理由;(4)矩形ABCD 不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K 、L ,且直线KL 平分矩形的面积时,求抛物线平移的距离.17.(2019·辽宁中考真题)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线经过点D (﹣2,﹣3)和点E (3,2),点P 是第一象限抛物线上的一个动点.(1)求直线DE 和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标; (3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =22,动点Q 从点P 出发,沿P →M →N →A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.18.(2019·湖南中考真题)已知抛物线2(0)y ax bx c a =++≠过点(1,0)A ,(3,0)B 两点,与y 轴交于点C ,=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当PBC ∆面积最大时,求点P 的坐标; (4)若点Q 为线段OC 上的一动点,问:12AQ QC +是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.专题四 几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
隐形圆问题一、确定动点轨迹是圆【例题1】如图,已知圆C的半径为3,圆外一定点O满足OC=5,点P为圆C上一动点,经过点O的直线l上有两点A,且OA=OB,∠APB=90°,l不过点C,则AB的最小值为【举一反三】1、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A’MN,连接A’C,则A’C长度的最小值是第1题第2题2、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E 为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是3、如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.当PB=6时,在直线l变化过程中,则△ACB’面积的最大值是.4、如图,矩形ABCD中,AB=4,BC=8,P、Q分別是直线BC、AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF、PD,则PF+PD的最小值是二、定边对直角知识回顾:直径所对的圆周角是直角构造思路:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.图形释义:若AB是一条定线段,且∠APB-90°,则P点轨迹是以AB为直径的圆【例题1】已知正方形ABCD边长为2,E、F分别是BC、CD上的动点,且满足BE=CF,连接AE、BF,交点为P点,则PC的最小值为【举一反三】1、如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG于点H,若正方形边长为2,则线段DH长度的最小值是2、如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB =∠PBC,则线段CP长的最小值是3、如图,AB是半圆O的直径,点C在半圆O上,AB=5,AC=4.D是弧BC上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为4、如图,在Rt△ABC中,∠BAC=90°,AC=12,AB=10,点D是AC上的一个动点,以AD为直径作圆O,连接BD交圆O于点E,则AE的最小值为5、如图,正方形ABCD的边长为4,动点E、F分別从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF的垂线BG,垂足为点G,连接AG,则AG长的最小值为【辅助圆+将军饮马】如图,正方形ABCD的边长是4,点E是AD边上一动点,连接BE,过点A作AF⊥BE于点F,点P是AD边上另一动点,则PC+PF的最小值为【辅助圆+相切】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,D是BC上一动点,CE⊥AD于E,EF⊥AB交BC于点F,则CF的最大值是三、定边对定角在“定边对直角”问题中,依据“直径所对的圆周角是直角”,关键性在于寻找定边、直角,而根据圆周角定理:同圆或等圆中,同弧或等弧所対的圆周角都相.定边必不可少,而直角则可一般为定角.例如,AB为定值,∠P为定角,则P点轨迹是一个圆.当然,∠P度数也是特殊角,比如30°、45°、60°、120°,下面分别作对应的轨迹圆若∠P=30°,以AB为边,同侧构造等边三角形AOB,O即为圆心若∠P=45°,以AB为斜边,同侧构造等腰直角三角形AOB,O即为圆心.若∠P=60°,以AB为底,同侧构造顶角为120°的等腰三角形AOB,O即为圆心.若∠P=120°,以AB为底,异侧为边构造顶角为120°的等腰三角形AOB,O即为圆心.【例题1】如图,等边△ABC边长为2,E、F分別是BC、CA上两个动点,且BE=CF,连接AE、BF,交点为P点,则CP的最小值为【举一反三】1、如图,△ABC为等边三角形,AB=3,若P为△ABC内一动点,且满足∠P AB=∠ACP,则线段PB长度的最小值为2、在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是3、如图,AB是圆O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上一动点,∠ACB 的角平分线交圆O于点D,∠BAC的平分线交CD于点E,当点C从点M运动到点N时,则C、E两点的运动路径长的比是。
2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆)【知识背景】阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。
阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。
【定 义】阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。
即:)1(≠=k k PBPA,如下图所示:上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。
【几何证明】证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。
但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理若AD 是∠BAC 的角平分线,则有:CDBDAC AB =。
即“两腰之比”等于“两底边之比”。
其逆定理也成立:即CDBDAC AB =,则有:AD 是∠BAC 的角平分线。
知识点2:外角平分线定理及其逆定理若AD 是△ABC 外角∠EAC 的角平分线,则有CDBDAC AB =。
即“两腰之比”等于“两底边之比”。
其逆定理也成立:即CDBDAC AB =,则有:AD 是外角∠EAC 的角平分线。
【阿氏圆的证明】有了上述两个知识储备后,我们开始着手证明阿氏圆。
①如上图,根据阿氏圆的定义: 当P 点位于图中P 点位置时有:k PB PA =,当P 点位于图中N 点位置时有:k NBNA=, 所以有:NBNAPB PA =,所以PN 是∠APB 的角平分线,∴∠1=∠2. 当P 点位于图中M 点位置时有:PBPAk MB MA ==, 所以有:MBMNPB PA =,所以PM 是∠EPA 的角平分线,∴∠3=∠4. 又∵∠1+∠2+∠3+∠4=180° ∴2∠1+2∠3=180° ∴∠1+∠3=90°故∠MPN=90°,所以动点P 是在以MN 为直线的圆上。
2020中考数学 压轴专题 二次函数中的最值问题(含答案)1. 如图,已知c <0,抛物线y =x 2+bx +c 与x 轴交于A (x 1,0),B (x 2,0)两点(x 2>x 1),与y 轴交于点C . (Ⅰ)若x 2=1,BC =5,求函数y =x 2+bx +c 的最小值;(Ⅱ)过点A 作AP ⊥BC ,垂足为P (点P 在线段BC 上),AP 交y 轴于点M .若OA OM=2,求抛物线y =x 2+bx +c 顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.第1题图解:(Ⅰ)∵x 2=1,∴OB =1,∵BC =5, ∴OC =22BC OB =2,∴C (0,-2),把B (1,0),C (0,-2)代入y =x 2+bx +c ,得:0=1+b -2,解得:b =1,∴抛物线的解析式为:y =x 2+x -2.转化为y =(x +12)2-94; ∴函数y =x 2+bx +c的最小值为-94; (Ⅱ)∵∠OAM +∠OBC =90°,∠OCB +∠OBC =90°,∴∠OAM =∠OCB ,又∵∠AOM =∠BOC =90°,∴△AOM ∽△COB ,∴OA OC OM OB =,满足点P在线段BC上的x最小取值,使P、C、M重合,根据根与系数的关系,对于x2+bx+c=0,由c=2b-4,解得c=-1,2.已知抛物线y=ax2+bx+c(a<0)过(m,b),(m+1,a)两点, (Ⅰ)若m=1,c=1,求抛物线的解析式;(Ⅱ)若b≥a,求m的取值范围;(Ⅲ)当b≥a,m<0时,二次函数y=ax2+bx+c有最大值-2,求a的最大值. 解:(Ⅰ)∵m=1,c=1,∴抛物线的解析式为y=ax2+bx+1(a<0)过(1,b),(2,a)两点,∴1421a b ba b a++=⎧⎨++=⎩,解得11ab=-⎧⎨=⎩,∴抛物线的解析式为y=-x2+x+1;(Ⅱ)依题意得22(1)(1)am bm c ba mb mc a⎧++=⎪⎨++++=⎪⎩①②,由②-①得b=-am,∵b≥a,∴-am≥a,∵a<0,∴m≥-1;(Ⅲ) 由(Ⅱ)得b=-am,代入①得am2-am2+c=b,∴c=b=-am,∵b≥a,m<0,∴-1≤m<0,∵二次函数y=ax2+bx+c有最大值-2,∴244ac ba-=-2,∴8a=m2+4m,∴8a= (m+2)2-4,∵-1≤m<0,∴-3≤(m+2)2-4<0,∴a≤-8 3 ,∴a的最大值为-8 3 .3.平面直角坐标系xOy中,抛物线y=mx2-2m2x+2交y轴于A点,交直线x=4于B点.(Ⅰ)求抛物线的对称轴(用含m的代数式表示);(Ⅱ)若AB∥x轴,求抛物线的解析式;(Ⅲ)若抛物线在A,B之间的部分任取一点P(x p,y p),一定满足y p≤2,求m的取值范围.∴抛物线的对称轴为直线x=m;(Ⅱ)当x=0时,y=mx2-2m2x+2=2,∴点A(0,2).∵AB∥x轴,且点B在直线x=4上,∴点B(4,2),抛物线的对称轴为直线x=2,∴m=2,∴抛物线的解析式为y=2x2-8x+2;(Ⅲ)当m>0时,如解图①,∵A(0,2),∴要使0≤x p≤4时,始终满足y p≤2,只需使抛物线y=mx2-2m2x+2的对称轴与直线x=2重合或在直线x=2的右侧.∴m≥2;当m<0时,如解图②,m<0时,y p≤2恒成立.综上所述,m的取值范围为m<0或m≥2.第3题解图4.已知抛物线y=ax2+bx+c的顶点为(2,5),且与y轴交于点C(0,1).(Ⅰ)求抛物线的表达式;(Ⅱ)若-1≤x≤3,试求y的取值范围;(Ⅲ)若M(n2-4n+6,y1)和N(-n2+n+74,y2)是抛物线上的不重合的两点,试判断y1与y2的大小,并说明理由.解:(Ⅰ)∵抛物线y=ax2+bx+c的顶点为(2,5),∴设抛物线的表达式为:y=a(x-2)2+5,把(0,1)代入得:a(0-2)2+5=1,a=-1,∴抛物线的表达式为:y=-(x-2)2+5=-x2+4x+1;(Ⅱ)∵抛物线的顶点为(2,5),a=-1,对称轴为直线x=2,且-1≤x≤3,∴当x=-1时,y有最小值,最小值为y=-(-1-2)2+5=-4,当x=2时,y有最大值,最大值为y=5,∴y的取值范围是-4≤y≤5;(Ⅲ)∵n2-4n+6=(n-2)2+2≥2,-n2+n+74=-(n-12)2+2≤2,∴点M在抛物线对称轴右侧,点N在抛物线对称轴左侧,∵N(-n2+n+74,y2),∴点N关于对称轴对称的点坐标为(n2-n+94,y2),∵在抛物线对称轴右侧,y随x的增大而减小,5.b, m2-mb+n),其中a,b,c,m,n为实数,且a,m不为0.(Ⅰ)求c的值;(Ⅱ)求证:抛物线y=ax2+bx+c与x轴有两个交点;(Ⅲ)当-1≤x≤1时,设抛物线y=ax2+bx+c上与x轴距离最大的点为P(x0,y0),求这时|y0|的最小值.把点(m-b,m2-mb+n)代入抛物线,得:a(m-b)2+b(m-b)+c=m2-mb+n∴a(m-b)2+b(m-b)=m2-mb,am2-2abm+ab2+bm-b2-m2+mb=0,(a-1)m2-(a-1)•2bm+(a-1)b2=0,(a-1)(m2-2bm+b2)=0,(a-1)(m-b)2=0,若∴a=1,∴抛物线y=ax2+bx+c与x轴有两个交点;大的点的纵坐标为h,在x轴下方与x轴距离最大的点是(-1,y0),∴|H|>|h|,当b=0时等号成立,在x轴上方与x轴距离最大的点是(-1,y0),在x轴下方与x轴距离最大的点是(1,y0),∴|H|>|h|,6.在平面直角坐标系中,直线l:y=x+3与x轴交于点A,抛物线C:y=x2+mx+n的图象经过点A.(Ⅰ)当m=4时,求n的值;(Ⅱ)设m=-2,当-3≤x≤0时,求二次函数y=x2+mx+n的最小值;(Ⅲ)当-3≤x≤0时,若二次函数y=x2+mx+n时的最小值为-4,求m、n的值.解:(Ⅰ)当y=x+3=0时,x=-3,∴点A 的坐标为(-3,0).∵二次函数y =x 2+mx +n 的图象经过点A ,∴0=9-3m +n ,即n =3m -9,∴当m =4时,n =3m -9=3;当m =-2时,对称轴为x =1,n =3m -9=-15,∴当-3≤x ≤0时,y 随x 的增大而减小,∴当x =0时,二次函数y =x 2+mx +n 取得最小值,最小值为-15.在-3≤x ≤0范围内,y 随x 的增大而增大,当x =-3时,y 取得最小值0,不符合题意;∵二次函数最小值为-4, 解得:23m n -⎧⎨⎩==或1021m n ⎧⎨⎩==(舍去), ∴m =2,n =-3;∴4930n m n --+⎧⎪⎨⎪⎩==, 综上所述:m =2,n =-3.7. 在平面直角坐标系中,抛物线y =x 2-2x +c (c 为常数)的对称轴为x =1.(Ⅰ)当c=-3时,点(x1,y1)在抛物线y=x2-2x+c上,求y1的最小值;(Ⅲ)当-1<x<0时,抛物线与x轴有且只有一个公共点,求c的取值范围. 解:(Ⅰ)当c=-3时,抛物线为y=x2-2x-3,∴抛物线开口向上,有最小值,∴y1的最小值为-4;(Ⅱ)抛物线与x轴有两个交点,①当点A、B都在原点的右侧时,如解图①,∴B(2m,0),∵二次函数y=x2-2x+c的对称轴为x=1,∵点A在抛物线y=x2-2x+c上,②当点A在原点的左侧,点B在原点的右侧时,如解图②,∴B(2n,0),由抛物线的对称性得n+1=2n-1,解得n=2,∴A(-2,0),∵点A 在抛物线y =x2-2x +c 上,∴0=4+4+c ,解得c =-8,此时抛物线的解析式为y =x 2-2x -8,综上,抛物线的解析式为y =x 2-2x +89或y =x 2-2x -8;(Ⅲ)∵抛物线y =x 2-2x +c 与x 轴有公共点,∴对于方程x 2-2x +c =0,判别式b 2-4ac =4-4c ≥0,∴c ≤1.当x =-1时,y =3+c ;当x =0时,y =c ,∵抛物线的对称轴为x =1,且当-1<x <0时,抛物线与x 轴有且只有一个公共点,∴3+c >0且c <0,解得-3<c <0,综上,当-1<x <0时,抛物线与x 轴有且只有一个公共点时,c 的取值范围为-3<c <0.第7题解图8. 已知抛物线 y =(m -1)x 2+(m -2)x -1与x 轴交于A 、B 两点.(Ⅰ)求m 的取值范围;(Ⅱ)若m <0,且点A 在点B 的左侧,OA :OB =3:1,试确定抛物线的解析式;(Ⅲ)设(Ⅱ)中抛物线与y 轴的交点为C ,过点C 作直线l ∥x 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,抛物线的其余部分保持不变,得到一个新图象.当直线y =-x +b 与新图象只有一个公共点P (x 0,y 0)且 y 0≥-5时,求b 的取值范围.解:(Ⅰ)∵抛物线y =(m -1)x 2+(m -2)x -1与x 轴交于A 、B 两点,∴()210241)0(m m m -≠-+⎩-⎧⎨>①②, 由①得m ≠1,由②得m ≠0,∴m的取值范围是m≠0且m≠1;(Ⅱ)∵点A、B是抛物线y=(m-1)x2+(m-2)x-1与x轴的交点,∴令y=0,即 (m-1)x2+(m-2)x-1=0.∵m<0,∵点A在点B左侧,∵OA:OB=3:1,∴m=-2.∴抛物线的解析式为y=-3x2−4x−1.(Ⅲ)∵点C是抛物线y=-3x2−4x−1与y轴的交点,∴点C的坐标为(0,-1).依题意翻折后的图象如解图所示.令y=-5,即-3x2−4x−1=-5.∴新图象经过点D(-2,-5).当直线y=-x+b经过D点时,可得b=-7.当直线y=-x+b经过C点时,可得b=-1.当直线y=-x+b(b>−1)与函数y=-3x2−4x−1的图象仅有一个公共点P(x0,y0)时,得-x0+b=-3x02−4x0−1.整理得 3x02+3x0+b+1=0.由32-12(b+1)=-12b-3=0,得b=−1 4 .结合图象可知,符合题意的b的取值范围为-7≤b<-1或b>−1 4 .第8题解图9.如图,二次函数y=-x2+2(m-2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(Ⅰ)求m的值及顶点D的坐标;(Ⅱ)当a≤x≤b时,函数y的最小值为74,最大值为4,求a,b应满足的条件;(Ⅲ)在y轴右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.解:(Ⅰ)把A(3,0)代入y=-x2+2(m-2)x+3,得-9+6(m-2)+3=0,解得m=3,则二次函数为y=-x2+2x+3,∵y=-x2+2x+3=-(x-1)2+4,∴顶点D的坐标为(1,4);(Ⅱ)把y=74代入y=-x2+2x+3中,得74=-x2+2x+3,解得x1=-12,x2=25,又∵函数y的最大值为4,顶点D的坐标为(1,4),结合图象知-12≤a≤1.当a=-12时,1≤b≤25,当-12<a≤1时,b=25;(Ⅲ)存在点P,使得△PDC是等腰三角形,当x=0时,y=3,∴点C坐标为(0,3).当△PDC是等腰三角形时,分三种情况:①如解图①,当DC=DP时,由抛物线的对称性知:点P与点C关于抛物线的对称轴x=1对称,∴点P坐标为(2,3);②如解图②,当PC=PD时,则线段CD的垂直平分线l与抛物线的交点即为所求的点P, 过点D作x轴的平行线交y轴于点H,过点P作PM⊥y轴于点M,PN⊥DH的延长线于点N,∵HD=HC=1,PC=PD,∴HP是线段CD的垂直平分线.∵HD=HC,HP⊥CD,∴HP平分∠MHN,∵PM⊥y轴于点M,PN⊥HD的延长线于点N,∴PM=PN.设P(m,-m2+2m+3),则m=4-(-m2+2m+3),解得m=253,∴点P的坐标为(253-,255+)(解图中未标记此点)或(253+,255-);③如解图③,当CD=CP时,点P在y轴左侧,不符合题意.综上所述,所求点P的坐标为(2,3)或(253-,255+)或(253+,255-).图①图②图③第9题解图。
