19届高考数学一轮复习第九章解析几何考点规范练44直线与圆、圆与圆的位置关系文新人教B版
- 格式:doc
- 大小:774.04 KB
- 文档页数:12
考点规范练44 直线与圆、圆与圆的位置关系基础巩固1.设曲线C的方程为(x-2)2+(y+1)2=9,直线l的方程为x-3y+2=0,则曲线上的点到直线l的距离为的点的个数为()A.1B.2C.3D.42.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离3.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=()A.2B.4C.6D.24.经过原点并且与直线x+y-2=0相切于点(2,0)的圆的标准方程是()A.(x-1)2+(y+1)2=2B.(x+1)2+(y-1)2=2C.(x-1)2+(y+1)2=4D.(x+1)2+(y-1)2=45.(2017山东潍坊二模)已知圆C1:(x+6)2+(y+5)2=4,圆C2:(x-2)2+(y-1)2=1,M,N分别为圆C1和C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.7B.8C.10D.136.(2017福建宁德一模)已知圆C:x2+y2-2x+4y=0关于直线3x-ay-11=0对称,则圆C中以为中点的弦长为()A.1B.2C.3D.47.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2,则圆C的面积为.8.(2017福建泉州一模)若过点P(-3,1),Q(a,0)的光线经x轴反射后与圆x2+y2=1相切,则a的值为.9.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.(1)求证:对m∈R,直线l与圆C总有两个不同的交点;(2)设直线l与圆C交于A,B两点,若|AB|=,求直线l的倾斜角.10.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.能力提升11.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1B.2C.D.212.若直线y=x+b与曲线y=3-有公共点,则b的取值范围是()A.[1-2,1+2]B.[1-,3]C.[-1,1+2]D.[1-2,3]13.平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y-5=0B.2x+y+=0或2x+y-=0C.2x-y+5=0或2x-y-5=0D.2x-y+=0或2x-y-=014.(2017河南洛阳一模)已知直线x+y-k=0(k>0)与圆x2+y2=4交于不同的两点A,B,O是坐标原点,且有||≥|,则k的取值范围是()A.(,+∞)B.[,+∞)C.[,2)D.[,2)15.已知圆C:x2+y2+2x-4y+3=0.若圆C的切线在x轴和y轴上的截距的绝对值相等,求此切线的方程.16.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围.高考预测17.若直线=1通过点M(cos α,sin α),则()A.a2+b2≤1B.a2+b2≥1C.≤1D.≥1参考答案考点规范练44直线与圆、圆与圆的位置关系1.B解析由方程(x-2)2+(y+1)2=9,得圆心坐标为(2,-1),半径r=3,则圆心到直线l的距离d=.由r=,故所求点的个数为2.2.B解析圆M的方程可化为x2+(y-a)2=a2,故其圆心为M(0,a),半径R=a.所以圆心到直线x+y=0的距离d= a.所以直线x+y=0被圆M所截弦长为2=2a,由题意可得a=2,故a=2.圆N的圆心N(1,1),半径r=1.而|MN|=,显然R-r<|MN|<R+r,所以两圆相交.3.C解析依题意,直线l经过圆C的圆心(2,1),因此2+a-1=0,所以a=-1,因此点A的坐标为(-4,-1).又圆C的半径r=2,由△ABC为直角三角形可得|AB|=.又|AC|=2,所以|AB|==6.4.A解析设圆心的坐标为(a,b),由题意可知解得故所求圆的标准方程是(x-1)2+(y+1)2=2.5.A解析圆C1关于x轴的对称圆的圆心坐标A(-6,-5),半径为2,圆C2的圆心坐标(2,1),半径为1,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即-3=7.故选A.6.D解析∵圆C:x2+y2-2x+4y=0关于直线3x-ay-11=0对称,∴直线3x-ay-11=0过圆心C(1,-2),∴3+2a-11=0,解得a=4,∴即为(1,-1),点(1,-1)到圆心C(1,-2)的距离d==1, 圆C:x2+y2-2x+4y=0的半径r=,∴圆C中以为中点的弦长为2=2=4.故选D.7.4π解析因为圆C的方程可化为x2+(y-a)2=2+a2,直线方程为x-y+2a=0,所以圆心坐标为(0,a),半径r2=a2+2,圆心到直线的距离d=.由已知()2+=a2+2,解得a2=2,故圆C的面积为π(2+a2)=4π.8.-解析因为P(-3,1)关于x轴的对称点的坐标为P'(-3,-1),所以直线P'Q的方程为y=(x-a),即x-(3+a)y-a=0,圆心(0,0)到直线的距离d==1,∴a=-.9.(1)证明将已知直线l化为y-1=m(x-1);故直线l恒过定点P(1,1).因为=1<,所以点P(1,1)在已知圆C内,从而直线l与圆C总有两个不同的交点.(2)解圆的半径r=,圆心C到直线l的距离为d=.由点到直线的距离公式得,解得m=±,故直线的斜率为±,从而直线l的倾斜角为.10.解(1)因为圆C1:x2+y2-6x+5=0可化为(x-3)2+y2=4,所以圆C1的圆心坐标为(3,0).(2)由题意可知直线l的斜率存在,设直线l的方程为y=mx,M(x0,y0).由得(1+m2)x2-6x+5=0,则Δ=36-20(1+m2)>0,解得-<m<,故x0=,且<x0≤3.因为m=,所以x0=,整理得.所以M的轨迹C的方程为+y2=.(3)存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点.由(2)得M的轨迹C为一段圆弧,其两个端点为P,Q,直线L:y=k(x-4)过定点E(4,0),①k PE==-,k QE=,当-≤k≤时,直线L与曲线C只有一个交点.②当直线L与曲线C相切时,L的方程可化为kx-y-4k=0,则,解得k=±.综上所述,当-≤k≤或k=±时,直线L与曲线C只有一个交点.11.C解析由题意可知圆心坐标为(-1,0),故圆心到直线y=x+3的距离d=,故选C.12.D解析y=3-变形为(x-2)2+(y-3)2=4(0≤x≤4,1≤y≤3),表示以(2,3)为圆心,2为半径的下半圆,如图所示.若直线y=x+b与曲线y=3-有公共点,只需直线y=x+b在图中两直线之间(包括图中两条直线),y=x+b与下半圆相切时,圆心到直线y=x+b的距离为2,即=2,解得b=1-2或b=1+2(舍去),故b的取值范围为1-2≤b≤3.故选D.13.A解析设与直线2x+y+1=0平行的直线方程为2x+y+m=0(m≠1).因为直线2x+y+m=0与圆x2+y2=5相切,即点(0,0)到直线2x+y+m=0的距离为,所以,即|m|=5.故所求直线的方程为2x+y+5=0或2x+y-5=0.14.C解析设AB中点为D,则OD⊥AB,∵||≥|,∴2||≥|,∴||≤2|.∵||2+|2=4,∴||2≥1.∵直线x+y-k=0(k>0)与圆x2+y2=4交于不同的两点A,B,∴||2<4.∴4>||2≥1,∴4>≥1.∵k>0,∴≤k<2,故选C.15.解因为切线在两坐标轴上的截距的绝对值相等,所以切线的斜率为±1或切线过原点.①当k=±1时,设切线方程为y=-x+b或y=x+c,分别代入圆C的方程得2x2-2(b-3)x+(b2-4b+3)=0或2x2+2(c-1)x+(c2-4c+3)=0.由于相切,则方程有两个相等的实数根,即b=3或b=-1,c=5或c=1.故所求切线方程为x+y-3=0,x+y+1=0,x-y+5=0,x-y+1=0.②当切线过原点时,设切线方程为y=kx,即kx-y=0.由,得k=2±.所以此时切线方程为y=(2±)x.综上①②可得切线方程为x+y-3=0,x+y+1=0,x-y+5=0,x-y+1=0,(2-)x-y=0或(2+)x-y=0.16.解因为圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0<y0<7,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.(2)因为直线l∥OA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d=.因为BC=OA==2,而MC2=d2+,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.(3)设P(x1,y1),Q(x2,y2).因为A(2,4),T(t,0),,所以①因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.②将①代入②,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,所以5-5≤≤5+5,解得2-2≤t≤2+2.因此,实数t的取值范围是[2-2,2+2].17.D解析因为点M(cosα,sinα)在圆x2+y2=1上,又直线=1过点M,所以直线与圆相交或相切.所以≤1,所以≥1.。
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系 文1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【知识拓展】1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( × ) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(4)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(5)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(6)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )1.(教材改编)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是________. ①相切; ②相交但直线不过圆心;③相交过圆心; ④相离. 答案 ②解析 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+1=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是__________. 答案 [-3,1]解析 由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+-2≤2,即|a +1|≤2,解得-3≤a ≤1.3.(2014·湖南改编)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =________. 答案 9解析 圆C 1的圆心C 1(0,0),半径r 1=1,圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆心C 2(3,4),半径r 2=25-m ,从而C 1C 2=32+42=5.由两圆外切得C 1C 2=r 1+r 2,即1+25-m =5,解得m =9.4.(2015·山东改编)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为____________. 答案 -43或-34解析 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34. 5.(教材改编)圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2.题型一 直线与圆的位置关系例1 (1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是______. (2)若过点(1,2)总可以作两条直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则实数k 的取值范围是________.(3)已知方程x 2+x tan θ-1sin θ=0有两个不等实根a 和b ,那么过点A (a ,a 2),B (b ,b 2)的直线与圆x 2+y 2=1的位置关系是________.答案 (1)相交 (2)⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833(3)相切解析 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.(2)把圆的方程化为标准方程得⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=16-3k 24,所以16-3k24>0,解得-833<k <833.由题意知点(1,2)应在已知圆的外部,把点代入圆的方程得1+4+k +4+k 2-15>0, 即(k -2)(k +3)>0, 解得k >2或k <-3,则实数k 的取值范围是⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833.