【中考数学二轮核心考点讲解】第03讲最值问题专题最值的种类你是否都提前总结过?1. 垂线段最值类型:2. 点与点之间,线段最短类型;3. 轴对称最值类型(也称将军饮马型);4. 二次函数最值类型;5. 辅助圆中最值类型;6. 费马点最值类型;7. 胡不归最值类型;8. 阿波罗尼斯圆最值类型.【例题1】(2019•鸡西)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为.【分析】本题属于“将军饮马最值类型”【解析】如图,作PM⊥AD于M,作点D关于直线PM的对称点E,连接PE,EC.设AM=x.∵四边形ABC都是矩形,∴AB∥CD,AB=CD=4,BC=AD=6,∵S△P AB=S△PCD,∴×4×x=××4×(6﹣x),∴x=2,∴AM=2,DM=EM=4,在Rt△ECD中,EC==4,∵PM垂直平分线段DE,∴PD=PE,∴PC+PD=PC+PE≥EC,∴PD+PC ≥4,∴PD+PC的最小值为4.【例题2】在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分BAE∠,90ACE∠=︒,则线段AE、AB、DE的长度满足的数量关系为AE AB DE=+;(直接写出答案)(2)如图(2),AC平分BAE∠,EC平分AED∠,若120ACE∠=︒,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),8BD=,2AB=,8DE=,若135ACE=︒,求线段AE长度的最大值.【分析】本题属于“两点之间,线段最短类型”【解析】(1)AE AB DE=+;理由:在AE上取一点F,使AF AB=.易得=AE AF EF AB DE=++(2)猜想:12AE AB DE BD=++.证明:在AE上取点F,使AF AB=,连结CF,在AE上取点G,使EG ED=,连结CG.CQ是BD边的中点,12CB CD BD∴==.ACQ平分BAE∠,BAC FAC∴∠=∠.在ACB∆和ACF∆中,AB AFBAC FACAC AC=⎧⎪∠=∠⎨⎪=⎩,()ACB ACF SAS∴∆≅∆,CF CB∴=,BCA FCA∴∠=∠.同理可证:CD CG=,DCE GCE∴∠=∠.CB CD=Q,CG CF∴=120ACE∠=︒Q,18012060BCA DCE∴∠+∠=︒-︒=︒.60FCA GCE∴∠+∠=︒.60FCG∴∠=︒.FGC∴∆是等边三角形.12FG FC BD ∴==. AE AF EG FG =++Q .12AE AB DE BD ∴=++.(3)作B 关于AC 的对称点F ,D 关于EC 的对称点G ,连接AF ,FC ,CG ,EG ,FG . C Q 是BD 边的中点,12CB CD BD ∴==.()ACB ACF SAS ∆≅∆Q ,CF CB ∴=,BCA FCA ∴∠=∠.同理可证:CD CG =,DCE GCE ∴∠=∠ CB CD =Q ,CG CF ∴= 135ACE ∠=︒Q ,18013545BCA DCE ∴∠+∠=︒-︒=︒. 45FCA GCE ∴∠+∠=︒. 90FCG ∴∠=︒.FGC ∴∆是等腰直角三角形.12FC BD ∴=.8BD =Q , 4FC ∴=, 42FG ∴=. 42AE AB DE =++Q . 2AB =Q ,8DE =,1042AE AF FG EG ∴++=+….∴当A 、F 、G 、E 共线时AE 的值最大2,最大值为1042+.故答案为:1042+. 【例题3】(2019•普洱一模)已知菱形ABCD 中,AB =5,∠B =60°,⊙A 的半径为2,⊙B 的半径为3,点E 、F 分别为⊙A 、⊙B 上的动点,点P 为DC 边上的动点,则PE +PF 的最小值为 5 .【分析】本题属于“轴对称最值类型”【解析】当P 与C 重合时,F 点在BC 上,E 点在AC 上,此时PE +PF 的值最小; 连接AC ,∵菱形ABCD ,AB =5,∠B =60°, ∴AC =5,∵⊙A 的半径为2, ∴EC =3,∵⊙B 的半径为3, ∴FC =2, ∴PE +PF =5;故答案为5;【例题4】(2019•玉林)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A.5 B.6 C.7 D.8【分析】本题属于“圆中常规最值类型”【解析】如图,设⊙O与AC相切于点D,连接OD,作OP⊥BC垂足为P交⊙O于F,此时垂线段OP最短,PF最小值为OP﹣OF,∵AC=4,BC=3,∴AB=5∵∠OPB=90°,∴OP∥AC∵点O是AB的三等分点,∴OB=×5=,==,∴OP=,∵⊙O与AC相切于点D,∴OD⊥AC,∴OD∥BC,∴==,∴OD=1,∴MN最小值为OP﹣OF=﹣1=,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值=+1=,∴MN长的最大值与最小值的和是6.故选:B.【例题5】如图,四边形的两条对角线AC、BD相交所成的锐角为60︒,当8+=时,四边形ABCDAC BD的面积的最大值是.【分析】本题属于“二次函数最值类型”【解析】ACQ与BD所成的锐角为60︒,∴根据四边形面积公式,得四边形ABCD 的面积1sin602S AC BD =⨯⨯︒, 设AC x =,则8BD x =-, 所以2133(8)(4)43224S x x x =-⨯=--+, 所以当4x =,S 有最大值43. 故答案为:43.【例题6】(2019•上虞区一模)如图,已知ABC ∆,DEF ∆均为等腰直角三角形,102EF =,顶点D ,E 分别在边AB ,AC 上滑动.则在滑动过程中,点A ,F 间距离的最大值为 .【分析】本题属于“辅助圆最值类型”【解析】DEF ∆均为等腰直角三角形,102EF =,10DE DF ∴==,ABC ∆Q 是等腰直角三角形,以ED 为直角作等腰直角三角形EDM ,以M 为圆心,AM 为半径作圆, 随着D 、E 点运动,A 始终在圆M 上, 当A 、M 、F 三点共线时,AF 最大; AM EM =Q , 52AM ∴=,45DEF MED ∠=∠=︒Q , 90MEF ∴∠=︒, 510MF ∴=, 52510AF ∴=+,故答案为52510+.【例题7】(2019•武汉)问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG =.点O 是△MNG 内一点,则点O 到△MNG三个顶点的距离和的最小值是.【分析】本题属于“费马点最值类型”【解析】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴P A+PC=GP+PC=GC=PE∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2【例题8】如图,在ACEe经过点C,且圆的直径AB在线段AE上.∆中,CA CE∠=︒,OCAE=,30(1)试说明CE是Oe的切线;(2)若ACEe的直径AB;∆中AE边上的高为h,试用含h的代数式表示O(3)设点D 是线段AC 上任意一点(不含端点),连接OD ,当12CD OD +的最小值为6时,求O e 的直径AB 的长.【分析】本题属于“胡不归最值类型” 【解析】(1)连接OC ,如图1, CA CE =Q ,30CAE ∠=︒,30E CAE ∴∠=∠=︒,260COE A ∠=∠=︒, 90OCE ∴∠=︒,CE ∴是O e 的切线;(2)过点C 作CH AB ⊥于H ,连接OC ,如图2, 由题可得CH h =.在Rt OHC ∆中,sin CH OC COH =∠g , 3sin 60h OC OC ∴=︒=g , 233OC h ∴==,432AB OC h ∴==; (3)作OF 平分AOC ∠,交O e 于F ,连接AF 、CF 、DF ,如图3, 则11(18060)6022AOF COF AOC ∠=∠=∠=︒-︒=︒.OA OF OC ==Q ,AOF ∴∆、COF ∆是等边三角形, AF AO OC FC ∴===, ∴四边形AOCF 是菱形,∴根据对称性可得DF DO =. 过点D 作DH OC ⊥于H ,OA OC =Q ,30OCA OAC ∴∠=∠=︒, 1sin sin302DH DC DCH DC DC ∴=∠=︒=g g , ∴12CD OD DH FD +=+. 根据垂线段最短可得:当F 、D 、H 三点共线时,DH FD +(即1)2CD OD +最小,此时3sin 6FH OF FOH OF =∠==g , 则43OF =,283AB OF ==.∴当12CD OD +的最小值为6时,O e 的直径AB 的长为83.【例题9】阅读以下材料,并按要求完成相应的任务. 已知平面上两点A 、B ,则所有符合(0PAk k PB=>且1)k ≠的点P 会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆. 阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标中,在x 轴,y 轴上分别有点(,0)C m ,(0,)D n ,点P 是平面内一动点,且OP r =,设OPk OD=,求PC kPD +的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD 上取点M ,使得0::M OP OP OD k ==;第二步:证明kPD PM =;第三步:连接CM ,此时CM 即为所求的最小值. 下面是该题的解答过程(部分):解:在OD 上取点M ,使得::OM OP OP OD k ==, 又POD MOP ∠=∠Q ,~POM DOP ∴∆∆…… 任务:(1)将以上解答过程补充完整.(2)如图2,在Rt ABC ∆中,90ACB ∠=︒,4AC =,3BC =,D 为ABC ∆内一动点,满足2CD =,利用(1)中的结论,请直接写出23AD BD +的最小值.【分析】本题属于“阿波罗尼斯圆最值类型”【解析】解(1)在OD 上取点M ,使得::OM OP OP OD k ==, 又POD MOP ∠=∠Q , ~POM DOP ∴∆∆. :MP PD k ∴=, MP kPD ∴=,PC kPD PC MP ∴+=+,当PC kPD +取最小值时,PC MP +有最小值, 即C ,P ,M 三点共线时有最小值,利用勾股定理得2222222()CM OC OM m kr m k r =+++.(2)4AC m==Q,23CDBC=,在CB上取一点M,使得2433CM CD==,∴23AD BD+的最小值为2244104()3+=.1.(2019•乐山)如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连结OQ.则线段OQ的最大值是()A.3 B.C.D.4【解析】连接BP,如图,当y=0时,x2﹣4=0,解得x1=4,x2=﹣4,则A(﹣4,0),B(4,0),∵Q是线段P A的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.2.(2019•泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.【解析】如图:当点F与点C重合时,点P在P 1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE当点F在EC上除点C、E的位置处时,有DP=FP由中位线定理可知:P1P∥CE且P1P=CF∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°∴∠DP2P1=90°∴∠DP1P2=45°∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长在等腰直角BCP1中,CP1=BC=2∴BP1=2∴PB的最小值是2故选:D.3.(2019•黄石)如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时=()A.B.C.D.【解析】如图,设BD与AF交于点M.设AB=a,AD=a,∵四边形ABCD是矩形,∴∠DAB=90°,tan∠ABD==,∴BD=AC==2a,∠ABD=60°,∴△ABE、△CDE都是等边三角形,∴BE=DE=AE=CE=AB=CD=a.∵将△ABD沿BD折叠,点A的对应点为F,∴BM垂直平分AF,BF=AB=a,DF=DA=a.在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,∴GM=BG=1,BM=GM=,∴DM=BD﹣BM=2a﹣.∵矩形ABCD中,BC∥AD,∴△ADM∽△GBM,∴=,即=,∴a=2,∴BE=DE=AE=CE=AB=CD=2,AD=BC=6,BD=AC=4.易证∠BAF=∠F AC=∠CAD=∠ADB=∠BDF=∠CDF=30°,∴△ADF是等边三角形,∵AC平分∠DAF,∴AC垂直平分DF,∴CF=CD=2.作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.如图,建立平面直角坐标系,则A(3,0),B(3,2),B′(3,﹣2),E(0,),易求直线B′E的解析式为y=﹣x+,∴H(1,0),∴BH==4,∴==.故选:B.4.(2019•包头)如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N在直线y=kx+b上,则b 的最大值是()A.﹣B.﹣C.﹣1 D.0【解析】连接AC,则四边形ABOC是矩形,∴∠A=∠ABO=90°,又∵MN⊥MC,∴∠CMN=90°,∴∠AMC=∠MNB,∴△AMC∽△NBM,∴,设BN=y,AM=x.则MB=3﹣x,ON=2﹣y,∴,即:y=x2+x∴当x=﹣=﹣时,y最大=×()2+=,∵直线y=kx+b与y轴交于N(0,b)当BN最大,此时ON最小,点N(0,b)越往上,b的值最大,∴ON=OB﹣BN=2﹣=,此时,N(0,)b的最大值为.故选:A.5.如图,正三角形ABC的边长为3+,在正三角形ABC中放入正方形DEMN和EFPH,使得D、E、F 在边AB上,点P、N分别在边CB、CA上,这两个正方形面积和的最小值是,最大值是99﹣54.【解析】设正方形DEMN、正方形EFPH的边长分别为m、n,它们的面积和为S,∵△ABC为等边三角形,∴∠A=∠B=60°,AB=3+,在Rt△ADN中,AD=DN=m,在Rt△BPF中,BF=PF=n,∵AD+DE+EF+BF=AB,∴m+m+n+n=3+,∴m+n=3,∴n=3﹣m,∴S=m2+n2=m2+(3﹣m)2=2(m﹣)2+当点M落在BC上,则正方形DEMN的边长最小,正方形EFPH的边长最大,如图,在Rt△ADN中,AD=DN,AN=DN,∴DN+DN=3+,解得DN=3﹣3,在Rt△BPF中,BF=PF,∴(3﹣3)+3﹣3+EF+PF=3+,解得PF=6﹣9,∴6﹣3≤m≤3﹣3,∴当m=时,S最小,S的最小值为;当m=3﹣3时,S最大,S的最大值=2(3﹣3﹣)2+=99﹣54.故答案为;99﹣54.6.如图,平面直角坐标系中,A、B在x轴上,A(2,0)、B(8,0),点C为y轴上一动点,当∠ACB最大时,C点坐标为(0,4)或(0,﹣4).【解析】当过A、B两点的⊙P与y轴正半轴相切于C时,∠ACB最大时,作PH⊥AB于H,连结PC、P A,如图,∵A(2,0)、B(8,0),∴OA=2,AB=6,∵PH⊥AB,∴AH=BH=3,∴OH=OA+AH=5,∵⊙P与y轴相切,∴PC⊥y轴,∴四边形PHOC为矩形,∴OC=PH,PC=OH=5,在Rt△P AH中,∵AH=3,P A=5,∴PH==4,∴OC=4,∴C点坐标为(0,4),当⊙P与y轴的负半轴相切时,C点坐标为(0,﹣4).故答案为(0,4)或(0,﹣4).7.(2019•威海)如图,在平面直角坐标系中,点A,B在反比例函数y=(k≠0)的图象上运动,且始终保持线段AB=4的长度不变.M为线段AB的中点,连接OM.则线段OM长度的最小值是(用含k的代数式表示).【解析】如图,因为反比例函数关于直线y=x对称,观察图象可知:当线段AB与直线y=x垂直时,垂足为M,此时AM=BM,OM的值最小,∵M为线段AB的中点,∴OA=OB,∵点A,B在反比例函数y=(k≠0)的图象上,∴点A与点B关于直线y=x对称,∵AB=4,∴可以假设A(m,),则B(m+4,﹣4),∴(m+4)(﹣4)=k,整理得k=m2+4m,∴A(m,m+4),B(m+4,m),∴M(m+2,m+2),∴OM===,∴OM的最小值为.故答案为.8.(2019•凉山州)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为4.【解析】∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.9.(2019•东营)如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M、N 分别是AC、BC的中点,则MN的最大值是.【解析】∵点M,N分别是BC,AC的中点,∴MN=AB,∴当AB取得最大值时,MN就取得最大值,当AB是直径时,AB最大,连接AO并延长交⊙O于点B′,连接CB′,∵AB′是⊙O的直径,∴∠ACB′=90°.∵∠ABC=45°,AC=5,∴∠AB′C=45°,∴AB′===5,∴MN最大=.故答案为:.10.(2019•乐山)如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x﹣2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是3.【解析】∵PQ⊥x轴,∴设P(x,),则Q(x,x﹣2),∴PQ=﹣x+2,∴S△POQ=(﹣+2)•x=﹣(x﹣2)2+3,∵﹣<0,∴△POQ面积有最大值,最大值是3,故答案为3.11.(2019•宿迁)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.【解析】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=故答案为.12.(2019•北仑区模拟)如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边BC上的一个动点,EG=EF,且∠GEF=60°,则GB+GC的最小值为2.【解析】取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;∵MN∥AD,∴HM=AE,∵HB⊥HM,AB=4,∠A=60°,∴MB=2,∠HMB=60°,∴HM=1,∴AE'=2,∴E点与E'点重合,∵∠AEB=∠MHB=90°,∴∠CBE=90°,在Rt△EBC中,EB=2,BC=4,∴EC=2,故答案为2;13.(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.【解析】∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.14.(2019•广元)如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC =60°,⊙O的半径为6,则点P到AC距离的最大值是6+3.【解析】过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC的距离最大,且点P到AC距离的最大值=PM,∵OM⊥AC,∠A=∠BPC=60°,⊙O的半径为6,∴OP=OA=6,∴OM=OA=×6=3,∴PM=OP+OM=6+3,∴则点P到AC距离的最大值是6+3,故答案为:6+3.15.(2019•眉山)如图,在Rt△AOB中,OA=OB=4.⊙O的半径为2,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ长的最小值为2.【解析】连接OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=4,∴AB=OA=8,∴OP==4,∴PQ==2.故答案为2.16.(2019•通辽)如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是﹣1.【解析】过点M作MH⊥CD交CD延长线于点H,连接CM,∵AM=AD,AD=CD=3∴AM=1,MD=2∵CD∥AB,∴∠HDM=∠A=60°∴HD=MD=1,HM=HD=∴CH=4∴MC==∵将△AMN沿MN所在直线翻折得到△A′MN,∴AM=A'M=1,∴点A'在以M为圆心,AM为半径的圆上,∴当点A'在线段MC上时,A'C长度有最小值∴A'C长度的最小值=MC﹣MA'=﹣1故答案为:﹣117(2019•营口)如图,△ABC是等边三角形,点D为BC边上一点,BD=DC=2,以点D为顶点作正方形DEFG,且DE=BC,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为8.【解析】过点A作AM⊥BC于M,∵BD=DC=2,∴DC=4,∴BC=BD+DC=2+4=6,∵△ABC是等边三角形,∴AB=AC=BC=6,∵AM⊥BC,∴BM=BC=×6=3,∴DM=BM﹣BD=3﹣2=1,在Rt△ABM中,AM===3,当点E在DA延长线上时,AE=DE﹣AD.此时AE取最小值,在Rt△ADM中,AD===2,∴在Rt△ADG中,AG===8;故答案为:8.18.(2019•舟山)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC =12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为(24﹣12)cm;连接BD,则△ABD的面积最大值为(24+36﹣12)cm2.【解析】∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED﹣CD=(12﹣6)cm∴当点E从点A滑动到点C时,点D运动的路径长=2×(12﹣6)=(24﹣12)cm如图,连接BD',AD',∵S△AD'B=S△ABC+S△AD'C﹣S△BD'C∴S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24+(12﹣4)×D'N当E'D'⊥AC时,S△AD'B有最大值,∴S△AD'B最大值=24+(12﹣4)×6=(24+36﹣12)cm2.