(3)由题意可知过A ,B 两点的直线方程为(a +b )x -y -ab =0,圆心到直线AB 的距离为d =|-ab |a +b2+1,而a +b =-1tan θ,ab =-1sin θ,因此d =⎪⎪⎪⎪⎪⎪1sin θ⎝ ⎛⎭⎪⎫-1tan θ2+1,化简后得d =1,故直线与圆相切.思维升华 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12.(1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长.(1)证明 由⎩⎪⎨⎪⎧y =kx +1,x -2+y +2=12,消去y 得(k 2+1)x 2-(2-4k )x -7=0, 因为Δ=(4k -2)2+28(k 2+1)>0,所以不论k 为何实数,直线l 和圆C 总有两个交点. (2)解 设直线与圆交于A (x 1,y 1)、B (x 2,y 2)两点, 则直线l 被圆C 截得的弦长AB =1+k 2|x 1-x 2|=28-4k +11k21+k2=2 11-4k +31+k2,令t =4k +31+k 2,则tk 2-4k +(t -3)=0,当t =0时,k =-34,当t ≠0时,因为k ∈R ,所以Δ=16-4t (t -3)≥0,解得-1≤t ≤4,且t ≠0,故t =4k +31+k 2的最大值为4,此时AB 最小为27.题型二 圆与圆的位置关系例2 (1)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________.(2)过两圆x 2+y 2+4x +y =-1,x 2+y 2+2x +2y +1=0的交点的圆中面积最小的圆的方程为________________________________________________________________________. (3)如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是______________________.答案 (1)相交 (2)⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45(3)(-22,0)∪(0,22)解析 (1)两圆圆心分别为(-2,0)和(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.(2)由⎩⎪⎨⎪⎧x 2+y 2+4x +y =-1, ①x 2+y 2+2x +2y +1=0, ②①-②得2x -y =0,代入①得x =-15或-1,∴两圆两个交点为⎝ ⎛⎭⎪⎫-15,-25,(-1,-2).过两交点的圆中,以⎝ ⎛⎭⎪⎫-15,-25,(-1,-2)为端点的线段为直径的圆时,面积最小. ∴该圆圆心为⎝ ⎛⎭⎪⎫-35,-65,半径为⎝ ⎛⎭⎪⎫-15+12+⎝ ⎛⎭⎪⎫-25+222=255,圆的方程为⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45.(3)C 的标准方程为(x -a )2+(y -a )2=4,圆心坐标为(a ,a ),半径为2. 依题意得:0<a 2+a 2<2+2,∴0<|a |<2 2. ∴a ∈(-22,0)∪(0,22)思维升华 判断圆与圆的位置关系时,一般用几何法,其步骤是 (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.(1)圆C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0的位置关系为________.答案 内切解析 ∵圆C 1:x 2+y 2-2y =0的圆心为:C 1(0,1),半径r 1=1, 圆C 2:x 2+y 2-23x -6=0的圆心为:C 2(3,0),半径r 2=3, ∴C 1C 2=32+1=2,又r 1+r 2=4,r 2-r 1=2,∴C 1C 2=r 2-r 1=2,∴圆C 1与C 2内切.(2)设M ={(x ,y )|y =2a 2-x 2,a >0},N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},且M ∩N ≠∅,求a 的最大值和最小值.解 M ={(x ,y )|y =2a 2-x 2,a >0},即{(x ,y )|x 2+y 2=2a 2,y ≥0},表示以原点O 为圆心,半径等于2a 的半圆(位于横轴或横轴以上的部分).N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},表示以O ′(1,3)为圆心,半径等于a 的一个圆.再由M ∩N ≠∅,可得半圆和圆有交点,故半圆和圆相交或相切. 当半圆和圆相外切时,由OO ′=2=2a +a , 求得a =22-2;当半圆和圆相内切时,由OO ′=2=2a -a , 求得a =22+2,故a 的取值范围是[22-2,22+2],a 的最大值为22+2,最小值为22-2. 题型三 直线与圆的综合问题 命题点1 求弦长问题例3 (2015·课标全国Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则MN =________.答案 4 6解析 由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以MN =|y 1-y 2|=4 6. 命题点2 由直线与圆相交求参数问题例4 (2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN . 解 (1)由题设,可知直线l 的方程为y =kx +1,因为直线l 与圆C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=+k 1+k 2,x 1x 2=71+k2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1 =4k+k1+k2+8. 由题设可得4k+k1+k2+8=12,解得k =1, 所以直线l 的方程为y =x +1. 故圆心C 在直线l 上,所以MN =2. 命题点3 直线与圆相切的问题例5 (1)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________________; 答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d =|k -1+4-2k |k 2+-2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0,即4x -3y +4=0.综上,切线方程为x =2或4x -3y +4=0.(2)已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. ①与直线l 1:x +y -4=0平行; ②与直线l 2:x -2y +4=0垂直;③过切点A (4,-1).解 ①设切线方程为x +y +b =0, 则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0; ②设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52, ∴切线方程为2x +y ±52=0; ③∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.思维升华 直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.(1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.(2)过原点O 作圆x 2+y 2-6x -8y +20=0的两条切线,设切点分别为P ,Q ,则线段PQ 的长为________. 答案 (1)2 2 (2)4解析 (1)设P (3,1),圆心C (2,2),则PC =2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222-22=2 2.(2)将圆的方程化为标准方程为(x -3)2+(y -4)2=5,则圆心为(3,4),半径长为 5. 由题意可设切线的方程为y =kx ,则圆心(3,4)到直线y =kx 的距离等于半径长5,即|3k -4|k 2+1=5,解得k =12或k =112,则切线的方程为y =12x 或y =112x .联立切线方程与圆的方程,解得两切点坐标分别为(4,2),⎝ ⎛⎭⎪⎫45,225,此即为P ,Q 的坐标,由两点间的距离公式得PQ =4.7.高考中与圆交汇问题的求解一、与圆有关的最值问题典例 (1)(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为________.(2)(2014·北京)已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为________.解析 (1)由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37, ∴x =-1时有最大值49=7.(2)根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且AB =2m . 因为∠APB =90°,连结OP ,易知OP =12AB =m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为OC =32+42=5,所以OP max =OC +r =6,即m 的最大值为6. 答案 (1)7 (2)6 二、直线与圆的综合问题典例 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则AB =________.(2)(2014·江西改编)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为________.解析 (1)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴AC 2=36+4=40.又r =2,∴AB 2=40-4=36. ∴AB =6.(2)∵∠AOB =90°,∴点O 在圆C 上. 设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,∴点C 在以O 为焦点,以直线2x+y -4=0为准线的抛物线上,∴当且仅当O ,C ,D 共线时,圆的直径最小为OD . 又OD =|2×0+0-4|5=45,∴圆C 的最小半径为25,∴圆C 面积的最小值为π(25)2=45π.答案 (1)6 (2)54π温馨提醒 (1)与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.(2)直线与圆的综合问题主要包括弦长问题,切线问题及组成图形面积问题,解决方法主要依据圆的几何性质.[方法与技巧]1.直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的.2.求过一点的圆的切线方程时,首先要判断此点是否在圆上,然后设出切线方程.注意:斜率不存在的情形.3.圆的弦长的常用求法(1)几何法:求圆的半径为r ,弦心距为d ,弦长为l ,则⎝ ⎛⎭⎪⎫l 22=r 2-d 2;(2)代数方法:运用根与系数的关系及弦长公式:AB =1+k 2|x 1-x 2|=+k2x 1+x 22-4x 1x 2].[失误与防范]1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.A 组 专项基础训练 (时间:40分钟)1.(2015·广东)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是______________.答案 2x +y +5=0或2x +y -5=0解析 设所求直线方程为2x +y +c =0,依题有|0+0+c |22+12=5,解得c =±5,所以所求直线方程为2x +y +5=0或2x +y -5=0.2.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A 、B 两点,且△ABC 为等边三角形,则实数a 的值为________. 答案 4±15解析 易知△ABC 是边长为2的等边三角形. 故圆心C (1,a )到直线AB 的距离为 3. 即|a +a -2|a 2+1=3,解得a =4±15. 3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,则ab 的最大值为______________________________________________________________. 答案 2解析 圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R ). 化为:(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1,∵圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切, ∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2.∴ab 的最大值为2.4.过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为______________. 答案 2x +y -3=0 解析如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2,∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为________. 