故答案为:(24﹣12),(24+36﹣12)19.(2019•十堰)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A 旋转,当∠ABF最大时,S△ADE=6.【解析】作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.20.(2019•黄冈)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD =120°,则CD的最大值是14.【解析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,故答案为14.21.(2019•嘉兴)如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.【解析】连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=×1=,即CD的最大值为,故答案为:.22.(2019•连云港)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P 是⊙C上一个动点,连接AP交BD于点T,则的最大值是3.【解析】方法1、解:如图,过点A作AG⊥BD于G,∵BD是矩形的对角线,∴∠BAD=90°,∴BD==5,∵AB•AD=BD•AG,∴AG=,∵BD是⊙C的切线,∴⊙C的半径为过点P作PE⊥BD于E,∴∠AGT=∠PET,∵∠ATG=∠PTE,∴△AGT∽△PET,∴,∴=×PE∵==1+,要最大,则PE最大,∵点P是⊙C上的动点,BD是⊙C的切线,∴PE最大为⊙C的直径,即:PE最大=,∴最大值为1+=3,故答案为3.方法2、解:如图,过点P作PE∥BD交AB的延长线于E,∴∠AEP=∠ABD,△APE∽△ATB,∴,∵AB=4,∴AE=AB+BE=4+BE,∴,∴BE最大时,最大,∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=4,过点C作CH⊥BD于H,交PE于M,并延长交AB于G,∵BD是⊙C的切线,∴∠GME=90°,在Rt△BCD中,BD==5,∵∠BHC=∠BCD=90°,∠CBH=∠DBC,∴△BHC∽△BCD,∴,∴,∴BH=,CH=,∵∠BHG=∠BAD=90°,∠GBH=∠DBA,∴△BHG∽△BAD,∴=,∴,∴HG=,BG=,在Rt△GME中,GM=EG•sin∠AEP=EG×=EG,而BE=GE﹣BG=GE﹣,∴GE最大时,BE最大,∴GM最大时,BE最大,∵GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,∴GP'=HP'+HG=,过点P'作P'F∥BD交AB的延长线于F,∴BE最大时,点E落在点F处,即:BE最大=BF,在Rt△GP'F中,FG====,∴BF=FG﹣BG=8,∴最大值为1+=3,故答案为:3.23.(2019•无锡)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD 为一边作正方形CDEF,连接BE,则△BDE面积的最大值为8.【解析】过点C 作CG ⊥BA 于点G ,作EH ⊥AB 于点H ,作AM ⊥BC 于点M . ∵AB =AC =5,BC =4, ∴BM =CM =2, 易证△AMB ∽△CGB , ∴,即∴GB =8,设BD =x ,则DG =8﹣x , 易证△EDH ≌△DCG (AAS ), ∴EH =DG =8﹣x , ∴S △BDE ===,当x =4时,△BDE 面积的最大值为8. 故答案为8. 24.(2019秋•嘉兴期末)一副三角板(ABC ∆与)DEF ∆如图放置,点D 在AB 边上滑动,DE 交AC 于点G ,DF 交BC 于点H ,且在滑动过程中始终保持DG DH =,若2AC =,则BDH ∆面积的最大值是( )A .3B .33C .32D .33【解析】如图,作HM AB ⊥于M , 2AC =Q ,30B ∠=︒,23AB ∴=, 90EDF ∠=︒Q ,90ADG MDH ∴∠+∠=︒, 90ADG AGD ∠+∠=︒Q , AGD MDH ∴∠=∠,DG DH =Q ,90A DMH ∠=∠=︒,()ADG MHD AAS ∴∆≅∆,AD HM ∴=,设AD x =,则23BD x =-,211113(23)(3)22222BDH S BD MH BD AD x x x ∆∴===-=--+g g , BDH ∴∆面积的最大值是32,故选:C .25.如图,已知矩形ABCD ,4AB =,6BC =,点M 为矩形内一点,点E 为BC 边上任意一点,则MA MD ME ++的最小值为 433+ .【解析】将AMD ∆绕点A 逆时针旋转60︒得到△AM D '',由性质的性质可知:MD M D ='',ADD ∆'和AMM ∆'均为等边三角形, AM MM ∴=',MA MD ME D M MM ME ∴++='+'+, D M ∴'、MM '、ME 共线时最短, 由于点E 也为动点,∴当D E BC '⊥时最短,此时易求得433D E DG GE '=+=+,MA MD ME ∴++的最小值为433+.26.(2012•金牛区校级二模)如图,在△AOB 中,OA =OB =8,∠AOB =90°,矩形CDEF 的顶点C 、D 、F 分别在边AO 、OB 、AB 上,若tan CDO =,则矩形CDEF 面积的最大值s =.【解析】设CD =x ,CF =y .过F 作FH ⊥AO 于H .在 Rt △COD 中, ∵,∴.∴.∵∠FCH +∠OCD =90°,∴∠FCH =∠CDO . ∴.∴.∵△AHF 是等腰直角三角形,∴.∴AO =AH +HC +CO . ∴.∴.易知,∴当x =5时,矩形CDEF 面积的最大值为.故答案为:. 27.(2019•雁塔区校级一模)问题提出:(1)如图1,在四边形ABCD 中,AB BC =,3AD CD ==,90BAD BCD ∠=∠=︒,60ADC ∠=︒,则四边形ABCD 的面积为 33 ; 问题探究:(2)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=︒,135ABC ∠=︒,22AB =,3BC =,在AD 、CD 上分别找一点E 、F ,使得BEF ∆的周长最小,并求出BEF ∆的最小周长; 问题解决: (3)如图3,在四边形ABCD 中,2AB BC ==,10CD =,150ABC ∠=︒,90BCD ∠=︒,则在四边形ABCD 中(包含其边沿)是否存在一点E ,使得30AEC ∠=︒,且使四边形ABCE 的面积最大.若存在,找出点E 的位置,并求出四边形ABCE 的最大面积;若不存在,请说明理由.【解析】(1)AB BC =Q ,3AD CD ==,90BAD BCD ∠=∠=︒ ()ABD CBD SAS ∴∆≅∆ADB CDB ∴∠=∠,且60ADC ∠=︒30ADB CDB ∴∠=∠=︒,且90BAD BCD ∠=∠=︒ 3AB BC ∴==∴四边形ABCD 的面积1233332=⨯⨯⨯=故答案为:33(2)如图,作点B 关于AD 的对称点M ,作点B 关于CD 的对称点N ,连接MN ,交AD 于点E ,交CD 于点F ,过点M 作MG BC ⊥,交CB 的延长线于点G , Q 点B ,点M 关于AD 对称BE EM ∴=,22AB AM ==,42BM ∴=Q 点B ,点N 关于CD 对称BF FN ∴=,3BC CN ==BEF ∴∆的周长BE BF EF NF EF EM MN =++=++= 135ABC ∠=︒Q ,45GBM ∴∠=︒,且GM BG ⊥, 45GBM GMB ∴∠=∠=︒BG GM ∴=,且222BG GM BM +=, 4BG GM ∴==,43310GN BG BC CN ∴=++=++=,∴在Rt GMN ∆中,2210016229MN GM GN =+=+=BEF ∴∆的最小周长为229(3)作ABC ∆的外接圆,交CD 于点E ,连接AC ,AE ,过点A 作AM CD ⊥于点M ,作BN AM ⊥于点N , Q 四边形ABCE 是圆内接四边形 180ABC AEC ∴∠+∠=︒ 30AEC ∴∠=︒,BN AM ⊥Q ,AM CD ⊥,90BCD ∠=︒, ∴四边形BCMN 是矩形2BC MN ∴==,BN CM =,90CBN ∠=︒, 150ABC ∠=︒Q ,60ABN ∴∠=︒,且BN AM ⊥ 30BAN ∴∠=︒, 112BN AB ∴==,33AN BN == 32AM ∴=+,1CM =30AEC ∠=︒Q ,AM CE ⊥,2234AE AM ∴==+,3323ME AM ==+ 423CE CM ME AE ∴=+=+=∴点E 在AC 垂直平分线上,ABC ACE ABCE S S S ∆∆=+Q 四边形,且ABC S ∆是定值,AC 长度是定值,点E 在ABC ∆的外接圆上,∴当点E 在AC 的垂直平分线上时,ABCE S 四边形最大()()()232331223184322AMEABCE ABCM S S S ∆++∴=+=⨯++⨯+=+四边形四边形 28.(2010•滨州模拟)如图,在平面直角坐标系中,已知四边形ABCD 是等腰梯形,A 、B 在x 轴上,D 在y 轴上,//AB CD ,17AD BC ==,5AB =,3CD =,抛物线2y x bx c =-++过A 、B 两点.(1)求b 、c ;(2)设M 是x 轴上方抛物线上的一动点,它到x 轴与y 轴的距离之和为d ,求d 的最大值;(3)当(2)中M 点运动到使d 取最大值时,此时记点M 为N ,设线段AC 与y 轴交于点E ,F 为线段EC 上一动点,求F 到N 点与到y 轴的距离之和的最小值,并求此时F 点的坐标.【解析】(1)易得(1A -,0)(4B ,0), 把1x =-,0y =;4x =,0y =分别代入2y x bx c =-++, 得101640b c b c --+=⎧⎨-++=⎩,解得34b c =⎧⎨=⎩.(3分)(2)设M 点坐标为2(,34)a a a -++,2||34d a a a =-++.①当10a -<…时,2224(1)5d a a a =-++=--+, 所以,当0a =时,d 取最大值,值为4; ②当04a <<时,2244(2)8d a a a =-++=--+所以,当2a =时,d 取最大值,最大值为8; 综合①、②得,d 的最大值为8.(不讨论a 的取值情况得出正确结果的得2分)(3)N 点的坐标为(2,6),过A 作y 轴的平行线AH ,过F 作FG y ⊥轴交AH 于点Q ,过F 作FK x ⊥轴于K , 45CAB ∠=︒Q ,AC 平分HAB ∠, FQ FK ∴=1FN FG FN FK ∴+=+-,所以,当N 、F 、K 在一条直线上时,1FN FG FN FK +=+-最小,最小值为5. 易求直线AC 的函数关系式为1y x =+,把2x =代入1y x =+得3y =, 所以F 点的坐标为(2,3).29.(2019•淮安)如图①,在△ABC 中,AB =AC =3,∠BAC =100°,D 是BC 的中点.小明对图①进行了如下探究:在线段AD 上任取一点P ,连接PB .将线段PB 绕点P 按逆时针方向旋转80°,点B 的对应点是点E ,连接BE ,得到△BPE .小明发现,随着点P 在线段AD 上位置的变化,点E 的位置也在变化,点E 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧. 请你帮助小明继续探究,并解答下列问题: (1)当点E 在直线AD 上时,如图②所示. ①∠BEP = 50 °;②连接CE ,直线CE 与直线AB 的位置关系是 EC ∥AB .(2)请在图③中画出△BPE ,使点E 在直线AD 的右侧,连接CE .试判断直线CE 与直线AB 的位置关系,并说明理由.(3)当点P 在线段AD 上运动时,求AE 的最小值.【解析】(1)①如图②中, ∵∠BPE =80°,PB =PE , ∴∠PEB =∠PBE =50°, ②结论:AB ∥EC .理由:∵AB =AC ,BD =DC , ∴AD ⊥BC , ∴∠BDE =90°, ∴∠EBD =90°﹣50°=40°, ∵AE 垂直平分线段BC , ∴EB =EC ,∴∠ECB =∠EBC =40°, ∵AB =AC ,∠BAC =100°, ∴∠ABC =∠ACB =40°, ∴∠ABC =∠ECB , ∴AB ∥EC .故答案为50,AB ∥EC .(2)如图③中,以P 为圆心,PB 为半径作⊙P . ∵AD 垂直平分线段BC , ∴PB =PC ,∴∠BCE =∠BPE =40°, ∵∠ABC =40°, ∴AB ∥EC .(3)如图④中,作AH⊥CE于H,∵点E在射线CE上运动,点P在线段AD上运动,∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值=AB=3.。
2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆)【知识背景】阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。
阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。
【定 义】阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。
即:)1(≠=k k PBPA,如下图所示:上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。
【几何证明】证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。
但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理若AD 是∠BAC 的角平分线,则有:CDBDAC AB =。
即“两腰之比”等于“两底边之比”。
其逆定理也成立:即CDBDAC AB =,则有:AD 是∠BAC 的角平分线。
知识点2:外角平分线定理及其逆定理若AD 是△ABC 外角∠EAC 的角平分线,则有CDBDAC AB =。
即“两腰之比”等于“两底边之比”。
其逆定理也成立:即CDBDAC AB =,则有:AD 是外角∠EAC 的角平分线。
【阿氏圆的证明】有了上述两个知识储备后,我们开始着手证明阿氏圆。
①如上图,根据阿氏圆的定义: 当P 点位于图中P 点位置时有:k PB PA =,当P 点位于图中N 点位置时有:k NBNA=, 所以有:NBNAPB PA =,所以PN 是∠APB 的角平分线,∴∠1=∠2. 当P 点位于图中M 点位置时有:PBPAk MB MA ==, 所以有:MBMNPB PA =,所以PM 是∠EPA 的角平分线,∴∠3=∠4. 又∵∠1+∠2+∠3+∠4=180° ∴2∠1+2∠3=180° ∴∠1+∠3=90°故∠MPN=90°,所以动点P 是在以MN 为直线的圆上。
专题04特殊平行四边形中全等相似与最值问题通用的解题思路:一、四边形与全等相似1.三角形与全等之六大全等模型:(1)一线三等角模型锐角一线三等角(2)手拉手模型(3)半角模型(4)倍长中线模型模型(6)雨伞等模型(5)平行线中等模型2.三角形与相似之四大相似模型:(1)A字模型(3)手拉手模型(2)8字模型(4)一线三等角模型B 二、四边形线段最值问题囹 1 C B D 02B (1)将军饮马模型两定一动模型一定两动模型两线段相减的最大值模型(三点共线)• B(2)费马点模型:将边以A 为顶点逆时针旋转60。
,得到AQE,连接P0则^APQ 为等边三角形,PA=PQ O1. (2023-r 东深圳•中考真题)(1)如图,在矩形ABCD 中,E 为AD 边上一点,连接BE,①若= 过C 作CFLBE 交BE 于点、F ,求证:AABE^AFCB ;②若S 矩形倔8 = 2。
时,则BECF=(2)如图,在菱形ABCD 中,cosA = |,过。
作CE1AB 交A8的延长线于点E,过E 作EF _LAD 交AD 于点、F ,若S 菱形*d =24时,求EF BC 的值.(3)如图,在平行四边形ABCD 中,匕4 = 60。
,AB = 6, AD=5,点E 在CD 上,且CE = 2,点F 为BC 上一点,连接时,过E 作EGLEF 交平行四边形ABCD 的边于点G,若EF ・EG = 70时,请直接写出AG 的长.D,E E a C C A B AB备用图2.(2022广东广州•中考真题)如图,在菱形ABCQ中,0BAD=120°,AB=6,连接8Q.⑴求BQ的长;⑵点E为线段BQ上一动点(不与点B,。
重合),点E在边AQ上,且BE二也DF,①当CE±AB时,求四边形的面积;②当四边形的面积取得最小值时,CE+右CT的值是否也最小?如果是,求CE+也CF的最小值;如果不是,请说明理由.题型一特殊平行四边形中全等相似计算1.(2024-P东汕头•一模)(1)如图1,在矩形ABCD中,E为AD边上一点,连接8E,①若BE=BC,过。
《2020年中考数学保A必刷压轴题(湖南长沙专版)》(二)最值问题专题1.(2019•十堰)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE=6.解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.2.(2019•黄冈)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD=120°,则CD的最大值是.解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,故答案为14.3.(2019•南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是4<BC≤.解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=4,∴AC=,∴BC=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC≤;故答案为:4<BC≤.4.(2019•连云港)如图,在矩形ABCD 中,AB =4,AD =3,以点C 为圆心作⊙C 与直线BD 相切,点P 是⊙C 上一个动点,连接AP 交BD 于点T ,则的最大值是 3 .方法1、解:设C 的半径为R ,如图,作BD 的平行线P E ',使P E '切C 于P ',则PE 与BD 的最大距离为2R ,BD 与C 相切,∴点C 到BD 的距离为R ,∴四边形ABCD 是矩形,∴点A 到BD 的距离为R ,∴点A 到PE 的最大距离为3R ,∴AP AT 的最大值为33R R=; 方法2、解:如图,过点A 作AG BD ⊥于G ,BD 是矩形的对角线,90BAD ∴∠=︒,5BD ∴==,1122AB AD BD AG =, 125AG ∴=,BD 是C 的切线,C ∴的半径为125过点P 作PE BD ⊥于E ,AGT PET ∴∠=∠,ATG PTE ∠=∠,AGT PET ∴∆∆∽, ∴AG AT PE PT=, ∴512PT PE AT =⨯ 1AP AT PT PTAT AT AT+==+, 要AP AT最大,则PE 最大, 点P 是C 上的动点,BD 是C 的切线,PE ∴最大为C 的直径,即:245PE =最大, ∴AP AT 最大值为8134+=, 故答案为3.方法3、解:如图,过点P 作//PE BD 交AB 的延长线于E ,AEP ABD ∴∠=∠,APE ATB ∆∆∽, ∴AP AE AT AB=, 4AB =,4AE AB BE BE ∴=+=+, ∴14AP BE AT =+, BE ∴最大时,AP AT最大, 四边形ABCD 是矩形,3BC AD ∴==,4CD AB ==,过点C 作CH BD ⊥于H ,交PE 于M ,并延长交AB 于G , BD 是C 的切线,90GME ∴∠=︒,在Rt BCD ∆中,5BD ,90BHC BCD ∠=∠=︒,CBH DBC ∠=∠,BHC BCD ∴∆∆∽, ∴BH CH BC BC DC BD==, ∴3345BH CH ==, 95BH ∴=,125CH =, 90BHG BAD ∠=∠=︒,GBH DBA ∠=∠,BHG BAD ∴∆∆∽, ∴HG BG BH AD BD AB==, ∴95354HG BG ==,2720HG ∴=,94BG =, 在Rt GME ∆中,33sin 55GM EG AEP EG EG =∠=⨯=, 而94BE GE BG GE =-=-, GE ∴最大时,BE 最大,GM ∴最大时,BE 最大,2720GM HG HM HM =+=+, 即:HM 最大时,BE 最大,延长MC 交C 于P ',此时,HM 最大2425HP CH '===, 1234GP HP HG ''∴=+=, 过点P '作//P F BD '交AB 的延长线于F ,BE ∴最大时,点E 落在点F 处,即:BE 最大BF =,在Rt △GP F '中,1234143sin sin 45GP GP FG F ABD ''====∠∠, 8BF FG BG ∴=-=, ∴AP AT 最大值为8134+=, 故答案为:3.5.