答案 12,-4解析 因为直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则y =kx 与直线2x +y +b =0垂直,且2x +y +b =0过圆心,所以解得k =12,b =-4.6.(2015·山东)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=________. 答案 32解析 由题意,圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PA ⊥x 轴,PA =PB = 3.∴△POA 为直角三角形,其中OA =1,AP =3,则OP =2, ∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos 60°=32.7.已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0,则m 的取值范围为________.答案 [2,3]解析 曲线C :x =-4-y 2,是以原点为圆心,2为半径的半圆,并且x P ∈[-2,0],对于点A (m,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0, 说明A 是PQ 的中点,Q 的横坐标x =6,∴m =6+x P2∈[2,3].8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43.故k 的最大值是43.9.已知以点C (t ,2t)(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程. (1)证明 ∵圆C 过原点O ,且OC 2=t 2+4t2.∴圆C 的方程是(x -t )2+(y -2t )2=t 2+4t2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12OA ·OB =12×|4t |×|2t |=4,即△OAB 的面积为定值. (2)解 ∵OM =ON ,CM =CN , ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5, 此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5, 此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.10.(2014·课标全国Ⅰ)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当OP =OM 时,求l 的方程及△POM 的面积. 解 (1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x,2-y ).由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于OP =OM ,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又OM =OP =22,O到l 的距离为4105,所以PM =4105,S △POM =12×4105×4105=165,故△POM 的面积为165.B 组 专项能力提升 (时间:30分钟)11.已知圆C :(x -a )2+(y -a )2=1 (a >0)与直线y =3x 相交于P ,Q 两点,则当△CPQ 的面积最大时,实数a 的值为________. 答案52解析 因为△CPQ 的面积等于12sin∠PCQ ,所以当∠PCQ =90°时,△CPQ 的面积最大,此时圆心到直线y =3x 的距离为22,因此22=|3a -a |10,解得a =52. 12.过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.答案 -33解析∵S △AOB =12·OA ·OB ·sin∠AOB=12sin∠AOB ≤12. 当∠AOB =π2时,△AOB 面积最大. 此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0), 即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33.(也可k =-tan∠OPH =-33). 13.在平面直角坐标系xOy 中,圆C 1:(x +1)2+(y -6)2=25,圆C 2:(x -17)2+(y -30)2=r 2.若圆C 2上存在一点P ,使得过点P 可作一条射线与圆C 1依次交于点A ,B ,满足PA =2AB ,则半径r 的取值范围是________. 答案 [5,55]解析 由题意可知满足PA =2AB 的点P 应在以C 1为圆心,半径为25的圆上及其内部(且在圆C 1的外部),记该圆为C 3,若圆C 2上存在满足条件的点P ,则圆C 2与圆C 3有公共点,所以|r-25|≤+2+-2≤r +25,即|r -25|≤30≤r +25,解得5≤r ≤55.14.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0. (1)求证:对m ∈R ,直线l 与圆C 总有两个交点;(2)设直线l 与圆C 交于点A ,B ,若AB =17,求直线l 的倾斜角;(3)设直线l 与圆C 交于A ,B ,若定点P (1,1)满足2AP →=PB →,求此时直线l 的方程. (1)证明 直线l 恒过定点P (1,1). 由12+(1-1)2<5知点P 在圆C 内, 所以直线l 与圆C 总有两个交点.(2)解 圆心到直线的距离d =r 2-⎝ ⎛⎭⎪⎫AB 22=32,又d =|0-1+1-m |m 2+1,所以32=|0-1+1-m |m 2+1, 解得m =±3,所以,l 的倾斜角为π3或2π3.(3)解 方法一 设A (x 1,y 1),B (x 2,y 2). 由2AP →=PB →得:2(1-x 1,1-y 1)=(x 2-1,y 2-1), 所以x 2+2x 1=3,①直线l 的斜率存在,设其方程为y -1=k (x -1),⎩⎪⎨⎪⎧y -1=k x -,x 2+y -2=5⇒(k 2+1)x 2-2k 2x +k 2-5=0,所以⎩⎪⎨⎪⎧x 1+x 2=2k2k +1, ②x 1x 2=k 2-5k 2+1, ③由①②③消去x 1,x 2解得k =±1,故所求直线l 的方程为x -y =0或x +y -2=0. 方法二如图,过点C 作CD ⊥AB 于D ,设AP =t ,则PB =2t ,AD =1.5t , PD =0.5t .在Rt△CDP 中,有CP 2=CD 2+PD 2,得CD 2=1-(0.5t )2, 在Rt△CDA 中,CD 2=5-()1.5t 2,所以t =2,从而,CD =22,又直线AB 的方程为mx -y +1-m =0,d =|m |m 2+1=22, 解得m =±1,故所求直线l 的方程为x -y =0或x +y -2=0. 15.已知圆O :x 2+y 2=4和点M (1,a ).(1)若过点M 有且只有一条直线与圆O 相切,求实数a 的值,并求出切线方程; (2)若a =2,过点M 的圆的两条弦AC ,BD 互相垂直,求AC +BD 的最大值. 解 (1)由条件知点M 在圆O 上, 所以1+a 2=4,则a =± 3.当a =3时,点M 为(1,3),k OM =3,k 切=-33, 此时切线方程为y -3=-33(x -1). 即x +3y -4=0,当a =-3时,点M 为(1,-3),k OM =-3,k 切=33. 此时切线方程为y +3=33(x -1).即x -3y -4=0. 所以所求的切线方程为x +3y -4=0或x -3y -4=0.(2)设O 到直线AC ,BD 的距离分别为d 1,d 2(d 1,d 2≥0),则d 21+d 22=OM 2=3. 又有AC =24-d 21,BD =24-d 22, 所以AC +BD =24-d 21+24-d 22.则(AC +BD )2=4×(4-d 21+4-d 22+24-d 21·4-d 22) =4×[5+216-d 21+d 22+d 21d 22] =4×(5+24+d 21d 22).因为2d 1d 2≤d 21+d 22=3,所以d 21d 22≤94,当且仅当d 1=d 2=62时取等号,所以4+d 21d 22≤52, 所以(AC +BD )2≤4×(5+2×52)=40.所以AC +BD ≤210, 即AC +BD 的最大值为210.。
高三数学(理)一轮复习 教案 第九编 解析几何总第46期§直线、圆的位置关系基础自测b=1与圆22=1相交,则24x -⎥⎦⎤⎝⎛43,125-2(m-1)10m 2-2m-24=0(m ∈R )(1)求证:不论m 为何值,圆心在同一直线上;(2)与平行的直线中,哪些与圆相交、相切、相离;(3)求证:任何一条平行于且与圆相交的直线被各圆截得的弦长相等 (1)证明 配方得:(-3m )2[ -m-1]2=25,设圆心为(,),则⎩⎨⎧-==13m y mx ,消去m 得:-3-3=0,则圆心恒在直线:-3-3=0上(2)解 设与平行的直线是1:-3b=0,则圆心到直线1的距离为d=10)1(33bm m +--=103b +∵圆的半径为r=5,∴当d <r ,即-510-3<b <510-3时,直线与圆相交; 当d=r,即b=±510-3时,直线与圆相切;当d >r ,即b <-510-3或b >510-3时,直线与圆相离(3)证明 对于任一条平行于且与圆相交的直线1:-3b=0,由于圆心到直线1的距离d=103b +,弦长=222d r -且r 和d 均为常量∴任何一条平行于且与圆相交的直线被各圆截得的弦长相等例2 从点A (-3,3)发出的光线射到轴上,被轴反射,其反射光线所在直线与圆22-4-47=0相切,求光线 所在直线的方程解 方法一 如图所示,设与轴交于点B (b,0,则AB =33+-b ,根据光的反射定律,反射光线的斜率反=33+b ∴反射光线所在直线的方程为=33+b -b,即3-b3-3b=0 ∵已知圆22-4-47=0的圆心为C (2,2),半径为1, ∴2)3(932)3(6++-⨯+-b bb =1,解得b 1=-43,b 2=1∴AB =-34或AB =-43∴的方程为433=0或34-3=0方法二 已知圆C :22-4-47=0关于轴对称的圆为C 1:-2222=1,其圆心C 1的坐标为(2,-2),半径为1,由光的反射定律知,入射光线所在直线方程与圆C 1相切设的方程为-3=3,则22155k k ++=1,即1222512=0∴1=-34,2=4333=0或34-3=0方法三 设入射光线方程为-3=3,反射光线所在的直线方程为=-b,由于二者横截距相等,且后者与已知圆相切∴⎪⎪⎩⎪⎪⎨⎧=+-+=--1122332k bk k bk k ,消去b 得11552=++k k 即1222512=0,∴1=-34,2=4333=0或34-3=0例3 已知圆C 1:22-2m4m 2-5=0,圆C 2:222-2mm 2-3=0,m 为何值时, (1)圆C 1与圆C 2相外切;(2)圆C 1与圆C 2内含解 对于圆C 1与圆C 2的方程,经配方后C 1:-m 222=9;C 2:12-m 2=4 (1)如果C 1与C 2外切,则有22)2()1(+++m m =32 m12m22=25 m 23m-10=0,解得m=-5或m=2 ∴当m=-5或m=2时,圆C 1与圆C 2外切; (2)如果C 1与C 2内含,则有22)2()1(+++m m <3-2 m12m22<1,m 23m2<0, 得-2<m <-1, ∴当-2<m <-1时,圆C 1与圆C 2内含 例 4 已知点33322)1(562-++--k k 43333⎪⎩⎪⎨⎧=+-+++=024124522y x y x kx y ⎪⎪⎩⎪⎪⎨⎧+-=+-=+221221111142k x x k k x x 21k +]4))[(1(212212x x x x k -++343CD PD =0与圆22=5 (1)无公共点;(2)截得的弦长为2;(3)交点处两条半径互相垂直解 (1)由已知,圆心为O (0,0),半径r=5, 圆心到直线2-m=0的距离d=22)1(2-+m =5m ,∵直线与圆无公共点,∴d >r,即5m >5,∴m >5或m <-5故当m >5或m <-5时,直线与圆无公共点 (2)如图所示,由平面几何垂径定理知r 2-d 2=12,即5-52m ==±25, ∴当m=±25时,直线被圆截得的弦长为2 (3)如图所示,由于交点处两条半径互相垂直, ∴弦与过弦两端的半径组成等腰直角三角形, ∴d=22r ,即225=m ·5,解得m=±225 故当m=±225时,直线与圆在两交点处的两条半径互相垂直 :22-4-612=0外一点2a 9113a-24a 1312in =3136131224)1312(132+⨯-⨯=13136 |13136⎪⎭⎫⎝⎛1318,1312,n ,半径为r,则A,M,C 三点共线,且有|MA|=|A ⎪⎩⎪⎨⎧=++-=-+-+-=--r n m n m m n 2222)1()4()2()1(113212=3,n=1,r=5,所以所求圆的方程为-32-12=5方法二 因为圆C :222-65=0过点M (1,2)的切线方程为2-=0,所以设所求圆A 的方程为222-65λ2-=0, 因为点λαα43πα43π2100-+22218-30⎪⎩⎪⎨⎧=+=+,8,822222121y x y x 212121=--x x y y 2133321=+bya x 2211b a +2211b a +555533333-4c-4c6c 212kk +--266620a⎪⎩⎪⎨⎧=++-=-+020*******y x y x ⎩⎨⎧-==24y x -2a2a 5⎩⎨⎧-==a y a x 221215255±,圆C 化为(-1)222=9,圆心C (1,-2),则AB 中点N 是两直线-m=0与2=--1的交点即N ⎪⎭⎫⎝⎛-+-21,21m m ,以AB 为直径的圆经过原点,∴|AN|=|ON|,又CN ⊥AB ,|CN|=221m++,∴|AN|=2)3(92m +-又|ON|=22)21()21(-++-m m ,由|AN|=|ON|,解得m=-4或m=1 ∴存在直线,其方程为=-4或=1为坐标原点,曲线222-61=0上有两点4=0对称,又满足OP ·OQ =0(1)求m 的值;(2)求直线4=0对称,∴圆心(-1,3)在直线上,代入得m=-1 (2)∵直线PQ 与直线=4垂直,∴设P (1,1)、Q 2,2,PQ 方程为=-b将直线=-b 代入圆的方程,得2224-bb 2-6b1=0 Δ=44-b 2-4×2×b 2-6b1>0,得2-32<b <232 由根与系数的关系得12=-4-b,1·2=2162+-b b 1·2=b 2-b 121·2=2162+-b b 4b ∵OP ·OQ =0,∴1212=0,即b 2-6b14b=0,解得b=1∈2-32,232, ∴所求的直线方程为=-1。
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系 理1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【知识拓展】1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( × ) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(4)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(5)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(6)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )1.(教材改编)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是________. ①相切; ②相交但直线不过圆心; ③相交过圆心; ④相离.答案 ②解析 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+1=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是__________. 答案 [-3,1]解析 由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+-2≤2,即|a +1|≤2,解得-3≤a ≤1.3.(2014·湖南改编)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =________. 答案 9解析 圆C 1的圆心C 1(0,0),半径r 1=1,圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆心C 2(3,4),半径r 2=25-m ,从而C 1C 2=32+42=5.由两圆外切得C 1C 2=r 1+r 2,即1+25-m =5,解得m =9.4.(2015·山东改编)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为____________.答案 -43或-34解析 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34.5.(教材改编)圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2.题型一 直线与圆的位置关系例1 (1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是______. (2)若过点(1,2)总可以作两条直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则实数k 的取值范围是________.(3)已知方程x 2+x tan θ-1sin θ=0有两个不等实根a 和b ,那么过点A (a ,a 2),B (b ,b 2)的直线与圆x 2+y 2=1的位置关系是________.答案 (1)相交 (2)⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833(3)相切解析 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.(2)把圆的方程化为标准方程得⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=16-3k 24,所以16-3k24>0,解得-833<k <833.由题意知点(1,2)应在已知圆的外部, 把点代入圆的方程得1+4+k +4+k 2-15>0, 即(k -2)(k +3)>0, 解得k >2或k <-3,则实数k 的取值范围是⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833.(3)由题意可知过A ,B 两点的直线方程为(a +b )x -y -ab =0,圆心到直线AB 的距离为d =|-ab |a +b 2+1,而a +b =-1tan θ,ab =-1sin θ,因此d =⎪⎪⎪⎪⎪⎪1sin θ⎝ ⎛⎭⎪⎫-1tan θ2+1,化简后得d =1,故直线与圆相切.思维升华 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12.(1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长.(1)证明 由⎩⎪⎨⎪⎧y =kx +1,x -2+y +2=12,消去y 得(k 2+1)x 2-(2-4k )x -7=0, 因为Δ=(4k -2)2+28(k 2+1)>0,所以不论k 为何实数,直线l 和圆C 总有两个交点. (2)解 设直线与圆交于A (x 1,y 1)、B (x 2,y 2)两点, 则直线l 被圆C 截得的弦长AB =1+k 2|x 1-x 2|=28-4k +11k21+k2=2 11-4k +31+k2,令t =4k +31+k 2,则tk 2-4k +(t -3)=0,当t =0时,k =-34,当t ≠0时,因为k ∈R ,所以Δ=16-4t (t -3)≥0,解得-1≤t ≤4,且t ≠0, 故t =4k +31+k 的最大值为4,此时AB 最小为27.题型二 圆与圆的位置关系例2 (1)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________.(2)过两圆x 2+y 2+4x +y =-1,x 2+y 2+2x +2y +1=0的交点的圆中面积最小的圆的方程为________________________________________________________________________. (3)如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是______________________.答案 (1)相交 (2)⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45(3)(-22,0)∪(0,22)解析 (1)两圆圆心分别为(-2,0)和(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交. (2)由⎩⎪⎨⎪⎧x 2+y 2+4x +y =-1, ①x 2+y 2+2x +2y +1=0, ②①-②得2x -y =0,代入①得x =-15或-1,∴两圆两个交点为⎝ ⎛⎭⎪⎫-15,-25,(-1,-2).过两交点的圆中,以⎝ ⎛⎭⎪⎫-15,-25,(-1,-2)为端点的线段为直径的圆时,面积最小.∴该圆圆心为⎝ ⎛⎭⎪⎫-35,-65,半径为⎝ ⎛⎭⎪⎫-15+12+⎝ ⎛⎭⎪⎫-25+222=255,圆的方程为⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45.(3)C 的标准方程为(x -a )2+(y -a )2=4,圆心坐标为(a ,a ),半径为2. 依题意得:0<a 2+a 2<2+2,∴0<|a |<2 2. ∴a ∈(-22,0)∪(0,22)思维升华 判断圆与圆的位置关系时,一般用几何法,其步骤是 (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|;(3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.(1)圆C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0的位置关系为________.答案 内切解析 ∵圆C 1:x 2+y 2-2y =0的圆心为:C 1(0,1),半径r 1=1, 圆C 2:x 2+y 2-23x -6=0的圆心为:C 2(3,0),半径r 2=3, ∴C 1C 2=32+1=2,又r 1+r 2=4,r 2-r 1=2,∴C 1C 2=r 2-r 1=2,∴圆C 1与C 2内切.(2)设M ={(x ,y )|y =2a 2-x 2,a >0},N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},且M ∩N ≠∅,求a 的最大值和最小值.解 M ={(x ,y )|y =2a 2-x 2,a >0},即{(x ,y )|x 2+y 2=2a 2,y ≥0},表示以原点O 为圆心,半径等于2a 的半圆(位于横轴或横轴以上的部分).N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},表示以O ′(1,3)为圆心,半径等于a 的一个圆.再由M ∩N ≠∅,可得半圆和圆有交点,故半圆和圆相交或相切. 当半圆和圆相外切时,由OO ′=2=2a +a , 求得a =22-2;当半圆和圆相内切时,由OO ′=2=2a -a , 求得a =22+2,故a 的取值范围是[22-2,22+2],a 的最大值为22+2,最小值为22-2. 题型三 直线与圆的综合问题 命题点1 求弦长问题例3 (2015·课标全国Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则MN =________.答案 4 6解析 由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以MN =|y 1-y 2|=4 6. 命题点2 由直线与圆相交求参数问题例4 (2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN .解 (1)由题设,可知直线l 的方程为y =kx +1, 因为直线l 与圆C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=+k 1+k 2,x 1x 2=71+k2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1 =4k+k1+k2+8. 由题设可得4k+k1+k2+8=12,解得k =1, 所以直线l 的方程为y =x +1. 故圆心C 在直线l 上,所以MN =2. 命题点3 直线与圆相切的问题例5 (1)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________________; 答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d =|k -1+4-2k |k 2+-2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0,即4x -3y +4=0.综上,切线方程为x =2或4x -3y +4=0.(2)已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. ①与直线l 1:x +y -4=0平行;②与直线l 2:x -2y +4=0垂直; ③过切点A (4,-1).解 ①设切线方程为x +y +b =0, 则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0; ②设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52, ∴切线方程为2x +y ±52=0; ③∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.思维升华 直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.(1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.(2)已知圆C 的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过A 点作圆的切线有两条,则a 的取值范围是____________.答案 (1)2 2 (2)⎝ ⎛⎭⎪⎫-233,233解析 (1)设P (3,1),圆心C (2,2),则PC =2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222-22=2 2.(2)将圆C 的方程化为标准方程为⎝ ⎛⎭⎪⎫x +a 22+(y +1)2=4-3a 24,其圆心坐标为C ⎝ ⎛⎭⎪⎫-a 2,-1,半径r =4-3a24. 当点A 在圆外时,过点A 可作圆的两条切线, 则AC >r ,即⎝ ⎛⎭⎪⎫1+a 22++2>4-3a24, 即a 2+a +9>0,解得a ∈R .