(2019•镇江)已知抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是.解:∵抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,∴=﹣=﹣2∵线段AB的长不大于4,∴4a+1≥3∴a≥∴a2+a+1的最小值为:()2++1=;故答案为.6.(2019•潍坊)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=.解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△P AB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),将x=0代入直线y=x+1中,得y=1,∵直线y=x+1与y轴的夹角是45°,∴点P到直线AB的距离是:(﹣1)×sin45°==,∴△P AB的面积是:=,故答案为:.7.(2019•泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2B.4C.D.解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE当点F在EC上除点C、E的位置处时,有DP=FP由中位线定理可知:P1P∥CE且P1P=CF∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°∴∠DP2P1=90°∴∠DP1P2=45°∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长在等腰直角BCP1中,CP1=BC=2∴BP1=2∴PB的最小值是2故选:D.8.(2019•东营)如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3D.3解:如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路程.设∠BAB′=n°.∵=4π,∴n=120即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,∴BF=AB•sin∠BAF=6×=3,∴最短路线长为3.故选:D.9.(2019•自贡)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.B.C.D.解:如图,设直线x=﹣5交x轴于K.由题意KD=CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO==,∴=,∴OE=,∴AE==,作EH ⊥AB 于H .∵S △ABE =•AB •EH =S △AOB ﹣S △AOE ,∴EH =,∴AH ==,∴tan ∠BAD ===,故选:B .10.(2019•台州)如图,直线l 1∥l 2∥l 3,A ,B ,C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =4,且=,则m +n 的最大值为 .解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M , 设AE x =,CF y =,BN x =,BM y =,4BD =,4DM y ∴=-,4DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC∴∆∆∽,∴AE BEBF CF=,即x mn y=,xy mn∴=,ADN CDM∠=∠,CMD AND∴∆∆∽,∴AN DNCM DM=,即4243m xn y-==-,3102y x∴=-+,23mn=,32n m∴=,5()2m n m∴+=最大,∴当m最大时,5()2m n m+=最大,22333(10)10222mn xy x x x x m ==-+=-+=,∴当1010332()2x=-=⨯-时,250332mn m==最大,103m∴=最大,m n∴+的最大值为51025233⨯=.故答案为:253.。
【模型解析】2020 中考数学专题 8——最值问题之将军饮马班级姓名.总结:以上四图为常见的轴对称类最短路程问题,最后都转化到:“两点之间,线段最短”解决。
特点:①动点在直线上;②起点,终点固定; 方法:作定点关于动点所在直线的对称点。
【例题分析】例 1.如图,在平面直角坐标系中,Rt △OAB 的顶点 A 在 x 轴的正半轴上,顶点 B 的坐标为(3, 3 ), 点 C 的坐标为( 1,0),点 2P 为斜边 OB 上的一动点,则 PA +PC 的最小值为.例 2.如图,在五边形 ABCDE 中,∠BAE =120°,∠B =∠E =90°,AB =BC =1,AE =DE =2, 在 BC 、DE 上分别找一点 M 、N .(1)当△AMN 的周长最小时,∠AMN +∠ANM = ; (2)求△AMN 的周长最小值.例 3.如图,正方形 ABCD 的边长为 4,点 E 在边 BC 上且 CE =1,长为 2 的线段 MN 在 AC 上运动.(1) 求四边形 BMNE 周长最小值; (2) 当四边形 BMNE 的周长最小时,则 tan ∠MBC 的值为 .例4.在平面直角坐标系中,已知点A(一 2,0),点B(0,4),点E 在OB 上,且∠OAE=∠OB A.如图,将△AEO 沿x 轴向右平移得到△AE′O′,连接A'B、BE'.当AB+BE'取得最小值时,求点E'的坐标.例5.如图,已知正比例函数y=kx(k>0)的图像与x轴相交所成的锐角为70°,定点A的坐标为(0,4),P 为y 轴上的一个动点,M、N 为函数y=kx(k>0)的图像上的两个动点,则AM+MP+PN 的最小值为.【巩固训练】1.如图1 所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD+PE 的和最小,则这个最小值为.图1 图2 图3 图42.如图2,在菱形ABCD 中,对角线AC=6,BD=8,点E、F、P 分别是边AB、BC、AC 上的动点,PE+PF 的最小值是.3.如图3,在边长为2 的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE+DE 的最小值为.4.如图 4,钝角三角形ABC 的面积为 9,最长边AB=6,BD 平分∠ABC,点M、N 分别是BD、BC 上的动点,则CM+MN 的最小值为.5.如图5,在△ABC 中,AM 平分∠BAC,点D、E 分别为AM、AB 上的动点,(1)若AC=4,S=6,则BD+DE的最小值为△ABC(2)若∠BAC=30°,AB=8,则BD+DE 的最小值为.(3)若AB=17,BC=10,CA=21,则BD+DE 的最小值为.6.如图6,在△ABC中,AB=BC=4,S△ABC=4一点,则PK+QK 的最小值为.,点P、Q、K 分别为线段AB、BC、AC 上任意图6 图7 图8 图97.如图7,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点,则PM+PN 的最小值为.8.如图 8,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D,M、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是.9.如图 9,圆柱形玻璃杯高为 12cm、底面周长为 18cm,在杯内离杯底 4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿 4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为cm.10.如图 10,菱形OABC 中,点A 在x 轴上,顶点C 的坐标为(1,OC、OB 上,则CE+DE+DB 的最小值是.),动点D、E 分别在射线图10 图11 图12 图1311.如图 11,点A(a,1)、B(-1,b)都在双曲线y=-3(x<0)上,点P、Q 分别是x 轴、y 轴上x的动点,当四边形PABQ 的周长取最小值时,PQ 所在直线的解析式是.12.如图12,点P 是∠AOB 内任意一点,OP=5cm,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm,则∠AOB 的度数是.13.如图13,∠AOB=30°,点M、N 分别在边OA、OB 上,且OM=1,ON=3,点P、Q 分别在边OB、OA 上,则MP+PQ+QN 的最小值是.14.如图 14,在Rt△ABC 中,∠ACB=90°,点D 是AB 边的中点,过D 作DE⊥BC 于点E. (1)点P 是边BC 上的一个动点,在线段BC 上找一点P,使得AP+PD 最小,在下图中画出点P; (2)在(1)的条件下,连接CD 交AP 于点Q,求AQ 与PQ 的数量关系;图 143315. 在矩形 ABCD 中,AB =6,BC =8,G 为边 AD 的中点.(1) 如图 1,若 E 为 AB 上的一个动点,当△CGE 的周长最小时,求 AE 的长.(2) 如图 2,若 E 、F 为边 AB 上的两个动点,且 EF =4,当四边形 CGEF 的周长最小时,求 AF的长.16. 如图,抛物线 y = - 1x 2+ 2x + 4 交y 轴于点B ,点A 为x 轴上的一点,OA =2,过点A 作直线MN ⊥ AB2 交抛物线与 M 、N 两点. (1) 求直线 AB 的解析式;(2) 将线段 AB 沿 y 轴负方向平移 t 个单位长度,得到线段 A 1B 1 ,求 MA 1 + MB 1 取最小值时实数 t 的值.3 31 72020 中考专题 8——最值问题之将军饮马 参考答案例 1.解:作 A 关于 OB 的对称点 D ,连接 CD 交 OB 于 P ,连接 AP ,过 D 作 DN ⊥OA 于 N ,则此时 PA +PC 的值最小,∵DP =PA ,∴PA +PC =PD +PC =CD ,∵B (3, ),∴AB = ,OA =3,∵tan ∠AOB =AB= 3,∴∠AOB =30°,∴OB =2AB =2 ,OA3 1 1 3 3 由三角形面积公式得: ×OA ×AB = 2×OB ×AM ,∴AM = 2,∴AD =2× 2=3, 2∵∠AMB =90°,∠B =60°,∴∠BAM =30°,∵∠BAO =90°,∴∠OAM =60°, ∵DN ⊥OA ,∴∠NDA =30°,∴AN = 1AD = 23,由勾股定理得: 2DN = 33 ,2∵C ( 1 ,0),∴CN =3﹣ 1 ﹣ 223=1,在Rt △DNC 中,由勾股定理得:DC = , 2 2即 PA +PC 的最小值是31.2例 2.解:作 A 关于 BC 和 ED 的对称点 A ′,A ″,连接 A ′A ″,交 BC 于 M ,交 ED 于 N ,则 A ′A ″即为△AMN 的周长最小值.⑴作 EA 延长线的垂线,垂足为 H ,∠BAE =120°,∴∠AA ′A ″+∠AA ″A ′=60°, ∠AA ′A ″=∠A ′AM ,∠AA ″A ′=∠EAN ,∴∠CAN =120°-∠AA ′A ″-∠AA ″A ′=60°, 也就是说∠AMN +∠ANM =180°-60°=120°.⑵过点 A ′作 EA 延长线的垂线,垂足为 H ,∵AB =BC =1,AE =DE =2,∴AA ′=2BA =2,AA ″=2AE =4, 则 Rt △A ′HA 中,∵∠EAB =120°,∴∠HAA ′=60°,∵A ′H ⊥HA ,∴∠AA ″H =30°,∴AH = 1AA ′=1,∴A ′H = 2 ,A ″H =1+4=5,∴A ′A ″=2 ,例 3.解:作 EF ∥AC 且 EF = 于 P ,,连结 DF 交 AC 于 M ,在 AC 上截取 MN = ,延长 DF 交 BC 作 FQ ⊥BC 于 Q ,作出点 E 关于 AC 的对称点 E ′,则 CE ′=CE =1,将 MN 平移至 E ′F ′处,3 3 3 2 242 - 22 3 3 则四边形 MNE ′F ′为平行四边形,当 BM +EN =BM +FM =BF ′时,四边形 BMNE 的周长最小, 由∠FEQ =∠ACB =45°,可求得 FQ =EQ =1,∵∠DPC =∠FPQ ,∠DCP =∠FQP ,∴△PFQ ∽△PDC , ∴PQ PQ + QE + EC = PQ ,∴ CD PQ PQ + 2 1 = ,解得:PQ = 4 2 ,∴PC = 8 ,3 3由对称性可求得 tan ∠MBC =tan ∠PDC = 2 .3例 4.【提示】将△AEO 向右平移转化为△AEO 不动,点 B 向左平移,则点 B 移动的轨迹为一平行于 x 轴的直线,所以作点 E 关于该直线的对称点 E 1,连接 AE 1,与该直线交点 F 即为最小时点 B 的位置,求出 BF 长度即可求出点 E 向右平移的距离.例 5.解:如图所示,直线 OC 、y 轴关于直线 y =kx 对称,直线 OD 、直线 y =kx 关于 y 轴对称,点A ′是点 A 关于直线 y =kx 的对称点.作 A ′E ⊥OD 垂足为 E ,交 y 轴于点 P ,交直线 y =kx 于 M ,作 PN ⊥直线 y =kx 垂足为 N , ∵PN =PE ,AM =A ′M ,∴AM +PM +PN =A ′M +PM +PE =A ′E 最小(垂线段最短), 在 RT △A ′EO 中,∵∠A ′EO =90°,OA ′=4,∠A ′OE =3∠AOM =60°, ∴OE = 1OA ′=2,A ′E = =2 .2 ∴AM +MP +PN 的最小值为 2 .333337【巩固训练】答案1.解:连接BD,∵点B 与D 关于AC 对称,∴PD=PB,∴PD+PE=PB+PE=BE 最小.∵正方形ABCD 的面积为 12,∴AB=2又∵△ABE 是等边三角形,∴BE=AB=2,,故所求最小值为2 .2.解:∵四边形ABCD 是菱形,对角线AC=6,BD=8,∴AB=5,作E 关于AC 的对称点E′,作E′F⊥BC 于F 交AC 于P,连接PE,则E′F 即为PE+PF 的最小值,∵1⋅AC⋅BD=AD⋅E′F,∴E′F=24,∴PE+PF 的最小值为24.2 5 53.解:作B 关于AC 的对称点B′,连接BB′、B′D,交AC 于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D 就是BE+ED 的最小值,∵B、B′关于AC 的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC 是边长为2,D 为BC 的中点,∴AD⊥BC,AD=,BD=CD=1,BB′=2AD=2 ,作B′G⊥BC 的延长线于G,∴B′G=AD=,在Rt△B′BG 中,BG=3,∴DG=BG﹣BD=3﹣1=2,在Rt△B′DG 中,B′D=.故BE+ED 的最小值为7 .4.解:过点C 作CE⊥AB 于点E,交BD 于点M,过点M 作MN⊥BC 于N,∵BD 平分∠ABC,ME⊥AB 于点E,MN⊥BC 于N,∴MN=ME,∴CE=CM+ME=CM+MN 是最小值.∵三角形ABC 的面积为 9,AB即CM+MN 的最小值为 3.=6,∴12×6⋅CE=9,∴CE=3.33 3 3 35. 提示:作点 E 关于 AM 的对称点 E ′,BH ⊥AC 于 H ,易知 BD +DE 的最小值即为 BH 的长.答案:(1)3;(2)4;(3)8.6. 解:如图,过 A 作 AH ⊥BC 交 CB 的延长线于 H ,∵AB =CB =4,S △ABC =4 ,∴AH =2 , ∴cos ∠HAB =AH=2 3 = 3,∴∠HAB =30°,∴∠ABH =60°,∴∠ABC =120°,AB42∵∠BAC =∠C =30°,作点 P 关于直线 AC 的对称点 P ′,过 P ′作 P ′Q ⊥BC 于 Q 交 AC 于 K , 则 P ′Q 的长度=PK +QK 的最小值,∴∠P ′AK =∠BAC =30°,∴∠HAP ′=90°,∴∠H =∠HAP ′=∠P ′QH =90°, ∴四边形 AP ′QH 是矩形,∴P ′Q =AH =2 , 即 PK +QK 的最小值为 2 .7. 解:作点 N 关于 AB 的对称点 N ′,连接 OM 、ON 、ON ′、MN ′,则 MN ′与 AB 的交点即为 PM +PN 的最小时的点,PM +PN 的最小值=MN ′, ∵∠MAB =20°,∴∠MOB =2∠MAB =2×20°=40°, ∵N 是弧 MB 的中点,∴∠BON = 12∠MOB = 1×40°=20°,2由对称性,∠N ′OB =∠BON =20°,∴∠MON ′=∠MOB +∠N ′OB =40°+20°=60°, ∴△MON ′是等边三角形,∴MN ′=OM =OB = 1AB = 18 =4,22∴PM +PN 的最小值为 4,2 23 38. 解:如图,作 BH ⊥AC ,垂足为 H ,交 AD 于 M ′点,过 M ′点作 M ′N ′⊥AB ,垂足为 N ′,则 BM ′+M ′N ′为所求的最小值.∵AD 是∠BAC 的平分线,∴M ′H =M ′N ′,∴BH 是点 B 到直线 AC 的最短距离, ∵AB =4,∠BAC =45°,∴BH =AB sin 45°=4×2 =2 .2∵BM +MN 的最小值是 BM ′+M ′N ′=BM ′+M ′H =BH =2 .9. 解:沿过 A 的圆柱的高剪开,得出矩形 EFGH ,过 C 作 CQ ⊥EF 于 Q ,作 A 关于 EH 的对称点 A ′,连接 A ′C 交 EH 于 P ,连接 AP , 则 AP +PC 就是蚂蚁到达蜂蜜的最短距离,∵AE =A ′E ,A ′P =AP ,∴AP +PC =A ′P +PC =A ′C , ∵CQ = 1×18 2 cm =9cm ,A ′Q =12cm ﹣4cm +4cm =12cm ,在 Rt △A ′QC 中,由勾股定理得:A ′C =15cm ,故答案为:15.10. 解:连接 AC ,作 B 关于直线 OC 的对称点 E ′,连接 AE ′,交 OC 于 D ,交 OB 于 E ,此时 CE +DE +BD 的值最小,∵四边形 OCBA 是菱形,∴AC ⊥OB ,AO =OC ,即 A 和 C 关于 OB 对称, ∴CE =AE ,∴DE +CE =DE +AE =AD ,∵B 和 E ′关于 OC 对称,∴DE ′=DB ,∴CE +DE +DB =AD +DE ′=AE ′,过 C 作 CN ⊥OA 于 N ,∵C (1, ),∴ON =1,CN = ,由勾股定理得:O C =2,即 AB =BC =OA =OC =2,∴∠CON =60°,∴∠CBA =∠COA =60°, ∵四边形 COAB 是菱形,∴BC ∥OA ,∴∠DCB =∠COA =60°,∵B 和 E ′关于 OC 对称,∴∠BFC =90°,∴∠E ′BC =90°﹣60°=30°, ∴∠E ′BA =60°+30°=90°,CF = 1BC =1,由勾股定理得:BF = 2 =E ′F ,在 Rt △EBA 中,由勾股定理得:AE ′=4,即 CE +DE +DB 的最小值是 4.310 ⎩⎩11.解:把点 A (a ,1)、B (﹣1,b )代入 y =﹣ 3(x <0)得 a =﹣3,b =3,则 A (﹣3,1)、B (﹣1,x3),作 A 点关于 x 轴的对称点 C ,B 点关于 y 轴的对称点 D ,所以 C 点为(﹣3,﹣1),D 点为(1, 3),连结 CD 分别交 x 轴、y 轴于 P 点、Q 点,此时四边形 PABQ 的周长最小,设直线 CD 的解析式为 y =kx +b ,则⎧-3k + b = -1 ,解得⎧k = 1,所以直线 CD 的解析式为 y =x +2.⎨k + b = 3 ⎨b = 212.解:分别作点 P 关于 OA 、OB 的对称点 C 、D ,连接 CD ,分别交 OA 、OB 于点 M 、N ,连接 OC 、OD 、PM 、PN 、MN ,如图所示:∵点 P 关于 OA 的对称点为 D ,关于 OB 的对称点为 C ,∴PM =DM ,OP =OD ,∠DOA =∠ POA ;∵点 P 关于 OB 的对称点为 C ,∴PN =CN ,OP =OC ,∠COB =∠POB , ∴OC =OP =OD ,∠AOB =1∠COD ,2∵△PMN 周长的最小值是 5cm ,∴PM +PN +MN =5,∴DM +CN +MN =5,即 CD =5=OP , ∴OC =OD =CD ,即△OCD 是等边三角形,∴∠COD =60°,∴∠AOB =30°;13 解:作 M 关于 OB 的对称点 M ′,作 N 关于 OA 的对称点 N ′,连接 M ′N ′,即为 MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°, ∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°, ∴在 Rt △M ′ON ′中,M ′N ′= .故答案为 .10314.解:(1)作点 A 关于BC 的对称点 A′,连 DA′交BC 于点P.(2)由(1)可证得PA 垂直平分CD,∴AQ=CQ=3PQ15.解:(1)∵E 为AB 上的一个动点,∴作G 关于AB 的对称点M,连接CM 交AB 于E,那么E 满足使△CGE 的周长最小;∵在矩形ABCD 中,AB=6,BC=8,G 为边AD 的中点,∴AG=AM=4,MD=12,而AE∥CD,∴△AEM∽△DCM,∴AE:CD=MA:MD,∴AE=CD ⨯MA=2;MD(2)∵E 为AB 上的一个动点,∴如图,作G 关于AB 的对称点M,在CD 上截取CH=4,然后连接HM 交AB 于E,接着在EB 上截取EF=4,那么E、F 两点即可满足使四边形CGEF 的周长最小.∵在矩形ABCD 中,AB=6,BC=8,G 为边AD 的中点,∴AG=AM=4,MD=12,而CH=4,∴DH=2,而AE∥CD,∴△AEM∽△DHM,∴AE:HD=MA:MD,∴AE=HD ⨯MAMD=2,3∴AF =4+2=14.3 316.解:(1)依题意,易得B(0,4),A(2,0),则AB解析式:y=-2x+4(2)∵AB⊥MN∴直线MN:y =1x - 12⎧y =-1x2+ 2x + 4⎪与抛物线联立可得:⎨⎪y =⎩21x - 1 2解得:M(-2,-2)将AB向负方向平移t个单位后,A1(2,-t),B1(0,4-t)则A1 关于直线x=-2 的对称点A2 为(-6,-t)当A2、M、B1 三点共线时,MA1 +MB1取最小值∴t =143⎪。