又4-3a 2>0时x 2+y 2+ax +2y +a 2=0才表示圆,故可得a 的取值范围是⎝ ⎛⎭⎪⎫-233,233.7.高考中与圆交汇问题的求解一、与圆有关的最值问题典例 (1)(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为________.(2)(2014·北京)已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为________.解析 (1)由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7.(2)根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且AB =2m . 因为∠APB =90°,连结OP , 易知OP =12AB =m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为OC =32+42=5,所以OP max =OC +r =6,即m 的最大值为6. 答案 (1)7 (2)6 二、直线与圆的综合问题典例 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则AB =________.(2)(2014·江西改编)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为________.解析 (1)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴AC 2=36+4=40.又r =2,∴AB 2=40-4=36. ∴AB =6.(2)∵∠AOB =90°,∴点O 在圆C 上. 设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,∴点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上,∴当且仅当O ,C ,D 共线时,圆的直径最小为OD . 又OD =|2×0+0-4|5=45,∴圆C 的最小半径为25,∴圆C 面积的最小值为π(25)2=45π.答案 (1)6 (2)54π温馨提醒 (1)与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.(2)直线与圆的综合问题主要包括弦长问题,切线问题及组成图形面积问题,解决方法主要依据圆的几何性质.[方法与技巧]1.直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的.2.求过一点的圆的切线方程时,首先要判断此点是否在圆上,然后设出切线方程.注意:斜率不存在的情形.3.圆的弦长的常用求法(1)几何法:求圆的半径为r ,弦心距为d ,弦长为l ,则⎝ ⎛⎭⎪⎫l 22=r 2-d 2;(2)代数方法:运用根与系数的关系及弦长公式:AB =1+k 2|x 1-x 2|=+k2x 1+x 22-4x 1x 2].[失误与防范]1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.A 组 专项基础训练 (时间:40分钟)1.(2015·广东)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是______________.答案 2x +y +5=0或2x +y -5=0解析 设所求直线方程为2x +y +c =0,依题有|0+0+c |22+12=5,解得c =±5,所以所求直线方程为2x +y +5=0或2x +y -5=0.2.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A 、B 两点,且△ABC 为等边三角形,则实数a 的值为________. 答案 4±15解析 易知△ABC 是边长为2的等边三角形. 故圆心C (1,a )到直线AB 的距离为 3. 即|a +a -2|a 2+1=3,解得a =4±15. 3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,则ab 的最大值为______________________________________________________________. 答案 2解析 圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R ). 化为:(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1,∵圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切, ∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2.∴ab 的最大值为2.4.过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为______________. 答案 2x +y -3=0 解析如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2,∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为________. 答案 12,-4解析 因为直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则y =kx 与直线2x +y +b =0垂直,且2x +y +b =0过圆心,所以解得k =12,b =-4.6.(2015·山东)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=________. 答案 32解析 由题意,圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PA ⊥x 轴,PA =PB = 3.∴△POA 为直角三角形,其中OA =1,AP =3,则OP =2, ∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos 60°=32.7.已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0,则m 的取值范围为________.答案 [2,3]解析 曲线C :x =-4-y 2,是以原点为圆心,2为半径的半圆,并且x P ∈[-2,0],对于点A (m,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0, 说明A 是PQ 的中点,Q 的横坐标x =6,∴m =6+x P2∈[2,3].8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43.故k 的最大值是43.9.已知以点C (t ,2t)(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程. (1)证明 ∵圆C 过原点O ,且OC 2=t 2+4t2.∴圆C 的方程是(x -t )2+(y -2t )2=t 2+4t2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12OA ·OB =12×|4t |×|2t |=4,即△OAB 的面积为定值. (2)解 ∵OM =ON ,CM =CN , ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5, 此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5, 此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.10.(2014·课标全国Ⅰ)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当OP =OM 时,求l 的方程及△POM 的面积. 解 (1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x,2-y ).由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于OP =OM ,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又OM =OP =22,O到l 的距离为4105,所以PM =4105,S △POM =12×4105×4105=165,故△POM 的面积为165.B 组 专项能力提升 (时间:30分钟)11.已知圆C :(x -a )2+(y -a )2=1 (a >0)与直线y =3x 相交于P ,Q 两点,则当△CPQ 的面积最大时,实数a 的值为________. 答案52解析 因为△CPQ 的面积等于12sin∠PCQ ,所以当∠PCQ =90°时,△CPQ 的面积最大,此时圆心到直线y =3x 的距离为22,因此22=|3a -a |10,解得a =52. 12.过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.答案 -33解析∵S △AOB =12·OA ·OB ·sin∠AOB=12sin∠AOB ≤12. 当∠AOB =π2时,△AOB 面积最大. 此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0), 即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33.(也可k =-tan∠OPH =-33). 13.在平面直角坐标系xOy 中,圆C 1:(x +1)2+(y -6)2=25,圆C 2:(x -17)2+(y -30)2=r 2.若圆C 2上存在一点P ,使得过点P 可作一条射线与圆C 1依次交于点A ,B ,满足PA =2AB ,则半径r 的取值范围是________. 答案 [5,55]解析 由题意可知满足PA =2AB 的点P 应在以C 1为圆心,半径为25的圆上及其内部(且在圆C 1的外部),记该圆为C 3,若圆C 2上存在满足条件的点P ,则圆C 2与圆C 3有公共点,所以|r-25|≤+2+-2≤r +25,即|r -25|≤30≤r +25,解得5≤r ≤55.14.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0. (1)求证:对m ∈R ,直线l 与圆C 总有两个交点;(2)设直线l 与圆C 交于点A ,B ,若AB =17,求直线l 的倾斜角;(3)设直线l 与圆C 交于A ,B ,若定点P (1,1)满足2AP →=PB →,求此时直线l 的方程. (1)证明 直线l 恒过定点P (1,1). 由12+(1-1)2<5知点P 在圆C 内, 所以直线l 与圆C 总有两个交点.(2)解 圆心到直线的距离d =r 2-⎝ ⎛⎭⎪⎫AB 22=32,又d =|0-1+1-m |m 2+1,所以32=|0-1+1-m |m 2+1, 解得m =±3,所以,l 的倾斜角为π3或2π3.(3)解 方法一 设A (x 1,y 1),B (x 2,y 2). 由2AP →=PB →得:2(1-x 1,1-y 1)=(x 2-1,y 2-1), 所以x 2+2x 1=3,①直线l 的斜率存在,设其方程为y -1=k (x -1),⎩⎪⎨⎪⎧y -1=k x -,x 2+y -2=5⇒(k 2+1)x 2-2k 2x +k 2-5=0,所以⎩⎪⎨⎪⎧x 1+x 2=2k2k +1, ②x 1x 2=k 2-5k 2+1, ③由①②③消去x 1,x 2解得k =±1,故所求直线l 的方程为x -y =0或x +y -2=0. 方法二如图,过点C 作CD ⊥AB 于D ,设AP =t ,则PB =2t ,AD =1.5t , PD =0.5t .在Rt△CDP 中,有CP 2=CD 2+PD 2,得CD 2=1-(0.5t )2, 在Rt△CDA 中,CD 2=5-()1.5t 2,所以t =2,从而,CD =22,又直线AB 的方程为mx -y +1-m =0,d =|m |m 2+1=22, 解得m =±1,故所求直线l 的方程为x -y =0或x +y -2=0.15.在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.解 (1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在.设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d ,因为直线l 被圆C 1截得的弦长为23,所以d =22-32=1.由点到直线的距离公式得d =|1-k -3-1+k2,从而k (24k +7)=0,即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k(x -a ).因为圆C 1和圆C 2的半径相等,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等, 即|1-k -3-a -b |1+k2=|5+1k -a -b |1+1k 2,整理得|1+3k +ak -b |=|5k +4-a -bk |,从而1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b =-5k -4+a +bk ,即(a +b -2)·k =b -a +3或(a -b +8)k =a +b -5,因为k 的取值有无穷多个,所以⎩⎪⎨⎪⎧a +b -2=0,b -a +3=0或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0,解得⎩⎪⎨⎪⎧a =52,b =-12或⎩⎪⎨⎪⎧a =-32,b =132.这样点P 只可能是点P 1⎝ ⎛⎭⎪⎫52,-12或点P 2⎝ ⎛⎭⎪⎫-32,132,经检验点P 1和P 2满足题目条件.。