线段最值问题(二)一.利用轴对称求最值轴对称主要用来解决几条线段的和差的最值问题,相关模型比较多,主要包含以下几种类型: 1.如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P ,使PA PB +最小.2.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使PA PB +最小.3.如图,直线l 和l 同侧两点A 、B ,在直线l 上求作一点P ,使PA PB -最大.4.如图,直线l 和l 异侧两点A 、B ,在直线l 上求作一点P ,使PA PB -最大.lll5.如图,点P 是MON ∠内的一点,分别在OM ,ON 上作点A 、B ,使PAB ∆的周长最小.6.如图,点P ,Q 为MON ∠内的两点,分别在OM ,ON 上作点A 、B ,使四边形PAQB 的周长最小.7.如图,点A 是MON ∠外的一点,在射线OM 上作点P ,使PA 与点P 到射线ON 的距离之和最小.l8.如图,点A 是MON 内的一点,在射线OM 上作点P ,使PA 与点P 到射线ON 的距离之和最小.9.造桥选址问题二.利用二次函数求最值利用二次函数求解最值首先需要引入一个未知数作为自变量,然后根据题目中的等量关系用未知数表示出所求解的线段长度、图形面积等,最后根据函数的增减性,并结合自变量的取值范围,求出最值.l 2l 1一.考点:利用轴对称求最值,利用二次函数求最值二.重难点:利用轴对称求最值,利用二次函数求最值三.易错点:1.利用轴对称求解最值时一般情况下都是定点与最值问题,此时直接按照相应模型来求解即可,如果出现有定点也有动点的情况,可以先把动点固定下来,然后利用模型找到最值时的位置,最后再去确定动点的位置;2.利用二次函数求解最值问题时除了明确二次函数的对称轴和开口方向,一定要注意自变量的取值范围,并不是所有的最值都是在顶点取到.题模一:利用轴对称求最值例1.1.1在平面直角坐标系中,点A、B、C的坐标分别为(2,0),(31点D、E的坐标分别为(m),(n)(m、n为非负数),则CE+DE+DB的最小值是__.【答案】 4【解析】如图所示:∵点D、E的坐标分别为(m),(n)(m、n为非负数),∴直线OD的解析式为,直线OE的解析式x,设点C关于直线OE的对称点C′所在直线CC′的解析式为y=﹣+b,把C 的坐标(1故直线CC ′的解析式为y=+联立直线OE 的解析式和直线CC ′的解析式可得x y=⎧⎪⎨⎪-+⎩,解得x=1.5y=2⎧⎪⎨⎪⎩.故交点坐标为(1.5,2), ∴点C ′坐标为(2,0),设点B 关于直线OD 的对称点B ′所在直线BB ′的解析式为y=x +b ′, 把B 的坐标(3,b ′b ′故直线BB ′的解析式为y=x +联立直线OD 的解析式和直线BB ′的解析式可得y=x 3⎧⎪⎨-+⎪⎩解得x=1.5⎧⎪⎨⎪⎩故交点坐标为(1.5∴点B ′坐标为(0,则B ′C ′,即CE +DE +DB 的最小值是4.例1.1.2 已知抛物线21y=x bx 2+经过点A (4,0).设点C (1,﹣3),请在抛物线的对称轴上确定一点D ,使得|AD ﹣CD|的值最大,则D 点的坐标为__. 【答案】 (2,﹣6) 【解析】 ∵抛物线21y=x bx 2+经过点A (4,0), ∴12×42+4b=0, ∴b=﹣2,∴抛物线的解析式为:y=12x 2﹣2x=12(x ﹣2)2﹣2, ∴抛物线的对称轴为:直线x=2, ∵点C (1,﹣3),∴作点C 关于x=2的对称点C ′(3,﹣3), 直线AC ′与x=2的交点即为D ,因为任意取一点D (AC 与对称轴的交点除外)都可以构成一个△ADC .而在三角形中,两边之差小于第三边,即|AD ﹣CD |<AC ′.所以最大值就是在D 是AC ′延长线上的点的时候取到|AD ﹣C ′D |=AC ′.把A ,C ′两点坐标代入,得到过AC ′的直线的解析式即可; 设直线AC ′的解析式为y=kx +b ,∴4k b=03k b=3+⎧⎨+⎩﹣ ,解得:k=3b=12⎧⎨-⎩,∴直线AC′的解析式为y=3x﹣12,当x=2时,y=﹣6,∴D点的坐标为(2,﹣6).例1.1.3如图,∠AOB=45°,∠AOB内有一定点P,且OP=10.在OA上有一动点Q,OB上有一动点R.若△PQR周长最小,则最小周长是()A.10B.C.20D.【答案】B【解析】如图,作点P关于OA的对称点P1,关于OB的对称点P2,连接P1P2与OA、OB分别相交于点Q、R,所以,PQ=P1Q,PR=P2R,所以,△PQR的周长=PQ+QR+PR=P1Q+QR+P2R=P1P2,由两点之间线段最短得,此时△PQR周长最小,连接P1O、P2O,则∠AOP=∠AOP1,OP1=OP,∠BOP=∠BOP2,OP2=OP,所以,OP1=OP2=OP=10,∠P1OP2=2∠AOB=2×45°=90°,所以,△P1OP2为等腰直角三角,所以,P1P21即△PQR最小周长是故选B.例1.1.4如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.B.6C.D.3【答案】C【解析】如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=6,∠BAC=45°,∴BH=AB•sin45°=6∵BM+MN的最小值是BM′+M′N′=BM′+例1.1.5如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB 的长度和最短,则此时AM+NB=____A.6B.8C.10D.12【答案】B【解析】作点A关于直线a的对称点A′,并延长AA′,过点B作BE⊥AA′于点E,连接A′B交直线b于点N,过点N作NM⊥直线a,连接AM,∵A到直线a的距离为2,a与b之间的距离为4,∴AA′=MN=4,∴四边形AA′NM是平行四边形,∴AM+NB=A′N+NB=A′B ,过点B 作BE ⊥AA′,交AA′于点E ,易得AE=2+4+3=9,,A′E=2+3=5,在Rt △AEB 中,,在Rt △A′EB 中,. 故选:B .题模二:利用二次函数求最值例1.2.1 如图,在平面直角坐标系中,抛物线y=ax 2+bx+2经过点A (﹣1,0)和点B (4,0),且与y 轴交于点C ,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点,连接CA ,CD ,PD ,PB .(1)求该抛物线的解析式;(2)当△PDB 的面积等于△CAD 的面积时,求点P 的坐标;(3)当m >0,n >0时,过点P 作直线PE ⊥y 轴于点E 交直线BC 于点F ,过点F 作FG ⊥x 轴于点G ,连接EG ,请直接写出随着点P 的运动,线段EG 的最小值. 【答案】 (1)y=﹣12x 2+32x+2 (2)(1,3)、(2,3)、(5,﹣3)或(﹣2,﹣3)(3【解析】 (1)把A (﹣1,0),B (4,0)两点的坐标代入y=ax 2+bx+2中,可得 a-b+2=016a+4b+2=0⎧⎨⎩解得1 a=23 b=2⎧⎪⎪⎨⎪⎪⎩﹣∴抛物线的解析式为:y=﹣12x2+32x+2.(2)∵抛物线的解析式为y=﹣12x2+32x+2,∴点C的坐标是(0,2),∵点A(﹣1,0)、点D(2,0),∴AD=2﹣(﹣1)=3,∴△CAD的面积=132=32⨯⨯,∴△PDB的面积=3,∵点B(4,0)、点D(2,0),∴BD=2,∴|n|=3×2÷2=3,∴n=3或﹣3,①当n=3时,﹣12m2+32m+2=3,解得m=1或m=2,∴点P的坐标是(1,3)或(2,3).②当n=﹣3时,﹣12m2+32m+2=﹣3,解得m=5或m=﹣2,∴点P的坐标是(5,﹣3)或(﹣2,﹣3).综上,可得点P的坐标是(1,3)、(2,3)、(5,﹣3)或(﹣2,﹣3).(3)如图1,设BC所在的直线的解析式是:y=mx+n,∵点C的坐标是(0,2),点B的坐标是(4,0),∴n=24m+n=0⎧⎨⎩解得1 m=2 n=2⎧⎪⎨⎪⎩﹣∴BC所在的直线的解析式是:y=﹣12x+2,∵点P的坐标是(m,n),∴点F的坐标是(4﹣2n,n),∴EG2=(4﹣2n)2+n2=5n2﹣16n+16=5(n﹣85)2+165,∵n>0,∴当n=85时,线段EG即线段EG例1.2.2如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM 周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.【答案】(1)y=﹣2x2+6x;(2)D(0,1);(3)M(,);(4)(,).【解析】(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得:,解得:,抛物线的解析式为y=﹣2x2+6x.(2)如图1所示;∵BD⊥DE,∴∠BDE=90°.∴∠BDC+∠EDO=90°.又∵∠ODE+∠DEO=90°,∴∠BDC=∠DE0.在△BDC和△DOE中,,∴△BDC≌△DEO.∴OD=AO=1.∴D(0,1).(3)如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.∵x=﹣=,∴点B′的坐标为(2,4).∵点B与点B′关于x=对称,∴MB=B′M.∴DM+MB=DM+MB′.∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).∵由两点间的距离公式可知:BD==,DB′==,∴△BDM的最小值=+.设直线B′D的解析式为y=kx+b.将点D、B′的坐标代入得:,解得:k=,b=1.∴直线DB′的解析式为y=x+1.将x=代入得:y=.∴M(,).(4)如图3所示:过点F作FG⊥x轴,垂足为G.设点F(a,﹣2a2+6a),则OG=a,FG=﹣2a2+6a.∵S梯形D O GF=(OD+FG)•OG=(﹣2a2+6a+1)×a=﹣a3+3a2+a,S△ODA= OD•OA=×1×1=,S△AG F=AG•FG=﹣a3+4a2﹣3a,∴S△FD A=S梯形D O GF﹣S△ODA﹣S△AGF=﹣a2+a﹣.∴当a=时,S△FD A的最大值为.∴点P的坐标为(,).例1.2.3如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣12x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【答案】见解析.【解析】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣29.∴抛物线的解析式为y=﹣29x2﹣49x+169.(2)连接AM,过点M作MG⊥AD,垂足为G.把x =0代入y =﹣12x +4得:y =4,∴A (0,4). 将y =0代入得:0=﹣12x +4,解得x =8,∴B (8,0).∴OA =4,OB =8. ∵M (﹣1,2),A (0,4),∴MG =1,AG =2.∴tan ∠MAG =tan ∠ABO =12. ∴∠MAG =∠ABO .∵∠OAB +∠ABO =90°,∴∠MAG +∠OAB =90°,即∠MAB =90°.∴l 是⊙M 的切线.(3)∵∠PFE +∠FPE =90°,∠FBD +∠PFE =90°,∴∠FPE =∠FBD .∴tan ∠FPE =12.∴PF :PE :EF 2:1.∴△PEF 的面积=12PE •EF =12PF PF =15PF 2. ∴当PF 最小时,△PEF 的面积最小.设点P 的坐标为(x ,﹣29x 2﹣49x +169),则F (x ,﹣12x +4). ∴PF =(﹣12x +4)﹣(﹣29x 2﹣49x +169)=﹣12x +4+29x 2+49x ﹣169=29x 2﹣118x +209=29(x ﹣18)2+7132.∴当x =18时,PF 有最小值,PF 的最小值为7132.∴P (18,5532). ∴△PEF 的面积的最小值为=15×(7132)2=50415120.随练1.1 四边形ABCD 中,∠BAD=130°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使三角形AMN 周长最小时,则∠AMN+∠ANM 的度数为( )A . 80°B . 90°C . 100°D . 130°【答案】C【解析】延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N,此时△AMN周长最小,推出∠AMN+∠NM=2(∠A′+∠A″)即可解决.延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N.∵∠ABC=∠ADC=90°,∴A、A′关于BC对称,A、A″关于CD对称,此时△AMN的周长最小,∵BA=BA′,MB⊥AB,∴MA=MA′,同理:NA=NA″,∴∠A′=′MAB,∠A″=∠NAD,∵∠AMN=∠A′+′MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A′+∠A″),∵∠BAD=130°,∴∠A′+∠A″=180°﹣∠BAD=50°M∴∠AMN+∠NM=2×50°=100°.故选C.随练1.2如图,在平面直角坐标系中,A点的坐标是123(,),在x,y轴上分(,),B点的坐标是27别有一点P和Q,若有四边形PABQ的周长最短,求周长最短的值.【答案】如图所示:四边形PABQ的周长最短,∵A点的坐标是123(,),(,),B点的坐标是27∴AB123(,),B'-(,),27A'-A B=,故''则四边形PABQ的周长最短的值为:【解析】利用作B点关于y轴对称点B',作A点关于x轴对称点A',进而连接AB'',交y轴于点Q,交x轴于点P,进而利用勾股定理得出答案.随练1.3如图,已知30∠=︒,在OM上有两点A、B分别到ON的距离为2cm和1cm,若在ONMON-的值最大,求P点到O点的距离.上找一点P使PA PB-的值最大,P应在OM上,【答案】因为A、B在OM上,要使PA PB-<,如果P不在OM上,则P、A、B构成三角形,根据三角形的三边关系,PA PB AB所以,P是OM和ON的交点,即O点,所以P到O的距离为0.【解析】根据三角形的三边关系,两边的差小于第三边,可以判定当P点在OM和ON的交点处PA PB-的值最大,从而求得P点到O点的距离.随练1.4小明在学习轴对称的时候,老师留了这样一道思考题:如图,已知在直线l的同侧有A、B两点,请你在直线l上确定一点P,使得PA PB+的值最小.小明通过独立思考,很快得出了解决这个问题的正确方法,他的作法是这样的:①作点A关于直线l的对称点A''.②连结A B',交直线l于点P.则点P为所求.请你参考小明的作法解决下列问题:(1)如图1,在ABC△中,点D、E分别是AB、AC边的中点,6BC=,BC边上的高为4,请你在BC边上确定一点P,使得PDE△的周长最小.①在图1中作出点P .(三角板、刻度尺作图,保留作图痕迹,不写作法)②请直接写出PDE △周长的最小值__________.(2)如图2在矩形ABCD 中,4AB =,6BC =,G 为边AD 的中点,若E 、F 为边AB 上的两个动点,点E 在点F 左侧,且1EF =,当四边形CGEF 的周长最小时,请你在图2中确定点E 、F 的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并直接写出四边形CGEF 周长的最小值_____.【答案】 (1)①见解析②8(2)6+【解析】 该题考查的是将军饮马问题.(1)如图1,作D 关于BC 的对称点'D ,由轴对称的性质可知'D P D P =,DPE C DE DP PE ∆=++'DE D P PE =++ 'D E D E ≥+∴当'D 、P 、E 共线时DPE C ∆最小,即P 为'D E 与BC 的交点, …………………………………………………1分此时,由D 、E 分别为AB 、AC 中点,∴DE //BC 且132DE BC ==, 且D 到BC 距离为A 到BC 距离一半,即为2,由轴对称的性质可知'D P D P =,'DD BC ⊥,∴'DD 即为D 到BC 距离两倍,所以'4D D =,∵DE //BC ,'DD BC ⊥∴'DD DE ⊥,在Rt △'DD E 中,'90D DE ∠=︒,由勾股定理'5D E =,∴358DPE C ∆=+=; ……………………………………………………………2分(2)如图2,作G 关于AB 的对称点M ,在CD 上截取1CH =,则CH 和EF 平行且相等,∴四边形CHEF 为平行四边形,∴CF HE =,由轴对称的性质可知GE ME =,CGEF C CG GE EF CF =+++1CG ME EH =+++ 1CG MH ≥++∴当M 、E 、H 共线时CGEF C 最小,连接HM 与AB 的交点即为E ,在EB 上截取1EF =即得F ,……………4分此时3DH =,3DG AG AM ===,∴9DM =,在Rt △DHM 和Rt △DGC 中由勾股定理:MH =5DG = ∴516CGEF C =+++……………………………………………5分随练1.5 在平面直角坐标系中,已知y=﹣12x 2+bx+c (b 、c 为常数)的顶点为P ,等腰直角三角形ABC 的顶点A 的坐标为(0,﹣1),点C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC后的抛物线与直线AC交于x轴上的同一点.(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.【答案】(1)y=﹣12x2+2x﹣1;(2)见解析;(3)当B′、Q、F三点共线时,NP+BQ最小,最小值为【解析】(1)∵等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3)∴点B的坐标为(4,﹣1).∵抛物线过A(0,﹣1),B(4,﹣1)两点,∴111641 2cb c=-⎧⎪⎨-⨯++=-⎪⎩,解得:b=2,c=﹣1,∴抛物线的函数表达式为:y=﹣12x2+2x﹣1.(2)如答题图2,设顶点P在直线AC上并沿AC时,到达P′,作P′M∥y轴,PM∥x轴,交于M点,∵点A的坐标为(0,﹣1),点C的坐标为(4,3),∴直线AC的解析式为y=x﹣1,∵直线的斜率为1,∴△P′PM是等腰直角三角形,∵∴P′M=PM=1,∴抛物线向上平移1个单位,向右平移1个单位,∵y=﹣12x2+2x﹣1=﹣12(x﹣2)2+1,∴平移后的抛物线的解析式为y=﹣12(x﹣3)2+2,令y=0,则0=﹣12(x﹣3)2+2,解得x1=1,x=52,∴平移后的抛物线与x轴的交点为(1,0),(5,0),解()213221y xy x⎧=--+⎪⎨⎪=-⎩,得1xy=⎧⎨=⎩或32xy=⎧⎨=⎩∴平移后的抛物线与AC的交点为(1,0),∴平移后的抛物线与直线AC交于x轴上的同一点(1,0).(3)如答图3,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q,取AB中点F,连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,∴四边形PQFN为平行四边形.∴NP=FQ.∴.∴当B′、Q、F三点共线时,NP+BQ最小,最小值为随练1.6如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.【答案】(1)y=(x﹣2)2+2=x2﹣x+3;(2)S=m﹣3.