考点规范练44 直线与圆、圆与圆的位置关系基础巩固1.设曲线C的方程为(x-2)2+(y+1)2=9,直线l的方程为x-3y+2=0,则曲线上的点到直线l的距离为的点的个数为()A.1B.2C.3D.42.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离3.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=()A.2B.4C.6D.24.(2017山西临汾模拟)若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y+1)2=1C.(x+2)2+(y-1)2=1D.(x-3)2+(y-1)2=15.一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为()A.-或-B.-或-C.-或-D.-或-6.(2017福建泉州一模)过点P(-3,1),Q(a,0)的光线经x轴反射后与圆x2+y2=1相切,则a的值为.7.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2,则圆C的面积为.8.若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r=.9.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.(1)求证:对m∈R,直线l与圆C总有两个不同的交点;(2)设直线l与圆C交于A,B两点,若|AB|=,求直线l的倾斜角.10.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.能力提升11.(2017福建宁德一模)已知圆C:x2+y2-2x+4y=0关于直线3x-ay-11=0对称,则圆C中以为中点的弦长为()A.1B.2C.3D.412.若直线y=x+b与曲线y=3-有公共点,则b的取值范围是()A.[1-2,1+2]B.[1-,3]C.[-1,1+2]D.[1-2,3]13.(2017安徽合肥一模)设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3)与圆C交于A,B两点,若|AB|=2,则直线l的方程为()A.3x+4y-12=0或4x-3y+9=0B.3x+4y-12=0或x=0C.4x-3y+9=0或x=0D.3x-4y+12=0或4x+3y+9=014.已知圆C:x2+y2+2x-4y+3=0.若圆C的切线在x轴和y轴上的截距的绝对值相等,求此切线的方程.15.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围.高考预测16.若直线=1通过点M(cos α,sin α),则()A.a2+b2≤1B.a2+b2≥1C.≤1D.≥1答案:1.B解析:由方程(x-2)2+(y+1)2=9,得圆心坐标为(2,-1),半径r=3,则圆心到直线l的距离d=.由r=,故所求点的个数为2.2.B解析:圆M的方程可化为x2+(y-a)2=a2,故其圆心为M(0,a),半径R=a.所以圆心到直线x+y=0的距离d=a.所以直线x+y=0被圆M所截弦长为2=2a,由题意可得a=2,故a=2.圆N的圆心N(1,1),半径r=1.而|MN|=,显然R-r<|MN|<R+r,所以两圆相交.3.C解析:依题意,直线l经过圆C的圆心(2,1),因此2+a-1=0,所以a=-1,因此点A的坐标为(-4,-1).又圆C的半径r=2,由△ABC为直角三角形可得|AB|=.又|AC|=2,所以|AB|==6.4.A解析:由于圆心在第一象限且圆与x轴相切,因此设圆心为(a,1)(a>0).又由圆与直线4x-3y=0相切可得=1,解得a=2,故圆的标准方程为(x-2)2+(y-1)2=1.5.D解析:如图,作出点P(-2,-3)关于y轴的对称点P0(2,-3).由题意知反射光线与圆相切,其反向延长线过点P0.故设反射光线为y=k(x-2)-3,即kx-y-2k-3=0.则圆心到直线的距离d==1,解得k=-或k=-.6.- 解析:因为P(-3,1)关于x轴的对称点的坐标为P'(-3,-1),所以直线P'Q的方程为y=(x-a),即x-(3+a)y-a=0,圆心(0,0)到直线的距离d==1,所以a=-.7.4π解析:因为圆C的方程可化为x2+(y-a)2=2+a2,直线方程为x-y+2a=0,所以圆心坐标为(0,a),r2=a2+2,圆心到直线的距离d=.由已知()2+=a2+2,解得a2=2,故圆C的面积为π(2+a2)=4π.8.2解析:如图,由题意知,圆心O到直线3x-4y+5=0的距离|OC|==1,故圆的半径r==2.9.(1)证明:将已知直线l化为y-1=m(x-1);故直线l恒过定点P(1,1).因为=1<,所以点P(1,1)在已知圆C内,从而直线l与圆C总有两个不同的交点.(2)解:圆的半径r=,圆心C到直线l的距离为d=.由点到直线的距离公式得,解得m=±,故直线的斜率为±,从而直线l的倾斜角为.10.解:(1)因为圆C1:x2+y2-6x+5=0可化为(x-3)2+y2=4,所以圆C1的圆心坐标为(3,0).(2)由题意可知直线l的斜率存在,设直线l的方程为y=mx,M(x0,y0).由得(1+m2)x2-6x+5=0,则Δ=36-20(1+m2)>0,解得-<m<,故x0=,且<x0≤3.因为m=,所以x0=,整理得.所以M的轨迹C的方程为+y2=.(3)存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点.由(2)得M的轨迹C为一段圆弧,其两个端点为P,Q,直线L:y=k(x-4)过定点E(4,0),①k PE==-,k QE=,当-≤k≤时,直线L与曲线C只有一个交点.②当直线L与曲线C相切时,L的方程可化为kx-y-4k=0,则,解得k=±.综上所述,当-≤k≤或k=±时,直线L与曲线C只有一个交点.11.D解析:∵圆C:x2+y2-2x+4y=0关于直线3x-ay-11=0对称,∴直线3x-ay-11=0过圆心C(1,-2),∴3+2a-11=0,解得a=4,∴即为(1,-1),点(1,-1)到圆心C(1,-2)的距离d==1,圆C:x2+y2-2x+4y=0的半径r=,∴圆C中以为中点的弦长为2=2=4.故选D.12.D解析:y=3-变形为(x-2)2+(y-3)2=4(0≤x≤4,1≤y≤3),表示以(2,3)为圆心,2为半径的下半圆,如图所示.若直线y=x+b与曲线y=3-有公共点,只需直线y=x+b在图中两直线之间(包括图中两条直线),y=x+b与下半圆相切时,圆心到直线y=x+b的距离为2,即=2,解得b=1-2或b=1+2(舍去),故b的取值范围为1-2≤b≤3.故选D.13.B解析:当直线l的斜率不存在时,l的方程为x=0,代入圆的方程得y=1±,∴|AB|=2,成立.当l的斜率存在时,设l的方程为y=kx+3,圆半径r==2,圆心C(1,1)到直线y=kx+3的距离d=.∵d2+=r2,∴+3=4,解得k=-,∴l的方程为3x+4y-12=0.故选B.14.解:因为切线在两坐标轴上的截距的绝对值相等,所以切线的斜率为±1或切线过原点.①当k=±1时,设切线方程为y=-x+b或y=x+c,分别代入圆C的方程得2x2-2(b-3)x+(b2-4b+3)=0或2x2+2(c-1)x+(c2-4c+3)=0.由于相切,则方程有两个相等的实数根,即b=3或b=-1,c=5或c=1.故所求切线方程为x+y-3=0,x+y+1=0,x-y+5=0,x-y+1=0.②当切线过原点时,设切线方程为y=kx,即kx-y=0.由,得k=2±.所以此时切线方程为y=(2±)x.综上①②可得切线方程为x+y-3=0,x+y+1=0,x-y+5=0,x-y+1=0,(2-)x-y=0或(2+)x-y=0.15.解:因为圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0<y0<7,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.(2)因为直线l∥OA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d=.因为BC=OA==2,而MC2=d2+,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.(3)设P(x1,y1),Q(x2,y2).因为A(2,4),T(t,0),,所以①因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.②将①代入②,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,所以5-5≤≤5+5,解得2-2≤t≤2+2.因此,实数t的取值范围是[2-2,2+2].16.D解析:因为点M(cos α,sin α)在圆x2+y2=1上,又直线=1过点M,所以直线与圆相交或相切.所以≤1,所以≥1.。
第四节直线与圆、圆与圆的位置关系A组基础题组1.直线y=x+4与圆(x-a)2+(y-3)2=8相切,则a的值为( )A.3B.2C.3或-5D.-3或52.若直线x-y=2被圆(x-a)2+y2=4所截得的弦长为2,则实数a的值为( )A.-1或B.1或3C.-2或6D.0或43.过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( )A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=04.直线l与圆x2+y2+2x-4y+a=0(a<3)相交于A,B两点,若弦AB的中点为(-2,3),则直线l的方程为( )A.x+y-3=0B.x+y-1=0C.x-y+5=0D.x-y-5=05.(2017湖南四地联考)若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,过点(a,b)作圆的切线,则切线长的最小值是( )A.2B.3C.4D.66.已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1外切,则ab的最大值为.7.已知直线ax+y-1=0与圆C:(x-1)2+(y+a)2=1相交于A、B两点,且△ABC为等腰直角三角形,则实数a的值为.8.在平面直角坐标系xOy中,圆C:x2+y2+4x-2y+m=0与直线x-y+-2=0相切.(1)求圆C的方程;(2)若圆C上有两点M,N关于直线x+2y=0对称,且|MN|=2,求直线MN的方程.9.(2018云南昆明调研)已知点G(5,4),圆C1:(x-1)2+(y-4)2=25,过点G的动直线l与圆C1相交于E,F两点,线段EF的中点为C.(1)求点C的轨迹C2的方程;(2)若过点A(1,0)的直线l1与C2相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,求证:|AM|·|AN|为定值.B组提升题组1.已知直线3x+4y-15=0与圆O:x2+y2=25交于A,B两点,点C在圆O上,且S△ABC=8,则满足条件的点C的个数为( )A.1B.2C.3D.42.过直线kx+y+3=0上一点P作圆C:x2+y2-2y=0的切线,切点为Q.若|PQ|=,则实数k的取值范围是 .3.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.4.(2017课标全国Ⅲ理,20,12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.答案精解精析A组基础题组1.C 解法一:联立消去y可得,2x2-(2a-2)x+a2-7=0,则由题意可得Δ=[-(2a-2)]2-4×2×(a2-7)=0,整理可得a2+2a-15=0,解得a=3或-5.解法二:(x-a)2+(y-3)2=8的圆心为(a,3),半径为2,由直线y=x+4与圆(x-a)2+(y-3)2=8相切,知圆心到直线的距离等于半径,即=2,即|a+1|=4,解得a=3或-5.2.D 因为圆(x-a)2+y2=4,所以圆心为(a,0),半径为2,圆心到直线的距离d=,因为d2+=r2,解得a=4或0.故选D.3.B ∵过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,∴点(3,1)在圆(x-1)2+y2=r2上,∵圆心与切点连线的斜率k==,∴切线的斜率为-2,则圆的切线方程为y-1=-2(x-3),即2x+y-7=0.故选B.4.C 由题意知直线l的斜率存在,设直线l的斜率为k,又弦AB的中点为(-2,3),所以直线l的方程为y-3=k(x+2),即kx-y+2k+3=0,由x2+y2+2x-4y+a=0得圆的圆心坐标为(-1,2),所以圆心到直线的距离为,所以=,解得k=1,所以直线l的方程为x-y+5=0.5.C 圆C的标准方程为(x+1)2+(y-2)2=2,所以圆心为(-1,2),半径为.因为圆C关于直线2ax+by+6=0对称,所以圆心C在直线2ax+by+6=0上,所以-2a+2b+6=0,即b=a-3,∴点(a,b)到圆心的距离d====.所以当a=2时,d取最小值=3,此时切线长最小,为==4,所以选C.6.答案解析由圆C1与圆C2外切,可得=2+1=3,即(a+b)2=a2+2ab+b2=9,根据基本不等式可知9=a2+2ab+b2≥2ab+2ab=4ab,即ab≤,当且仅当a=b时,等号成立.7.