(2≤m≤6);(3)m=时,MN最小==【解析】(1)∵过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),∴点C的横坐标为4,BC=4,∵四边形ABCD为平行四边形,∴AD=BC=4,∵A(2,6),∴D(6,6),设抛物线解析式为y=a(x﹣2)2+2,∵点D在此抛物线上,∴6=a(6﹣2)2+2,∴a=,∴抛物线解析式为y=(x﹣2)2+2=x2﹣x+3,(2)∵AD∥BC∥x轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6)∴E(,3),∴BE=,∴S=(AF+BE)×3=(m﹣2+)×3=m﹣3∵点F(m,6)是线段AD上,∴2≤m≤6,即:S=m﹣3.(2≤m≤6)(3)∵抛物线解析式为y=x2﹣x+3,∴B(0,3),C(4,3),∵A(2,6),∴直线AC解析式为y=﹣x+9,∵FM⊥x轴,垂足为M,交直线AC于P∴P(m,﹣m+9),(2≤m≤6)∴PN=m,PM=﹣m+9,∵FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,∴∠MPN=90°,∴MN===∵2≤m≤6,∴当m=时,MN最小==作业1如图,∠MON=20°,A、B分别为射线OM、ON上两定点,且OA=2,OB=4,点P、Q分别为射线OM、ON两动点,当P、Q运动时,线段AQ+PQ+PB的最小值是()A.3B.C.2D.【答案】D【解析】作A关于ON的对称点A′,点B关于OM的对称点B′,连接A′B′,交于OM,ON分别为P,Q,连接OA′,OB′,则PB′=PB,AQ=A′Q,OA′=OA=2,OB′=OB=4,∠MOB′=∠NOA′=∠MON=20°,∴AQ+PQ+PB=A′Q+PQ+PB′=A′B′,∠A′OB′=60°,∵cos60°=12,OAOB''=12,∴∠OA′B′=90°,∴∴线段AQ+PQ+PB的最小值是:作业2阅读材料:,如图,建立平面直角坐标系,点P(x,0)是x P与点A(0,1点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′,即原式的最小值为根据以上阅读材料,解答下列问题:(1P(x,0)与点A(1,1)、点B____的距离之和.(填写点B的坐标)(2____.【答案】(1)(2,3)(2)10【解析】(1∴代数式P(x,0)与点A(1,1)、点B(2,3)的距离之和,故答案为(2,3);(2的形式,∴所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,如图所示:设点A关于x轴的对称点为A′,则PA=PA′,∴PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,∴PA′+PB的最小值为线段A′B的长度,∵A(0,7),B(6,1)∴A′(0,-7),A′C=6,BC=8,∴,故答案为:10.作业3定义:对于平面直角坐标系xOy中的线段PQ和点M,在△MPQ中,当PQ边上的高为2时,称M为PQ的“等高点”,称此时MP+MQ为PQ的“等高距离”.(1)若P(1,2),Q(4,2).①在点A(1,0),B(52,4),C(0,3)中,PQ的“等高点”是;②若M(t,0)为PQ的“等高点”,求PQ的“等高距离”的最小值及此时t的值.(2)若P(0,0),PQ=2,当PQ的“等高点”在y轴正半轴上且“等高距离”最小时,直接写出点Q的坐标.【答案】(1)A、B(2)见解析(3)Q)或Q()【解析】解:(1)A 、B……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P′,连接P′Q ,P′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P′Q 的长. ………………………3分∵P (1,2),∴ P′ (1,-2).设直线P′Q 的表达式为y kx b =+,根据题意,有242k b k b +=-⎧⎨+=⎩,解得43103k b ⎧=⎪⎪⎨⎪=-⎪⎩. ∴直线P′Q 的表达式为41033y x =-.……………4分 当0y =时,解得52x =. 即52t =.………………………………………………………………………5分 根据题意,可知PP′=4,PQ =3, PQ ⊥PP′,∴'5P Q .∴“等高距离”最小值为5.…………………………………………………6分(3)Q)或Q().………………………………8分作业4 如图,已知在平面直角坐标系中,A ,B 两点在x 轴上,线段OA ,OB 的长分别为方程x 2﹣8x+12=0的两个根(OB >OA ),点C 是y 轴上一点,其坐标为(0,﹣3).(1)求A ,B 两点的坐标;(2)求经过A ,B ,C 三点的抛物线的关系式;(3)D是点C关于该抛物线对称轴的对称点,E是该抛物线的顶点,M,N分别是y轴、x轴上的两个动点.①当△CEM是等腰三角形时,请直接写出此时点M的坐标;②以D、E、M、N位顶点的四边形的周长是否有最小值?若有,请求出最小值,并直接写出此时点M,N的坐标;若没有,请说明理由.【答案】(1)A(﹣2,0),B(6,0).(2)y=14(x+2)(x﹣6)=14x2﹣x﹣3.(3)有;①M(03)、(03)、(0,﹣5)或(0,﹣112).②M(0,﹣53)N(107,0)【解析】(1)∵x2﹣8x+12=0,∴(x﹣2)(x﹣6)=0,解得:x1=2,x2=6,∵OB>OA,∴OA=2,OB=6,∴点A的坐标为(﹣2,0),点B的坐标为(6,0).(2)设抛物线的解析式为:y=a(x+2)(x﹣6)(a≠0),将C(0,﹣3)代入得:﹣3=﹣12a,解得:a=14,∴经过A,B,C三点的抛物线的关系式为:y=14(x+2)(x﹣6)=14x2﹣x﹣3.(3)①依据题意画出图形,如图1所示.设点M的坐标为(0,m),∵抛物线的关系式为y=14x2﹣x﹣3=14(x﹣2)2﹣4,∴点E(2,﹣4),∴CM=|m+3|,.△CEM是等腰三角形分三种情况:当CE=CM,解得:3或m=3,此时点M的坐标为(03)或(03);当CE=ME,解得:m=﹣3(舍去)或m=﹣5,此时点M的坐标为(0,﹣5);当CM=ME时,有,解得:m=﹣112,此时点M的坐标为(0,﹣112).综上可知:当△CEM是等腰三角形时,点M的坐标为(03)、(03)、(0,﹣5)或(0,﹣112).②四边形DEMN有最小值.作点E关于y轴对称的点E′,作点D关于x轴对称的点D′,连接D′E′交x轴于点N,交y 轴于点M,此时以D、E、M、N位顶点的四边形的周长最小,如图2所示.∵点C(0,﹣3),点E(2,﹣4),∴点D(4,﹣3),=∵E、E′关于y轴对称,D、D′关于x轴对称,∴EM=E′M,DN=D′N,点E′(﹣2,﹣4),点D′(4,3),∴EM+MN+DN=D′E′=∴C四边形DEMN.设直线D′E′的解析式为y=kx+b,则有3442k bk b⎧-+⎨-=-+⎩,解得:7653kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线D′E′的解析式为y=76x﹣53.令y=76x﹣53中x=0,则y=﹣53,∴点M(0,﹣53);令y=76x﹣53中y=0,则76x﹣53=0,解得:x=107,∴点N(107,0).故以D、E、M、N,此时点M的坐标为(0,﹣53),点N的坐标为(107,0).作业5已知抛物线y=x2+bx+c与直线y=x+1有两个交点A、B.(1)当AB的中点落在y轴时,求c的取值范围;(2)当,求c的最小值,并写出c取最小值时抛物线的解析式;(3)设点P(t,T)在AB之间的一段抛物线上运动,S(t)表示△PAB的面积.①当y 轴时,求S (t )的最大值,以及此时点P 的坐标; ②当AB=m (正常数)时,S (t )是否仍有最大值,若存在,求出S (t )的最大值以及此时点P 的坐标(t ,T )满足的关系,若不存在说明理由.【答案】 见解析【解析】 此题主要考查了二次函数与一元二次方程的关系,根与系数的关系,根的判别式,函数图象交点及图形面积的求法等知识,综合性强,难度较大.(1)若AB 的中点落在y 轴上,那么A 、B 的横坐标互为相反数,即两个横坐标的和为0;可联立两个函数的解析式,那么A 、B 的横坐标即为所得方程的两根,根据方程有两个不等的实数根及两根的和为0即可求出c 的取值范围;(2)由于直线AB 的斜率为1,当A 、B 两点横坐标差的绝对值为2;联立两个函数的解析式,可得到关于x 的方程,那么A 、B 的横坐标就是方程的两个根,可用韦达定理表示出两根差的绝对值,进而求出b 、c 的关系式,即可得到c 的最小值以及对应的b 的值,由此可确定抛物线的解析式;(3)①在(2)中已经求得了b 、c 的关系式,若抛物线与直线的一个交点在y 轴,那么c=1,可据此求出b 的值;进而可确定抛物线的解析式,过P 作PQ ∥y 轴,交AB 于Q ,可根据抛物线和直线AB 的解析式表示出P 、Q 的纵坐标,进而可求出PQ 的表达式,以PQ 为底,A 、B 横坐标的差的绝对值为高即可求出△PAB 的面积,进而可得出关于S (t )和t 的函数关系式,根据函数的性质即可求出△PAB 的最大面积及对应的P 点坐标;②结合(2)以及(3)①的方法求解即可.(1)由x 2+bx+c=x+1,得x 2+(b-1)x+c-1=0①.设交点A (x 1,y 1),B (x 2,y 2) (x 1<x 2).∵AB 的中点落在y 轴,∴A ,B 两点到y 轴的距离相等,即A ,B 两点的横坐标互为相反数,∴x 1+x 2=0,故210(1)4(1)0b b c ⎧-=⎪⎨⎪=--->⎩V∴c<1;(3分)(2)∵,如图,过A作x轴的平行线,过B作y轴的平行线,它们交于G点,∵直线y=x+1与x轴的夹角为45°,∴△ABG为等腰直角三角形,而,=2,即|x1-x2|=2,∴(x1+x2)2-4x1x2=4,由(1)可知x1+x2=-(b-1),x1x2=c-1.代入上式得:(b-1)2-4(c-1)=4,∴c=14(b-1)2≥0∴c的最小值为0;此时,b=1,c=0,抛物线为y=x2+x;(3)①∵由(2)知c=14(b-1)2成立.又∵抛物线与直线的交点在y轴时,交点的横坐标为0,把x=0代入①,得c-1=0,∴c=1.∴这一交点为(0,1);∴14(b-1)2=1∴b=-1或3;当b=-1时,y=x2-x+1,过P作PQ∥y轴交直线AB于Q,则有:P(t,t2-t+1),Q(t,t+1);∴PQ=t+1-(t2-t+1)=-t2+2t;∴S (t )=122+2t=-(t-1)2+1; 当t=1时,S (t )有最大值,且S (t )最大=1,此时P (1,1);当b=3时,y=x 2+3x+1,同上可求得:S (t )=122-2t=-(t+1)2+1; 当t=-1时,S (t )有最大值,且S (t )最大=1,此时P (-1,-1);故当P 点坐标为(1,1)或(-1,-1)时,S (t )最大,且最大值为1;②同(2)可得:(b-1)2-4(c-1)=m 2,由题意知:c=1,则有:(b-1)2=m 2,即b=1±m ;当b=1+m 时,y=x 2+(1+m )x+1,∴P (t ,t 2+(1+m )t+1),Q (t ,t+1);∴PQ=t+1-[t 2+(1+m )t+1]=-t 2-mt ;∴S (t )=1212(-t 2-mt )(t+2m )2m 3;∴当t=-2m 时,S (t )最大3, 此时P (-12m ,-24m -2m +1); 当b=1-m 时,y=x 2+(1-m )x+1,同上可求得:S (t )m (t-2m )23;∴当t=12m 时,S (t )最大3, 此时P (12m ,34m 2+12m+1);故当P (-12m ,-24m -2m +1)或(12m ,34m 2+12m+1)时,S (t 3.作业6 如图,抛物线y=ax 2﹣2ax+c 过坐标系原点及点B (4,4),交x 轴的另一个点为A .(1)求抛物线的解析式及对称轴;(2)抛物线上找出点C ,使得S △ABO =S △CBO ,求出点C 的坐标;(3)连结BO 交对称轴于点D ,以半径为12作⊙D ,抛物线上一动点P ,过P 作圆的切线交圆于点Q ,使得PQ 最小的点P 有几个?并求出PQ 的最小值.【答案】 (1)故抛物线的解析式为: 21y=x x 2-,对称轴x=﹣1122-⨯=1 (2)点C 的坐标为:C 1(2,0),C 2(2﹣4﹣C 3(2+4+(3)点P 有2个,PQ【解析】 (1)∵抛物线y=ax 2﹣2ax +c 过坐标系原点及点B (4,4),∴c=016a 8a+c=4⎧⎨-⎩, 解得:1a=2c=0⎧⎪⎨⎪⎩, 故抛物线的解析式为:21y=x x 2-, 对称轴x=﹣1122-⨯=1; (2)当y=0,0=12x 2﹣x , 解得:x 1=0,x 2=2,故A (2,0),∵B (4,4),∴直线BO 的解析式为:y=x ,作BO 的平行线y=x ﹣2, 则2y=x 21y=x x 2-⎧⎪⎨-⎪⎩ , 解得:x 1=x 2=2,则y=0,故C 1(2,0)往上平移还可以得到另一直线:y=x +2,组成方程组: 2y=x 21y=x x 2+⎧⎪⎨-⎪⎩, 解得:11x =2y =4⎧-⎪⎨-⎪⎩22x =2y =4⎧+⎪⎨+⎪⎩可得C 2(2﹣4﹣C 3(2+4+综上所述:点C 的坐标为:C 1(2,0),C 2(2﹣4﹣C 3(2+4+(3)∵y=12x 2﹣x=12(x ﹣1)2+1, ∴可得D (1,1),设P (x ,y ),由相切得:DQ ⊥PQ ,则PQ 2=PD 2﹣DQ 2, 故2221(x 1y 14PQ =-+--)()=2217x x 244-+(), 故x=0,2时PQ 最小,故点P 有2个,PQ的最小值为2.作业7 如图1,在平面直径坐标系中,抛物线y=ax 2+bx ﹣2与x 轴交于点A (﹣3,0).B (1,0),与y 轴交于点C(1)直接写出抛物线的函数解析式;(2)以OC 为半径的⊙O 与y 轴的正半轴交于点E ,若弦CD 过AB 的中点M ,试求出DC 的长;(3)将抛物线向上平移32个单位长度(如图2)若动点P (x ,y )在平移后的抛物线上,且点P 在第三象限,请求出△PDE 的面积关于x 的函数关系式,并写出△PDE 面积的最大值.【答案】 (1)抛物线的函数解析式为y=23x 2+43x ﹣2. (2). (3)△PDE 的面积关于x 的函数关系式为S △PDE =﹣2815x ﹣23x+2<x <0),且△PDE 面积的最大值为5324【解析】 (1)由点A 、B 的坐标利用待定系数法即可求出抛物线的解析式;(2)令抛物线解析式中x=0求出点C 的坐标,根据点A 、B 的坐标即可求出其中点M 的坐标,由此即可得出CM 的长,根据圆中直径对的圆周角为90°即可得出△COM ∽△CDE ,根据相似三角形的性质即可得出OC CM DC CE=,代入数据即可求出DC 的长度; (3)根据平移的性质求出平移后的抛物线的解析式,令其y=0,求出平移后的抛物线与x 轴的交点坐标,由此即可得出点P 横坐标的范围,再过点P 作PP′⊥y 轴于点P′,过点D 作DD′⊥y 轴于点D′,通过分割图形求面积法找出S △PDE 关于x 的函数关系式,利用配方结合而成函数的性质即可得出△PDE 面积的最大值.解:(1)将点A (﹣3,0)、B (1,0)代入y=ax 2+bx ﹣2中,得:093202a b a b =--⎧⎨=+-⎩,解得:2343a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为y=23x2+43x﹣2.(2)令y=23x2+43x﹣2中x=0,则y=﹣2,∴C(0,﹣2),∴OC=2,CE=4.∵A(﹣3,0),B(1,0),点M为线段AB的中点,∴M(﹣1,0),∴∵CE为⊙O的直径,∴∠CDE=90°,∴△COM∽△CDE,∴OC CM DC CE=,∴.(3)将抛物线向上平移32个单位长度后的解析式为y=23x2+43x﹣2+32=23x2+43x﹣12,令y=23x2+43x﹣12中y=0,即23x2+43x﹣12=0,解得:x1,x2.∵点P在第三象限,x<0.过点P作PP′⊥y轴于点P′,过点D作DD′⊥y轴于点D′,如图所示.(方法一):在Rt△CDE中,,CE=4,∴,sin ∠DCE=DE CE =在Rt △CDD′中,,∠CD′D=90°,∴DD′=CD•sin ∠DCE=85,165, ∴OD′=CD′﹣OC=65, ∴D (﹣85,65),D′(0,65). ∵P (x ,23 x 2+43x ﹣12), ∴P′(0,23 x 2+43x ﹣12). ∴S △PDE =S △DD′E +S梯形DD′P′P ﹣S △EPP′=12DD′•ED′+12(DD′+PP′)•D′P′﹣12PP′•EP′=﹣2815x ﹣23x+2x <0),∵S △PDE =﹣2815x ﹣23x+2=﹣285()158x ++5324<﹣58<0, ∴当x=﹣58时,S △PDE 取最大值,最大值为5324.故:△PDE 的面积关于x 的函数关系式为S △PDE =﹣2815x ﹣23x+2<x <0),且△PDE 面积的最大值为5324.(方法二):在Rt △CDE 中,,CE=4,∴, ∵∠CDE=∠CD′D=90°,∠DCE=∠D′CD , ∴△CDE ∽△CD′D ,∴DD CD CD DE CD CE''==, ∴DD′=85,CD′=165, ∴∴OD′=CD′﹣OC=65, ∴D (﹣85,65),D′(0,65). ∵P (x ,23 x 2+43x ﹣12), ∴P′(0,23 x 2+43x ﹣12). ∴S △PDE =S △DD′E +S梯形DD′P′P ﹣S △EPP′=12DD′•ED′+12(DD′+PP′)•D′P′﹣12PP′•EP′=﹣2815x ﹣23x+2x <0),∵S △PDE =﹣2815x ﹣23x+2=﹣285()158x ++5324<﹣58<0, ∴当x=﹣58时,S △PDE 取最大值,最大值为5324.故:△PDE 的面积关于x 的函数关系式为S △PDE =﹣2815x ﹣23x+2<x <0),且△PDE 面积的最大值为5324.。
⎭ ⎝⎝ ⎝ 4 4 6 4 ⎭ 初中代数、几何所有最值问题一代数问题中的最值问题1、从 - 3,- 2,-1,4,5中任取两个数相乘,所得积中最大值为a ,最小值为b ,求-4答案: 32、若a , b , c 都是大于1的自然数,且a c= 252b , 求a 的最小值? 答案:42.a 的值?b 解析:252b 可以分成某数幂的形式。
252b=6×6×7 b , × 即 b=7,即 a=6×7=42.3、下面是按一定规律排列的一组数:1 ⎛ -1 ⎫第一个数: - 1+ ⎪2 ⎝ 2 ⎭1 ⎛ -1 ⎫⎛(-1)2 ⎫⎛ (-1)3 ⎫第二个数: - 1+ ⎪ 1+ ⎪1+ ⎪3 ⎝ 2 ⎪ ⎪ ⎭⎝ ⎭1 ⎛ -1 ⎫⎛ (-1)2 ⎫⎛ (-1)3 ⎫⎛ (-1)4 ⎫⎛ (-1)5 ⎫第三个数: - 1+ ⎪ 1+ ⎪1+ ⎪1+ ⎪1+ ⎪4 ⎝ 2 ⎭⎪ ⎪ ⎭⎝ ⎭⎝ ⎪ ⎪ ⎭⎝ ⎭……第 n 个数:1⎛ -1 ⎫⎛(-1)2 ⎫⎛ (-1)3 ⎫ ⎛ (-1)2n -1 ⎫ - 1+ ⎪ 1+ ⎪1+ ⎪…… 1+ ⎪n +1 ⎝ 2 ⎭ ⎪ ⎪ ⎭⎝ ⎭ ⎝2n ⎪ ;那么在第 10 个数,第 11 个数,第 12个数中,最大数是?答案:第 10 个。
解析:第n 个数是 1- n2(n +1), 把n = 10, n = 11, n = 12, n = 13分别代入得出答案。
4、已知: 20n 是整数,求满足条件的 最小整正数n 的值?答案:5解析:20n=4×5×n ,因为20n 是整数,∴ 20n 是一个完全平方数,∴ n 的最小值为54、当(m+n )²+1 取最小值时,求m 2 - n 2 + 2 m - 2 n 的值?答案:0解析:(m+n )²+1 取最小值,m+n=0 时最小。
2020年初三数学下册中考专题复习二次函数面积最值问题1.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.2.如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形A′B′OC′.抛物线y=﹣x2+2x+3经过点A、C、A′三点.(1)求A、A′、C三点的坐标;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△C′OD的面积;(3)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M的坐标.3.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接P A,PB使得△P AB的面积最大,并求出这个最大值.4.如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使P A+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.5.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.6.如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.7.如图,抛物线y=ax2+bx+与直线AB交于点A(﹣1,0),B(4,),点D是抛物线A、B两点间部分上的一个动点(不与点A、B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的表达式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S 取最大值时的点C的坐标.8.如图A(0,3),B(3,0),C(1,0)分别是抛物线:y=ax2+bx+c(a≠0)上的三点,点P为抛物线上一动点.(1)求此抛物线的解析式.(2)当△P AB是以AB为一直角边的直角三角形时,求此时点P的坐标.(3)若点P在抛物线上A、B两点之间移动时,是否存在一个位置,使△P AB的面积最大?若存在,请求此时点P的坐标.若不存在,请说明理由.9.如图,抛物线y=ax2+bx+c经过A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.点P为直线AE上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的表达式;(2)当t为何值时,△P AE的面积最大?并求出最大面积;(3)是否存在点P使△P AE为直角三角形?若存在,求出t的值;若不存在,说明理由.10.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C (0,﹣3)(1)求出该抛物线的函数关系式及对称轴(2)点P是抛物线上的一个动点,设点P的横坐标为t(0<t<3).当△PCB的面积的最大值时,求点P的坐标(3)在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B、C、P、Q为顶点的四边形是平行四边形时,求P点的坐标.11.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线解析式并求出点D的坐标;(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;(3)当△CPE是等腰三角形时,请直接写出m的值.12.如图1,在平面直角坐标系中,直线y=x﹣与抛物线y=﹣x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣8.点P是直线AB上方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线,垂足为E,交直线AB于点C,作PD⊥AB于点D,交x轴于点F.(1)求该抛物线的解析式;(2)求sin∠ACE的值;(3)连接P A、PB(如图2所示),设△P AB的面积为S,点P的横坐标为x,求S关于x的函数关系式,并求出S的最大值.13.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A.经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E;PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小.若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.14.如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.15.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E (0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?16.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1,P为抛物线上的一个动点.(1)求抛物线的解析式并写出其顶点坐标;(2)当点P的纵坐标为2时,求点P的横坐标;(3)当点P在运动过程中,求四边形P ABC面积最大时的值及此时点P的坐标.17.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△P AC的面积最大?并求出此时P点的坐标和△P AC的最大面积.18.如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).(1)求抛物线的解析式及其对称轴方程.(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由.(3)在抛物线上BC之间是否存在一点D,使得△DBC的面积最大?若存在请求出点D 的坐标和△DBC的面积;若不存在,请说明理由.19.如图1,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A(﹣4,0)、B(1,0)两点,与y轴交于C点,对称轴x=﹣,点N(n,0)是线段AB上的一个动点(N与A、B两点不重合),请回答下列问题:(1)求出抛物线的解析式,并写出C点的坐标;(2)试求出当n为何值时,△ANC恰能构成是等腰三角形.(3)如图2,过N作NF∥BC,与AC相交于D点,连结CN,请问在N点的运动过程中,△CDN的面积是否存在最大值;若存在,试求出该最大面积,若不存在,请说明理由.20.抛物线y=ax2+bx+c与x轴交于点A(1,0)和点B(5,0),与y轴交于点C(0,3).该抛物线与直线相交于C,D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M,N.(1)求该抛物线所对应的函数解析式;(2)连结PC,PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;(3)连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.详细答案一.解答题(共20小题)1.【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.2.【解答】解:(1)当y=0时,﹣x2+2x+3=0,解得x1=3,x2=﹣1,则C(﹣1,0),A′(3,0);当x=0时,y=3,则A(0,3);(2)∵四边形ABOC为平行四边形,∴AB∥OC,AB=OC,而C(﹣1,0),A(0,3),∴B(1,3)∴OB==,S△AOB=×3×1=,又∵平行四边形ABOC旋转90°得平行四边形A′B′OC′,∴∠ACO=∠OC′D,OC′=OC=1,又∵∠ACO=∠ABO,∴∠ABO=∠OC′D.又∵∠C′OD=∠AOB,∴△C′OD∽△BOA,∴=()2=()2=,∴S△C′OD=×=;(3)设M点的坐标为(m,﹣m2+2m+3),0<m<3,作MN∥y轴交直线AA′于N,易得直线AA′的解析式为y=﹣x+3,则N(m,﹣m+3),∵MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∴S△AMA′=S△ANM+S△MNA′=MN•3=(﹣m2+3m)=﹣m2+m=﹣(m﹣)2+,∴当m=时,S△AMA'的值最大,最大值为,此时M点坐标为().3.【解答】解:(1)抛物线的顶点D的横坐标是2,则x=﹣=2…①,抛物线过是A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入上式得:9=25a+5b﹣3…②,联立①、②解得:a=,b=﹣,c=﹣3,∴抛物线的解析式为:y=x2﹣x﹣3,当x=2时,y=﹣,即顶点D的坐标为(2,﹣);(2)A(0,﹣3),B(5,9),则AB=13,①当AB=AC时,设点C坐标(m,0),则:(m)2+(﹣3)2=132,解得:m=±4,即点C坐标为:(4,0)或(﹣4,0);②当AB=BC时,设点C坐标(m,0),则:(5﹣m)2+92=132,解得:m=5,即:点C坐标为(5,0)或(5﹣2,0),③当AC=BC时,设点C坐标(m,0),则:点C为AB的垂直平分线于x轴的交点,则点C坐标为(,0),故:存在,点C的坐标为:(4,0)或(﹣4,0)或(5,0)或(5﹣2,0)或(,0);(3)过点P作y轴的平行线交AB于点H,设:AB所在的直线过点A(0,﹣3),则设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k=,故函数的表达式为:y=x﹣3,设:点P坐标为(m,m2﹣m﹣3),则点H坐标为(m,m﹣3),S△P AB=•PH•x B=(﹣m2+12m),当m=2.5时,S△P AB取得最大值为:,答:△P AB的面积最大值为.4.【解答】解:(1)令:y=x2﹣2x=0,则x=0或2,即点B(2,0),∵C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,则点A(4,0),将点A的坐标代入C2的表达式得:0=﹣16+4b,解得:b=4,故抛物线C2的解析式为:y=﹣x2+4x;(2)联立C1、C2表达式并解得:x=0或3,故点C(3,3),作点C关于C2对称轴的对称点C′(1,3),连接AC′交函数C2的对称轴与点P,此时P A+PC的值最小为:线段AC′的长度=3,此时点P(2,2);(3)直线OC的表达式为:y=x,过点M作y轴的平行线交OC于点H,设点M(x,﹣x2+4x),则点H(x,x),则S△MOC=MH×x C=(﹣x2+4x﹣x)=﹣x2+x,∵﹣<0,故x=,故当点M(,)时,S△MOC最大值为.5.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣3x﹣4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PC,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,﹣2);(3)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,﹣4),∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,∴S△PBC=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(﹣t2+4t)×4=﹣2(t﹣2)2+8,∴当t=2时,S△PBC最大值为8,此时t2﹣3t﹣4=﹣6,∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.6.【解答】解:(1)将B(4,0)代入y=﹣x2+3x+m,解得,m=4,∴二次函数解析式为y=﹣x2+3x+4,令x=0,得y=4,∴C(0,4),(2)存在,理由:∵B(4,0),C(0,4),∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,∴,∴x2﹣4x+b=0,∴△=16﹣4b=0,∴b=4,∴,∴M(2,6),(3)①如图,∵点P在抛物线上,∴设P(m,﹣m2+3m+4),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4)∴线段BC的垂直平分线的解析式为y=x,∴m=﹣m2+3m+4,∴m=1±,∴P(1+,1+)或P(1﹣,1﹣),②如图,设点P(t,﹣t2+3t+4),过点P作y轴的平行线l,过点C作l的垂线,∵点D在直线BC上,∴D(t,﹣t+4),∵PD=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,BE+CF=4,∴S四边形PBQC=2S△PCB=2(S△PCD+S△PBD)=2(PD×CF+PD×BE)=4PD=﹣4t2+16t,∵0<t<4,∴当t=2时,S四边形PBQC最大=167.【解答】解:(1)∵由题意得解得:,∴y=﹣x2+2x+.(2)设直线AB为:y=kx+b.则,解得直线AB的解析式为y=+.如图所示:记CD与x轴的交点坐标为E.过点B作BF⊥DC,垂足为F.设D(m,﹣m2+2m+)则C(m,m+).∵CD=(﹣m2+2m+)﹣(m+)=m2+m+2,∴S=AE•DC+CD•BF=CD(AE+BF)=DC=m2+m+5.∴S=m2+m+5.∵﹣<0,∴当m=时,S有最大值.∴当m=时,m+=×+=.∴点C(,).8.【解答】解:(1)将A(0,3),B(3,0),C(1,0)代入y=ax2+bx+c,得:,解得:,∴抛物线的解析式为y=x2﹣4x+3.(2)设点P的坐标为(m,m2﹣4m+3).∵点A的坐标为(0,3),点B的坐标为(3,0),∴AP2=(m﹣0)2+(m2﹣4m+3﹣3)2=m4﹣8m3+17m2,BP2=(m﹣3)2+(m2﹣4m+3)2=m4﹣8m3+23m2﹣30m+18,AB2=(3﹣0)2+(0﹣3)2=18.分两种情况考虑:①当∠BAP=90°时,AB2+AP2=BP2,即18+m4﹣8m3+17m2=m4﹣8m3+23m2﹣30m+18,整理,得:m2﹣5m=0,解得:m1=0(舍去),m2=5,∴点P的坐标为(5,8);②当∠ABP=90°时,AB2+BP2=AP2,即18+m4﹣8m3+23m2﹣30m+18=m4﹣8m3+17m2,整理,得:m2﹣5m+6=0,解得:m3=2,m3=3(舍去),∴点P的坐标为(2,﹣1).综上所述:当△P AB是以AB为一直角边的直角三角形时,点P的坐标为(5,8)或(2,﹣1).(3)存在,如图过点P作PD∥y轴交直线AB于点D.设直线AB的解析式为y=kx+d(k≠0),将A(0,3),B(3,0)代入y=kx+d,得:,解得:,∴直线AB的解析式为y=﹣x+3.设点P的坐标为(n,n2﹣4n+3)(0<n<3),则点D的坐标为(n,﹣n+3),∴PD=(﹣n+3)﹣(n2﹣4n+3)=﹣n2+3n,∴S△P AB=OB•PD=﹣n2+n=﹣(n﹣)2+.∵﹣<0,∴当n=时,S△P AB取得最大值,此时最大值为,∴当△P AB的面积取最大值时,点P的坐标为(,﹣).9.【解答】解:(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴抛物线对称轴为x=1,∴E(3,0),设直线AE的解析式为y=kx+3,∴3k+3=0,解得,k=﹣1,∴直线AE的解析式为y=﹣x+3,如图1,作PM∥y轴,交直线AE于点M,设P(t,﹣t2+2t+3),M(t,﹣t+3),∴PM=﹣t2+2t+3+t﹣3=﹣t2+3t,∴==,∴t=时,△P AE的面积最大,最大值是.(3)由图可知∠PEA≠90°,∴只能有∠P AE=90°或∠APE=90°,①当∠P AE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠P AG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠P AQ=90°,∴∠P AQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,∴,即t2﹣t﹣1=0,解得:t=或t=<0(舍去),综上可知存在满足条件的点P,t的值为1或.10.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线与y轴交于点C(0,﹣3),∴﹣3=a(0+1)(0﹣3),∴a=1∴设抛物线解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3,对称轴为直线x=1;(2)设P(t,t2﹣2t﹣3),S△PCB=S△POC+S△POB﹣S△BOC=×3t+×3×|t2﹣2t﹣3|﹣=∵a=<0,∴函数有最大值,当t=时,面积最大,∴P()(3)设Q(1,n)),①当PQ、PC为平行四边形的对角线时,P(4,n+3),∴42﹣2×4﹣3=n+3,n=2,∴P(4,5);②当CQ、BP为平行四边形的对角线时,P(﹣2,n﹣3),∴(﹣2)2﹣2×(﹣2)﹣3=n﹣3,n=8,∴P(﹣2,5);综上所述,以BC为边,以点B、C、P、Q为顶点的四边形是平行四边形时,P点的坐标(4,5),(﹣2,5).11.【解答】解:(1)把A(﹣1,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2+2x+3;把C(0,3)代入y=﹣x+m,解得m=3,∴直线CD的解析式为y=﹣x+3,解方程组,解得或,∴D点坐标为(,);(2)存在.设P(m,﹣m2+2m+3),则E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=••(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,当m=时,△CDP的面积存在最大值,最大值为;(3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;当EC=EP时,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m =,综上所述,m的值为或或.12.【解答】解:(1)当x=﹣8时,y=x﹣=﹣,则B(﹣8,﹣),当y=0时,x﹣=0,解得x=2,则A(2,0),把B(﹣8,﹣),A(2,0)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式y=﹣x2﹣x+;(2)当x=0时,y=x﹣=﹣,则G(0,﹣),在Rt△AOG中,∵OG=,OA=2,∴AG==,∴sin∠AGO===,∵PC⊥x轴,∴PC∥OG,∴∠ACE=∠AGO,∴sin∠ACE=;(3)设P(x,﹣x2﹣x+),则C(x,x﹣),∴PC=﹣x2﹣x+﹣(x﹣)=﹣x2﹣x+4,∴S=•(2+8)•(﹣x2﹣x+4)=﹣x2﹣x+20=﹣(x+3)2+,当x=﹣3时,S的最大值为.13.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.14.【解答】(1)解:∵直线y=x﹣2交x轴、y轴于B、C两点,∴B(4,0),C(0,﹣2),∵y=ax2﹣x+c过B、C两点,∴,解得,∴y=x2﹣x﹣2.(2)证明:如图1,连接AC,∵y=x2﹣x﹣2与x负半轴交于A点,∴A(﹣1,0),在Rt△AOC中,∵AO=1,OC=2,∴AC=,在Rt△BOC中,∵BO=4,OC=2,∴BC=2,∵AB=AO+BO=1+4=5,∴AB2=AC2+BC2,∴△ABC为直角三角形.(3)解:△ABC内部可截出面积最大的矩形DEFG,面积为,理由如下:①一点为C,AB、AC、BC边上各有一点,如图2,此时△AGF∽△ACB∽△FEB.设GC=x,AG=﹣x,∵,∴,∴GF=2﹣2x,∴S=GC•GF=x•(2)=﹣2x2+2x=﹣2[(x﹣)2﹣]=﹣2(x﹣)2+,即当x=时,S最大,为.②AB边上有两点,AC、BC边上各有一点,如图3,此时△CDE∽△CAB∽△GAD,设GD=x,∵,∴,∴AD=x,∴CD=CA﹣AD=﹣x,∵,∴,∴DE=5﹣x,∴S=GD•DE=x•(5﹣x)=﹣x2+5x=﹣[(x﹣1)2﹣1]=﹣(x﹣1)2+,即x=1时,S最大,为.综上所述,△ABC内部可截出面积最大的矩形DEFG,面积为.15.【解答】解:(1)∵抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,∴点A坐标为(1,4),设抛物线的解析式为y=a(x﹣1)2+4,把C(3,0)代入抛物线的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.故抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依题意有:OC=3,OE=4,∴CE===5,当∠QPC=90°时,∵cos∠QCP==,∴=,解得t=;当∠PQC=90°时,∵cos∠QCP==,∴=,解得t=.∴当t=或t=时,△PCQ为直角三角形;(3)∵A(1,4),C(3,0),设直线AC的解析式为y=kx+b,则,解得.故直线AC的解析式为y=﹣2x+6.∵P(1,4﹣t),将y=4﹣t代入y=﹣2x+6中,得x=1+,∴Q点的横坐标为1+,将x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.∴Q点的纵坐标为4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,∴S△ACQ=S△AFQ+S△CFQ=FQ•AG+FQ•DG=FQ(AG+DG)=FQ•AD=×2(t﹣)=﹣+t=﹣(t2+4﹣4t﹣4)=﹣(t﹣2)2+1,∴当t=2时,△ACQ的面积最大,最大值是1.16.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A和点B(1,0),与y 轴交于点C(0,3),其对称轴l为x=﹣1,∴A(﹣3,0),∴解得:,∴二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4).