答案±1解析由题意得圆心(1,-a)到直线ax+y-1=0的距离为,所以=,解得a=±1.8.解析(1)将圆C:x2+y2+4x-2y+m=0化为(x+2)2+(y-1)2=5-m,∵圆C:x2+y2+4x-2y+m=0与直线x-y+-2=0相切,∴圆心(-2,1)到直线x-y+-2=0的距离d==2=r,∴圆C的方程为(x+2)2+(y-1)2=4.(2)若圆C上有两点M,N关于直线x+2y=0对称,则可设直线MN的方程为2x-y+c=0,∵|MN|=2,半径r=2,∴圆心(-2,1)到直线MN的距离为=1,即=1,∴c=5±,∴直线MN的方程为2x-y+5±=0.9.解析(1)圆C 1的圆心为C1(1,4),半径为5.设C(x,y),则=(x-1,y-4),=(5-x,4-y),由题设知·=0,所以(x-1)(5-x)+(y-4)(4-y)=0,即(x-3)2+(y-4)2=4.(2)证明:直线l1与圆C2相交于两点,斜率必定存在,且不为0,可设直线l1的方程为kx-y-k=0.由得N,又直线C2M与l1垂直,由得M.|AM|·|AN|=|·|=··=6,即|AM|·|AN|为定值6.B组提升题组1. C 圆心O到已知直线的距离为d==3,因此|AB|=2=8,设点C到直线AB的距离为h,则S△ABC=×8×h=8,所以h=2,由于d+h=3+2=5=r(圆的半径),因此与直线AB距离为2的两条直线中一条与圆相切,一条与圆相交,故符合条件的点C有三个.2.答案(-∞,-]∪[,+∞)解析圆C:x2+y2-2y=0的圆心为(0,1),半径为r=1.根据题意,PQ是圆C:x2+y2-2y=0的一条切线,Q是切点,|PQ|=,则|PC|=2.当PC与直线kx+y+3=0垂直时,圆心到直线的距离最大.由点到直线的距离公式得≤2,解得k∈(-∞,-]∪[,+∞).3.解析(1)圆C的方程可化为x2+(y-4)2=16,所以圆心为C(0,4),半径为4.设M(x,y),则=(x,y-4),=(2-x,2-y).由题设知·=0,故x(2-x)+(y-4)(2-y)=0,即(x-1)2+(y-3)2=2.所以M的轨迹方程是(x-1)2+(y-3)2=2.(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.因为ON的斜率为3,所以l的斜率为-,故l的方程为y=-x+.又|OM|=|OP|=2,O到l的距离为,|PM|=,所以△POM的面积为.4.解析(1)证明:设A(x 1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为·==-1,所以OA⊥OB.故坐标原点O在圆M上.(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此·=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10.当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为,圆M的半径为,圆M的方程为+=.。
(北京专用)2019版高考数学一轮复习第九章平面解析几何第四节直线与圆、圆与圆的位置关系作业本理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((北京专用)2019版高考数学一轮复习第九章平面解析几何第四节直线与圆、圆与圆的位置关系作业本理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(北京专用)2019版高考数学一轮复习第九章平面解析几何第四节直线与圆、圆与圆的位置关系作业本理的全部内容。
第四节直线与圆、圆与圆的位置关系A组基础题组1.直线kx+y—2=0(k∈R)与圆x2+y2+2x—2y+1=0的位置关系是()A。
相交B。
相切C.相离D.与k值有关2.已知圆的方程是x2+y2=1,则在y轴上截距为的切线方程为( )A。
y=x+ B.y=-x+C.y=x+或y=-x+D。
x=1或y=x+3.若直线y=kx与圆(x—2)2+y2=1的两个交点关于直线2x+y+b=0对称,则k,b的值分别为( )A。
,—4 B.-,4 C.,4 D。
—,—44.已知圆M:x2+y2—2ay=0(a〉0)截直线x+y=0所得线段的长度是2.则圆M与圆N:(x-1)2+(y—1)2=1的位置关系是( )A。
内切B。
相交C.外切D。
外离5.直线l:ax+y—1=0与x,y轴的交点分别为A,B,直线l与圆O:x2+y2=1的交点分别为C,D。
给出下面三个结论:①∀a≥1,S△AOB=;②∃a≥1,|AB|<|CD|;③∃a≥1,S△COD<.则所有正确结论的序号是()A.①②B.②③C。
①③ D.①②③6。
已知圆O:x2+y2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积等于.7。
芯衣州星海市涌泉学校高三数学〔理〕一轮复习教案第九编解析几何总第46期§直线、圆的位置关系根底自测1.假设直线ax+by=1与圆x2+y2=1相交,那么P 〔a ,b 〕与圆的位置关系为. 答案在圆外2.假设直线4x-3y-2=0与圆x2+y2-2ax+4y+a2-12=0总有两个不同交点,那么a 的取值范围是. 答案-6<a <43.两圆x2+y2-6x+16y-48=0与x2+y2+4x-8y-44=0的公切线条数为. 答案24.假设直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,那么k 的取值范围是.答案⎥⎦⎤ ⎝⎛43,1255.(2021·理,15)直线l 与圆x2+y2+2x-4y+a=0(a <3)相交于两点A,B,弦AB 的中点为(0,1),那么直线l 的方程为. 答案x-y+1=0 例题精讲例1圆x2+y2-6mx-2〔m-1〕y+10m2-2m-24=0〔m∈R〕. 〔1〕求证:不管m 为何值,圆心在同一直线l 上; 〔2〕与l 平行的直线中,哪些与圆相交、相切、相离;〔3〕求证:任何一条平行于l 且与圆相交的直线被各圆截得的弦长相等.〔1〕证明配方得:〔x-3m 〕2+[y-(m-1)]2=25,设圆心为〔x ,y 〕,那么⎩⎨⎧-==13m y mx ,消去m 得l :x-3y-3=0,那么圆心恒在直线l :x-3y-3=0上.〔2〕解设与l 平行的直线是l1:x-3y+b=0,那么圆心到直线l1的间隔为d=10)1(33bm m +--=103b +.∵圆的半径为r=5,∴当d <r ,即-510-3<b <510-3时,直线与圆相交; 当d=r,即b=±510-3时,直线与圆相切;当d >r ,即b <-510-3或者者b >510-3时,直线与圆相离.〔3〕证明对于任一条平行于l 且与圆相交的直线l1:x-3y+b=0,由于圆心到直线l1的间隔d=103b +,弦长=222d r -且r 和d 均为常量.∴任何一条平行于l 且与圆相交的直线被各圆截得的弦长相等. 例2从点A 〔-3,3〕发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l 所在直线的方程.解方法一如下列图,设l 与x 轴交于点B 〔b,0),那么kAB=33+-b ,根据光的反射定律,反射光线的斜率k 反=33+b .∴反射光线所在直线的方程为y=33+b (x-b),即3x-(b+3)y-3b=0. ∵圆x2+y2-4x-4y+7=0的圆心为C 〔2,2〕,半径为1, ∴2)3(932)3(6++-⨯+-b bb =1,解得b1=-43,b2=1. ∴kAB=-34或者者kAB=-43.∴l 的方程为4x+3y+3=0或者者3x+4y-3=0. 方法二圆C :x2+y2-4x-4y+7=0关于x 轴对称的圆为C1:(x-2)2+(y+2)2=1,其圆心C1的坐标为〔2,-2〕,半径为1,由光的反射定律知,入射光线所在直线方程与圆C1相切.设l 的方程为y-3=k(x+3),那么22155kk ++=1,即12k2+25k+12=0.∴k1=-34,k2=-43.那么l 的方程为4x+3y+3=0或者者3x+4y-3=0. 方法三设入射光线方程为y-3=k(x+3),反射光线所在的直线方程为y=-kx+b,由于二者横截距相等,且后者与圆相切.∴⎪⎪⎩⎪⎪⎨⎧=+-+=--1122332k b k k bk k ,消去b 得11552=++k k . 即12k2+25k+12=0,∴k1=-34,k2=-43.那么l 的方程为4x+3y+3=0或者者3x+4y-3=0. 例3圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0,m 为何值时, 〔1〕圆C1与圆C2相外切;〔2〕圆C1与圆C2内含?解对于圆C1与圆C2的方程,经配方后C1:(x-m)2+(y+2)2=9;C2:(x+1)2+(y-m)2=4. 〔1〕假设C1与C2外切,那么有22)2()1(+++m m =3+2.(m+1)2+(m+2)2=25. m2+3m-10=0,解得m=-5或者者m=2.∴当m=-5或者者m=2时,圆C1与圆C2外切; 〔2〕假设C1与C2内含,那么有22)2()1(+++m m <3-2.(m+1)2+(m+2)2<1,m2+3m+2<0, 得-2<m <-1,∴当-2<m <-1时,圆C1与圆C2内含. 例4点P 〔0,5〕及圆C :x2+y2+4x-12y+24=0.〔1〕假设直线l 过P 且被圆C 截得的线段长为43,求l 的方程; 〔2〕求过P 点的圆C 的弦的中点的轨迹方程.解〔1〕方法一如下列图,AB=43,D 是AB 的中点,CD⊥AB,AD=23, 圆x2+y2+4x-12y+24=0可化为〔x+2〕2+〔y-6〕2=16, 圆心C 〔-2,6〕,半径r=4,故AC=4, 在Rt△ACD 中,可得CD=2.设所求直线的斜率为k ,那么直线的方程为y-5=kx,即kx-y+5=0.由点C 到直线AB 的间隔公式:22)1(562-++--k k =2,得k=43.此时直线l 的方程为3x-4y+20=0. 又直线l 的斜率不存在时,此时方程为x=0.那么y2-12y+24=0,∴y1=6+23,y2=6-23,∴y2-y1=43,故x=0满足题意.∴所求直线的方程为3x-4y+20=0或者者x=0. 方法二设所求直线的斜率为k ,那么直线的方程为y-5=kx,即y=kx+5,联立直线与圆的方程⎪⎩⎪⎨⎧=+-+++=024124522y x y x kx y ,消去y 得〔1+k2〕x2+(4-2k)x-11=0①设方程①的两根为x1,x2,由根与系数的关系得⎪⎪⎩⎪⎪⎨⎧+-=+-=+221221111142k x x k k x x②由弦长公式得21k +|x1-x2|=]4))[(1(212212x x x x k -++=43,将②式代入,解得k=43, 此时直线的方程为3x-4y+20=0.又k 不存在时也满足题意,此时直线方程为x=0. ∴所求直线的方程为x=0或者者3x-4y+20=0.〔2〕设过P 点的圆C 的弦的中点为D 〔x,y 〕,那么CD⊥PD,即CD ·PD =0, 〔x+2,y-6〕·(x,y -5)=0,化简得所求轨迹方程为x2+y2+2x-11y+30=0. 稳固练习1.m 为何值时,直线2x-y+m=0与圆x2+y2=5. 〔1〕无公一一共点; 〔2〕截得的弦长为2; 〔3〕交点处两条半径互相垂直.解〔1〕由,圆心为O 〔0,0〕,半径r=5,圆心到直线2x-y+m=0的间隔d=22)1(2-+m =5m ,∵直线与圆无公一一共点,∴d>r,即5m >5,∴m>5或者者m <-5.故当m >5或者者m <-5时,直线与圆无公一一共点. 〔2〕如下列图,由平面几何垂径定理知r2-d2=12,即5-52m =1.得m=±25, ∴当m=±25时,直线被圆截得的弦长为 2. 〔3〕如下列图,由于交点处两条半径互相垂直, ∴弦与过弦两端的半径组成等腰直角三角形, ∴d=22r ,即225=m ·5,解得m=±225. 故当m=±225时,直线与圆在两交点处的两条半径互相垂直. 2.从圆C :x2+y2-4x-6y+12=0外一点P 〔a ,b 〕向圆引切线PT ,T 为切点,且|PT|=|PO|〔O 为原点〕.求|PT|的最小值及此时P 的坐标.解圆C 的方程为(x-2)2+(y-3)2=1.∴圆心C 的坐标为〔2,3〕,半径r=1. 如下列图,连结PC ,CT.由平面几何知, |PT|2=|PC|2-|CT|2=〔a-2〕2+〔b-3〕2-1.由,|PT|=|PO|,∴|P T|2=|PO|2,即〔a-2〕2+〔b-3〕2-1=a2+b2. 化简得2a+3b-6=0.得|PT|2=a2+b2=91〔13a2-24a+36〕. 当a=1312时,|PT|min=3136131224)1312(132+⨯-⨯=13136. |PT|的最小值为13136,此时点P 的坐标是⎪⎭⎫⎝⎛1318,1312. 3.求过点P 〔4,-1〕且与圆C :x2+y2+2x-6y+5=0切于点M 〔1,2〕的圆的方程.解方法一设所求圆的圆心为A 〔m,n),半径为r,那么A,M,C 三点一一共线,且有|MA|=|AP|=r ,因为圆C :x2+y2+2x-6y+5=0的圆心为C 〔-1,3〕,那么⎪⎩⎪⎨⎧=++-=-+-+-=--r n m n m m n 2222)1()4()2()1(113212,解得m=3,n=1,r=5,所以所求圆的方程为(x-3)2+(y-1)2=5.方法二因为圆C :x2+y2+2x-6y+5=0过点M 〔1,2〕的切线方程为2x-y=0, 所以设所求圆A 的方程为x2+y2+2x-6y+5+λ(2x-y)=0, 因为点P 〔4,-1〕在圆上,所以代入圆A 的方程,解得λ=-4, 所以所求圆的方程为x2+y2-6x-2y+5=0.4.圆x2+y2=8内一点P 〔-1,2〕,过点P 的直线l 的倾斜角为α,直线l 交圆于A 、B 两点. 〔1〕当α=43π时,求AB 的长; 〔2〕当弦AB 被点P 平分时,求直线l 的方程. 解〔1〕当α=43π时,kAB=-1, 直线AB 的方程为y-2=-〔x+1〕,即x+y-1=0.