(2)设点P(x,2)即y=﹣x2﹣2x+3=2,解得x1=﹣1或x2=﹣﹣1,∴点P(﹣1,2)或(﹣﹣1,2).(3)设点P(x,y),则y=﹣x2﹣2x+3,∵S四边形BCP A=S△OBC+S△OAP+S△OPC,∴=,∵﹣<0,∴当x=﹣时,四边形P ABC的面积有最大值,所以点P(﹣,).17.【解答】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,故抛物线的对称轴l与⊙C相交.(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△P AC=S△P AQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△P AC的面积最大为;此时,P点的坐标为(3,).18.【解答】解:(1)∵B点的坐标为B(8,0),∴﹣16+8b+4=0,解得b=,∴抛物线的解析式为y═﹣+x+4,对称轴方程为x=﹣=3;(2)∵由(1)知,抛物线的对称轴方程为x=3,B(8,0)∴A(﹣2,0),C(0,4),∴OA=2,OC=4,OB=8,∴tan∠ACO=tan∠CBO=,∴∠ACO=∠CBO.∵∠AOC=∠COB=90°,∴△AOC∽△COB.(3)设BC解析式为y=kx+b,把(8,0),(0,4)分别代入解析式得,,解得,解得y=﹣x+4,作DH⊥x轴,交BC于H.设D(t,﹣t2+t+4),H(t,﹣t+4),S△BCD=DH•OB=×(﹣t2+t+4+t﹣4)×8=﹣t2+8t=﹣(t2﹣8t+42﹣16)=﹣(t﹣4)2+16,当t=4时,△DBC的最大面积为16,此时D点坐标为(4,6).19.【解答】解:(1)∵抛物线y=﹣x2+bx+c(a≠0)与x轴交于A(﹣4,0)、B(1,0)两点,不妨设抛物线的解析式为y=﹣(x+4)(x﹣1),即y=﹣x2﹣x+2.∴C(0,2).(2)分两种情形:①当AN=AC时,如图1中,∵AC==2,∴n﹣(﹣4)=2,∴n=2﹣4.②当NA=NC时,如图2中,在Rt△NOC中,OC=2,∵NC=NA=n﹣(﹣4)=n+4,ON=n,∴n2+22=(n+)2,解得n=﹣.综上所述,当n=2﹣4或﹣时,△ANC是等腰三角形.(3)如图3中,由题意可知:直线BC的解析式为y=﹣2x+2,直线AC的解析式为y=x+2,设N(n,0),易知N在线段OB上时,△CDN的面积较小,不妨设n<0,∵ND∥BC,设ND的解析式为y=﹣2x+b,代入(n,0)可得b=2n,∴ND的解析式为y=﹣2x+2n,由,可得点D的纵坐标:y D=(8+2n),∴S△CDN=S△AOC﹣S△ADN﹣S△CON=[2×4﹣2|n|﹣(8+2n)(n+4)=﹣(n+)2+,∵﹣<0,∴当n=﹣时,△DCN的面积最大,最大值为.20.【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、点B(5,0)和点C(0,3),因为与y轴相较于点C,所以c=3.∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的垂线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,∴S△PCD=S△PCN+S△PDN=PN•CE+PN•DF=PN=[﹣(t﹣)2+]=﹣(t﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;(3)存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有或两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,﹣);当时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,﹣)或(,﹣).。
专题:二次函数中的线段问题(含最值问题)1. 如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A ,B (1,0),与y 轴交于点C ,直线y = x -2经过点A 、C .抛物线的顶点为D ,对称轴为直线l .(1) 求抛物线的表达式、顶点D 的坐标及对称轴l ; (2) 设点E 为x 轴上一点,且AE =CE ,求点E 的坐标;(3) 设点G 是y 轴上一点,是否存在点G ,使得GD +GB 的值最小,若存在,求出点G 的坐标;若不存在,请说明理由;(4) 在直线l 上是否存在一点F ,使得△BCF 的周长最小,若存在,求出点F 的坐标及△BCF 周长的最小值;若不存在,请说明理由;(5) 点S 为y 轴上任意一点,K 为直线AC 上一点,连接BS ,BK ,是否存在点S ,K 使得△BSK 的周长最小,若存在,求出S ,K 的坐标,并求出△BSK 周长的最小值;若不存在,请说明理由;(6) 在y 轴上是否存在一点S ,使得SD -SB 的值最大,若存在,求出点S 的坐标;若不存在,请说明理由; (7) 若点H 是抛物线上位于AC 上方的一点,过点H 作y 轴的平行线,交AC 于点K ,设点H 的横坐标为h ,线段HK =d .①求d 关于h 的函数关系式; ②求d 的最大值及此时H 点的坐标.122. 如图,抛物线y=-x2-2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点D(m,0)为线段OA上一个动点(与点A,O不重合),过点D作x轴的垂线与线段AC交于点P,与抛物线交于点Q,连接BP,与y轴交于点E.(1)求A,B,C三点的坐标;(2)当点D是OA的中点时,求线段PQ的长;(3)在点D运动的过程中,探究下列问题:①是否存在一点D,使得PQ+22PC取得最大值?若存在,求此时m的值;若不存在,请说明理由;②连接CQ,当线段PE=CQ时,直接写出m的值.3. 如图,直线y =-34x +1与x 轴、y 轴分别交于A 、B 两点,抛物线y =-12x 2+bx +c 经过点B ,且与直线AB 的另一交点为C (4,n ).(1)求该抛物线的表达式及点C 的坐标;(2)设抛物线上的一个动点P 的横坐标为t (0<t <4),过点P 作PD ⊥AB 交直线AB 于点D ,作PE ∥y 轴交直线AB 于点E .①求线段PD 的长的最大值; ②当t 为何值时,点D 为BE 的中点.4. 已知抛物线y =ax 2+bx +2经过A (-1,0),B (2,0),C 三点.直线y =mx +12交抛物线于A ,Q 两点,点P 是抛物线上直线AQ 上方的一个动点,过点P 作PF ⊥x 轴,垂足为点F ,交AQ 于点N .(1)求抛物线的表达式;(2)如图①,在点P 运动过程中,当PN =2NF 时,求点P 的坐标;(3)如图②,线段AC 的垂直平分线交x 轴于点E ,垂足为点D ,点M 为抛物线的顶点,在直线DE 上是否存在一点G ,使△CMG 的周长最小?若存在,请求出点G 的坐标;若不存在,请说明理由.参考答案1. (1)解:对于直线y =21x -2, 令y =0,得x =4,令x =0,得y =-2, ∴点A (4,0),点C (0,-2),抛物线的解析式为y = -21x 2+25x -2 ∴顶点D 的坐标为(25,98 ),对称轴l 为直线x = 25(2)要求点E 的坐标,已知AE =CE ,设E 点坐标为(e ,0),用含e 的式子分别表示出AE 和CE ,建立等量关系求解即可.点E 的坐标为( 23,0)(3)要使GD +GB 的值最小,一般是通过轴对称作出对称点来解决. 解:存在.如解图②,要使GD +GB 的值最小,取点B 关于y 轴的对称点B ′,点B ′的坐标为(-1,0).连接B ′D ,直线B ′D 与y 轴的交点G 即为所求的点,点G 的坐标为(0, 289);(4)要使△BCF 周长最小,BC 长为定值,即要使CF +BF 的值最小.△BCF 周长的最小值为BC +AC =3 √5 ;(5)要求△BSK 周长的最小值,可分别作点B 关于y 轴和直线AC 的两个对称点B ′、B ″,连接B ′B ″与y 轴和直线AC 交点即为使得△BSK 的周长最小的点S 、K ,最小值即线段B ′B ″的长.存在点S (0,-43 ),点K (1, - 23 )使得△BSK 的周长最小,最小值为4;(6)当点S 在DB 的延长线上时,SD -SB 最大,最大值为BD , 即当点S 的坐标为(0,-43)时,SD -SB 的值最大;(7)平行于y 轴的直线上两点之间的距离为此两点的纵坐标之差的绝对值,如此问,由题可得点H 的横坐标为h ,①求出点H ,K 的纵坐标,再由点H 在点K 的上方,可得到d 关于h 的函数关系式;②利用二次函数的性质求最值,即可得d 的最大值及H 点的坐标.(1)d 关于h 的函数关系式为d =-21h 2+2h ; (2)当h =2时,d 最大,最大值为2,此时点H 的坐标为(2,1).参考答案2. 解:(1)在y =-x 2-2x +3中, 令y =0,得-x 2-2x +3=0, 解得x 1=-3,x 2=1. ∵点A 在点B 的左侧, ∴A (-3,0),B (1,0). 令x =0,得y =3, ∴点C 的坐标为(0,3);(2)设直线AC 的表达式为y =kx +b .将A ,C 两点的坐标(-3,0),(0,3)代入表达式,得⎩⎪⎨⎪⎧-3k +b =0,b =3,解得⎩⎪⎨⎪⎧k =1,b =3,∴直线AC 的表达式为y =x +3.(4分) ∵点D 是OA 的中点,∴OD =12OA =32,∴点D 的横坐标m =-32.∵PQ ⊥x 轴,∴把m =-32分别代入y =x +3和y =-x 2-2x +3,得P ,Q 两点的坐标分别为(-32,32)、(-32,154),∵DQ ⊥OA ,∴PQ =DQ -DP =y Q -y P . ∴PQ =154-32=94;(3)①存在点D ,使得PQ +22PC 取得最大值. 理由:∵点D 的横坐标为m ,PQ ⊥x 轴,且点P ,Q 分别在直线AC 和抛物线上, ∴P ,Q 两点的坐标分别为(m ,m +3),(m ,-m 2-2m +3). ∵DQ ⊥OA ,∴PQ =DQ -DP =y Q -y P ,∴PQ =-m 2-2m +3-(m +3)=-m 2-3m . 如解图,过点P 作PF ⊥y 轴于点F ,则PF =-m . 在Rt △AOC 中,OA =OC =3, ∴∠CAO =∠OCA =45°.∴sin ∠OCA =PF PC =22.∴PF =22PC ∴PQ +22PC =-m 2-3m -m =-m 2-4m =-(m +2)2+4, ∵PQ +22PC 是m 的二次函数,其中a =-1<0,而-3<m <0. ∴当m =-2时,PQ +22PC 取得最大值;②m =-1或m =- 5.【解法提示】∵△PFE ∽△BOE ,∴PF BO =EFEO.∵PF =-m ,OF =m +3,OB =1,∴EF =-mOE .∵OF =EF +OE ,∴m +3=(-m +1)OE ,则OE =m +3-m +1,EF =-m (m +3)-m +1,又∵CQ =PE ,PQ ∥CE ,∴|y Q -y C |=|y P -y E |=EF .∵|y Q -y C |=|-m 2-2m +3-3|=|m 2+2m |,∴-m (m +3)-m +1=|m 2+2m |.又∵-3<m <0,解得m =-1或m =- 5.3. 解:(1)把x =4,y =n 代入y =-34x +1中,得n =-34×4+1=-2∴点C 的坐标为(4,-2).将点C (4,-2)和点B (0,1)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧-8+4b +c =-2,c =1, 解得⎩⎪⎨⎪⎧b =54,c =1,∴抛物线的表达式为y =-12x 2+54x +1;(2)①∵PE =-12t 2+54t +1-(-34t +1)=-12t 2+2t ,如解图,过点E 作QE ⊥y 轴于点Q ,则QE =t , QB =1+34t -1=34t ,BE =QB 2+QE 2=(34t )2+t 2=54t ∵PE ∥y 轴, ∴∠PEB =∠EBQ , ∵∠BQE =∠PDE =90°, ∴△PED ∽△EBQ ,∴PE EB =PD EQ ,得-12t 2+2t 54t =PDt, PD =-25t 2+85t .∵-25<0,∴PD 有最大值, PD 最大=0-(85)24×(-25)=85;②∵点D 为BE 的中点,∴由PE EB =DE QB ,DE =12BE ,得12BE 2=PE ·QB ,代入得12×(54t )2=(-12t 2+2t )×34t ,整理得2532=-38t +32,解得t =2312,∴当t =2312时,点D 为BE 的中点.4. 解:(1)∵抛物线y =ax 2+bx +2经过A (-1,0),B (2,0),∴将点A 和点B 的坐标代入得⎩⎪⎨⎪⎧a -b +2=0,4a +2b +2=0,解得⎩⎪⎨⎪⎧a =-1,b =1,∴抛物线的表达式为y =-x 2+x +2;(2)直线y =mx +12交抛物线于A 、Q 两点,把A (-1,0)代入解析式得m =12,∴直线AQ 的表达式为y =12x +12.设点P 的横坐标为n ,则P (n ,-n 2+n +2),N (n ,12n +12),F (n ,0),∴PN =-n 2+n +2-(12n +12)=-n 2+12n +32,NF =12n +12.∵PN =2NF ,即-n 2+12n +32=2×(12n +12),解得n =-1或n =12,当n =-1时,点P 与点A 重合,不符合题意舍去.∴点P 的坐标为(12,94);(3)在直线DE 上存在一点G ,使△CMG 的周长最小;此时G (-38,1516).理由如下:∵y =-x 2+x +2=-(x -12)2+94,∴M (12,94).如解图,连接AM 交直线DE 于点G ,连接CG 、CM ,此时,△CMG 的周长最小. 设直线AM 的函数表达式为y =kx +b ,且过A (-1,0),M (12,94).根据题意得⎩⎪⎨⎪⎧-k +b =0,12k +b =94,解得⎩⎨⎧k =32,b =32.∴直线AM 的表达式为y =32x +32.∵D 为AC 的中点,∴D (-12,1).设直线AC 的表达式为y =kx +2,将点A 的坐标代入得-k +2=0,解得k =2, ∴AC 的表达式为y =2x +2.设直线DE 的表达式为y =-12x +c ,将点D 的坐标代入得:14+c =1,解得c =34,∴直线DE 的表达式为y =-12x +34.联立⎩⎨⎧y =-12x +34,y =32x +32,解得⎩⎨⎧x =-38,y =1516.∴在直线DE 上存在一点G ,使△CMG 的周长最小,此时G (-38,1516).。
一、解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高3. 一般常用割补法去求解三角形的面积从而得出面积的关系式4. 根据二次函数性质求出最大值.注意事项: 1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。
4.利用点坐标表示线段长度时注意要用大的减去小的。
二、二次函数问题中三角形面积最值问题(一)例题演示1. 如图,已知抛物线(2)(4)y a x x =+-(a 为常数,且a >0)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线33y x b =-+与抛物线的另一交点为D ,且点D 的横坐标为﹣5. (1)求抛物线的函数表达式;(2)P 为直线BD 下方的抛物线上的一点,连接PD 、PB , 求△PBD 面积的最大值.【解析】:本题主要考查二次函数的图象与性质和二次函数的面积最值问题。
(1)根据二次函数交点式得出A,B 点坐标,从而求出一次函数解析式,根据已知的D 点横坐标求出纵坐标从而求出抛物线解析式。
(2)用三角形的面积公式建立函数关系式,再根据二次函数的性质即可求得最大值。
解答:(1)抛物线(2)(4)y a x x =+-令y =0,解得x =-2或x =4,DB O AyxC∴A (-2,0),B (4,0). ∵直线3-3y x b =+经过点B(4,0),∴3-4=03b ⨯+,解得43=3b , ∴直线BD 解析式为:343-33y x =+ 当x =-5时,y =33,∴D (-5,33)∵点D(-5,33)在抛物线(2)(4)y a x x =+-上,∴(-52)(-54)=33a +-,∴39a =. ∴抛物线的函数表达式为:2332383(2)(4)=9999y x x x x =+---. (2)设P (m , 232383999m m --) ∴2134323839(3)()233999BPD S m m m ⎡⎤=⨯-+---⎢⎥⎣⎦△ 233=+10322m m --23181=()+3228m -+ ∴△BPD 面积的最大值为8138. 【试题精炼】2.如图,在平面直角坐标系中,抛物线223y ax ax a =--(0>a )与x 轴交于A 、B 两点(点A 在点B 左侧),经过点A 的直线l :y kx b =+与y 轴交于点C ,与抛物线的另一个交点为D ,且4CD AC =.(1)直接写出点A 的坐标,并用含a 的式子表示直线l 的函数表达式(其中k 、b 用含a 的式子表示).(2)点E 为直线l 下方抛物线上一点,当△ADE 的面积的最大值为425时,求抛物线的函数表达式;y x l B C DA O E FH再求得点P 的纵坐标为m 2-可得线段PF 的长;解答:1)A (-1,0) ∵CD =4AC ,∴点D 的横坐标为4∴a y D 5=,∴)5,4a D (.∴直线l 的函数表达式为y =ax +a(2)过点E 作EH ∥y 轴,交直线l 于点H设E (x ,ax 2-2ax -3a ),则H (x ,ax +a ).∴a ax ax a ax ax a ax HE 43)32()(22++-=---+= ∴a x a a ax ax S S S DEH AEH ADE 8125)23(25)43(2522+--=++-=+=△△△. ∴△ADE 的面积的最大值为a 8125,∴4258125=a ,解得52=a . ∴抛物线的函数表达式为5654522--=x x y . 【中考链接】3.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax +a +4(a <0)经过点B .(1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值;【解析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值;(2)过点M作ME⊥y轴于点E,交AB于点D,所以△ABM的面积为DM•OB,设M的坐标为(m,﹣m2+2m+3),用含m的式子表示DM,然后求出S与m的函数关系式,即可求出S的最大值,其中m的取值范围是0<m<3;解答:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,过点M作ME⊥y轴于点E,交AB于点D,由题意知:M的坐标为(m,﹣m2+2m+3),∴D的纵坐标为:﹣m2+2m+3,∴把y=﹣m2+2m+3代入y=﹣3x+3,∴x=,∴D的坐标为(,﹣m2+2m+3),∴DM=m﹣=,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m ﹣)2+∵0<m <3,∴当m =时,S 有最大值,最大值为;四边形面积最值问题的处理方法核心步骤:对于普通四边形要转化成两个三角形进行研究,然后用求三角形面积最值问题的方法来求解例题演示4.如图,已知抛物线213y x bx c =++经过ABC 的三个顶点,其中点(0,1)A ,点(9,10)B -,//AC x 轴,点P 是直线AC 下方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;【解析】:(1)用待定系数法求出抛物线解析式即可;(2)设点P (m , m2+2m+1),表示出PE=﹣m2﹣3m ,再用S 四边形AECP=S △AEC+S △APC=AC ×PE ,建立函数关系式,求出最大值即可解答:(1)∵点A (0,1).B (﹣9,10)在抛物线上,∴代入解析式求出b=2,c=1,∴抛物线的解析式为y=x2+2x+1(2)∵AC∥x轴,A(0,1)∴=x2+2x+1=1,∴x1=6,x2=0,∴点C的坐标(﹣6,1),∵点A(0,1).B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设点P(m,m2+2m+1)∴E(m,-m+1)∴PE=﹣m+1-(m2+2m+1)=﹣m2﹣3m,∵AC⊥EP,AC=6,∴S四边形AECP=S△AEC+S△AP C=AC×EF+AC×PF =AC×(EF+PF)=AC×PE=×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是此时点P(﹣,﹣).。