故圆心〔0,0〕到AB 的间隔d=2100-+=22, 从而弦长|AB|=2218-=30. 〔2〕设A 〔x1,y1〕,B 〔x2,y2〕,那么x1+x2=-2,y1+y2=4.由⎪⎩⎪⎨⎧=+=+,8,822222121y x y x 两式相减得〔x1+x2〕〔x1-x2〕+〔y1+y2〕〔y1-y2〕=0, 即-2〔x1-x2〕+4〔y1-y2〕=0,∴kAB=212121=--x x y y . ∴直线l 的方程为y-2=21〔x+1〕,即x-2y+5=0. 回忆总结 知识 方法 思想 课后作业一、填空题1.〔2021·理〕假设圆x2+y2=1与直线y=kx+2没有公一一共点,那么k 的取值范围为. 答案(-3,3)2.〔2021·理,3〕圆O1:x2+y2-2x=0和圆O2:x2+y2-4y=0的位置关系是. 答案相交3.圆C :〔x-a 〕2+(y-2)2=4(a >0)及直线l:x-y+3=0,当直线l 被圆C 截得的弦长为23时, 那么a=. 答案2-14.〔2021·全国Ⅰ文〕假设直线1=+b ya x 与圆x2+y2=1有公一一共点,那么2211b a +与1的大小关系是. 答案2211ba+≥15.可以使得圆x2+y2-2x+4y+1=0上恰有两个点到直线2x+y+c=0间隔等于1的c 的取值范围为. 答案〔-35,-5〕∪〔5,35〕6.〔2021·理〕过点A 〔11,2〕作圆x2+y2+2x-4y-164=0的弦,其中弦长为整数的一一共有条. 答案327.设直线ax-y+3=0与圆〔x-1〕2+(y-2)2=4相交于A 、B 两点,且弦AB 的长为23,那么a=. 答案08.〔2021·文,14〕将圆x2+y2=1沿x 轴正向平移1个单位后得到圆C ,那么圆C 的方程是;假设过点〔3,0〕的直线l 和圆C 相切,那么直线l 的斜率是.答案〔x-1〕2+y2=133或者者-33二、解答题9.圆C :x2+y2+2x-4y+3=0.假设圆C 的切线在x 轴和y 轴上的截距的绝对值相等,求此切线的方程.解∵切线在两坐标轴上截距的绝对值相等,∴切线的斜率是±1,或者者切线过原点. 当切线不过原点时,设切线方程为y=-x+b 或者者y=x+c,分别代入圆C 的方程得 2x2-2〔b-3〕x+〔b2-4b+3〕=0.或者者2x2+2(c-1)x+(c2-4c+3)=0,由于相切,那么方程有等根,∴Δ1=0,即[2(b-3)]2-4×2×〔b2-4b+3)=-b2+2b+3=0, ∴b=3或者者-1,Δ2=0,即[2(c-1)]2-4×2×(c2-4c+3)=-c2+6c-5=0.∴c=5或者者1, 当切线过原点时,设切线为y=kx,即kx-y=0. 由212kk +--=2,得k=2±6,∴y=(2±6)x.故所求切线方程为:x+y-3=0,x+y+1=0,x-y+5=0,x-y+1=0,y=(2±6)x. 10.曲线C :x2+y2-4ax+2ay-20+20a=0.〔1〕证明:不管a 取何实数,曲线C 必过定点;〔2〕当a≠2时,证明曲线C 是一个圆,且圆心在一条直线上; 〔3〕假设曲线C 与x 轴相切,求a 的值.〔1〕证明曲线C 的方程可变形为(x2+y2-20)+(-4x+2y+20)a=0,由⎪⎩⎪⎨⎧=++-=-+020*******y x y x ,解得⎩⎨⎧-==24y x ,点〔4,-2〕满足C 的方程,故曲线C 过定点〔4,-2〕.〔2〕证明原方程配方得(x-2a)2+(y+a)2=5(a-2)2,∵a≠2时,5(a-2)2>0,∴C 的方程表示圆心是〔2a,-a),半径是5|a-2|的圆.设圆心坐标为〔x,y 〕,那么有⎩⎨⎧-==a y a x 2,消去a 得y=-21x,故圆心必在直线y=-21x 上.〔3〕解由题意得5|a-2|=|a|,解得a=255±. 11.圆C :x2+y2-2x+4y-4=0,问是否存在斜率是1的直线l ,使l 被圆C 截得的弦AB ,以AB 为直径的圆经过原点,假设存在,写出直线l 的方程;假设不存在,说明理由.解假设存在直线l 满足题设条件,设l 的方程为y=x+m,圆C 化为〔x-1〕2+(y+2)2=9,圆心C 〔1,-2〕,那么AB 中点N 是两直线x-y+m=0与y+2=-(x-1)的交点即N ⎪⎭⎫ ⎝⎛-+-21,21m m ,以AB 为直径的圆经过原点,∴|AN|=|ON|,又CN⊥AB,|CN|=221m++,∴|AN|=2)3(92m +-. 又|ON|=22)21()21(-++-m m ,由|AN|=|ON|,解得m=-4或者者m=1. ∴存在直线l ,其方程为y=x-4或者者y=x+1.12.设O 为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P 、Q ,满足关于直线x+my+4=0对称,又满足OP ·OQ =0.〔1〕求m 的值;〔2〕求直线PQ 的方程.解〔1〕曲线方程为〔x+1〕2+(y-3)2=9表示圆心为〔-1,3〕,半径为3的圆. ∵点P 、Q 在圆上且关于直线x+my+4=0对称,∴圆心〔-1,3〕在直线上,代入得m=-1. 〔2〕∵直线PQ 与直线y=x+4垂直,∴设P 〔x1,y1〕、Q(x2,y2),PQ 方程为y=-x+b. 将直线y=-x+b 代入圆的方程,得2x2+2(4-b)x+b2-6b+1=0. Δ=4(4-b)2-4×2×(b2-6b+1)>0,得2-32<b <2+32. 由根与系数的关系得x1+x2=-(4-b),x1·x2=2162+-b b .y1·y2=b2-b(x1+x2)+x1·x2=2162+-b b +4b.∵OP ·OQ =0,∴x1x2+y1y2=0,即b2-6b+1+4b=0,解得b=1∈(2-32,2+32), ∴所求的直线方程为y=-x+1.。
考点规范练44 直线与圆、圆与圆的位置关系基础巩固1.设曲线C的方程为(x-2)2+(y+1)2=9,直线l的方程为x-3y+2=0,则曲线上的点到直线l的距离为的点的个数为()A.1B.2C.3D.42.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离3.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=()A.2B.4C.6D.24.经过原点并且与直线x+y-2=0相切于点(2,0)的圆的标准方程是()A.(x-1)2+(y+1)2=2B.(x+1)2+(y-1)2=2C.(x-1)2+(y+1)2=4D.(x+1)2+(y-1)2=45.(2017山东潍坊二模)已知圆C1:(x+6)2+(y+5)2=4,圆C2:(x-2)2+(y-1)2=1,M,N分别为圆C1和C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.7B.8C.10D.136.(2017福建宁德一模)已知圆C:x2+y2-2x+4y=0关于直线3x-ay-11=0对称,则圆C中以为中点的弦长为()A.1B.2C.3D.47.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2,则圆C的面积为.8.(2017福建泉州一模)若过点P(-3,1),Q(a,0)的光线经x轴反射后与圆x2+y2=1相切,则a的值为.9.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.(1)求证:对m∈R,直线l与圆C总有两个不同的交点;(2)设直线l与圆C交于A,B两点,若|AB|=,求直线l的倾斜角.10.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.能力提升11.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1B.2C.D.212.若直线y=x+b与曲线y=3-有公共点,则b的取值范围是()A.[1-2,1+2]B.[1-,3]C.[-1,1+2]D.[1-2,3]13.平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y-5=0B.2x+y+=0或2x+y-=0C.2x-y+5=0或2x-y-5=0D.2x-y+=0或2x-y-=014.(2017河南洛阳一模)已知直线x+y-k=0(k>0)与圆x2+y2=4交于不同的两点A,B,O是坐标原点,且有||≥|,则k的取值范围是()A.(,+∞)B.[,+∞)C.[,2)D.[,2)15.已知圆C:x2+y2+2x-4y+3=0.若圆C的切线在x轴和y轴上的截距的绝对值相等,求此切线的方程.16.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围.高考预测17.若直线=1通过点M(cos α,sin α),则()A.a2+b2≤1B.a2+b2≥1C.≤1D.≥1参考答案考点规范练44直线与圆、圆与圆的位置关系1.B解析由方程(x-2)2+(y+1)2=9,得圆心坐标为(2,-1),半径r=3,则圆心到直线l的距离d=.由r=,故所求点的个数为2.2.B解析圆M的方程可化为x2+(y-a)2=a2,故其圆心为M(0,a),半径R=a.所以圆心到直线x+y=0的距离d= a.所以直线x+y=0被圆M所截弦长为2=2a,由题意可得a=2,故a=2.圆N的圆心N(1,1),半径r=1.而|MN|=,显然R-r<|MN|<R+r,所以两圆相交.3.C解析依题意,直线l经过圆C的圆心(2,1),因此2+a-1=0,所以a=-1,因此点A的坐标为(-4,-1).又圆C的半径r=2,由△ABC为直角三角形可得|AB|=.又|AC|=2,所以|AB|==6.4.A解析设圆心的坐标为(a,b),由题意可知解得故所求圆的标准方程是(x-1)2+(y+1)2=2.5.A解析圆C1关于x轴的对称圆的圆心坐标A(-6,-5),半径为2,圆C2的圆心坐标(2,1),半径为1,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即-3=7.故选A.6.D解析∵圆C:x2+y2-2x+4y=0关于直线3x-ay-11=0对称,∴直线3x-ay-11=0过圆心C(1,-2),∴3+2a-11=0,解得a=4,∴即为(1,-1),点(1,-1)到圆心C(1,-2)的距离d==1, 圆C:x2+y2-2x+4y=0的半径r=,∴圆C中以为中点的弦长为2=2=4.故选D.7.4π解析因为圆C的方程可化为x2+(y-a)2=2+a2,直线方程为x-y+2a=0,所以圆心坐标为(0,a),半径r2=a2+2,圆心到直线的距离d=.由已知()2+=a2+2,解得a2=2,故圆C的面积为π(2+a2)=4π.8.-解析因为P(-3,1)关于x轴的对称点的坐标为P'(-3,-1),所以直线P'Q的方程为y=(x-a),即x-(3+a)y-a=0,圆心(0,0)到直线的距离d==1,∴a=-.9.(1)证明将已知直线l化为y-1=m(x-1);故直线l恒过定点P(1,1).因为=1<,所以点P(1,1)在已知圆C内,从而直线l与圆C总有两个不同的交点.(2)解圆的半径r=,圆心C到直线l的距离为d=.由点到直线的距离公式得,解得m=±,故直线的斜率为±,从而直线l的倾斜角为.10.解(1)因为圆C1:x2+y2-6x+5=0可化为(x-3)2+y2=4,所以圆C1的圆心坐标为(3,0).(2)由题意可知直线l的斜率存在,设直线l的方程为y=mx,M(x0,y0).由得(1+m2)x2-6x+5=0,则Δ=36-20(1+m2)>0,解得-<m<,故x0=,且<x0≤3.因为m=,所以x0=,整理得.所以M的轨迹C的方程为+y2=.(3)存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点.由(2)得M的轨迹C为一段圆弧,其两个端点为P,Q,直线L:y=k(x-4)过定点E(4,0),①k PE==-,k QE=,当-≤k≤时,直线L与曲线C只有一个交点.②当直线L与曲线C相切时,L的方程可化为kx-y-4k=0,则,解得k=±.综上所述,当-≤k≤或k=±时,直线L与曲线C只有一个交点.11.C解析由题意可知圆心坐标为(-1,0),故圆心到直线y=x+3的距离d=,故选C.12.D解析y=3-变形为(x-2)2+(y-3)2=4(0≤x≤4,1≤y≤3),表示以(2,3)为圆心,2为半径的下半圆,如图所示.若直线y=x+b与曲线y=3-有公共点,只需直线y=x+b在图中两直线之间(包括图中两条直线),y=x+b与下半圆相切时,圆心到直线y=x+b的距离为2,即=2,解得b=1-2或b=1+2(舍去),故b的取值范围为1-2≤b≤3.故选D.13.A解析设与直线2x+y+1=0平行的直线方程为2x+y+m=0(m≠1).因为直线2x+y+m=0与圆x2+y2=5相切,即点(0,0)到直线2x+y+m=0的距离为,所以,即|m|=5.故所求直线的方程为2x+y+5=0或2x+y-5=0.14.C解析设AB中点为D,则OD⊥AB,∵||≥|,∴2||≥|,∴||≤2|.∵||2+|2=4,∴||2≥1.∵直线x+y-k=0(k>0)与圆x2+y2=4交于不同的两点A,B,∴||2<4.∴4>||2≥1,∴4>≥1.∵k>0,∴≤k<2,故选C.15.解因为切线在两坐标轴上的截距的绝对值相等,所以切线的斜率为±1或切线过原点.①当k=±1时,设切线方程为y=-x+b或y=x+c,分别代入圆C的方程得2x2-2(b-3)x+(b2-4b+3)=0或2x2+2(c-1)x+(c2-4c+3)=0.由于相切,则方程有两个相等的实数根,即b=3或b=-1,c=5或c=1.故所求切线方程为x+y-3=0,x+y+1=0,x-y+5=0,x-y+1=0.②当切线过原点时,设切线方程为y=kx,即kx-y=0.由,得k=2±.所以此时切线方程为y=(2±)x.综上①②可得切线方程为x+y-3=0,x+y+1=0,x-y+5=0,x-y+1=0,(2-)x-y=0或(2+)x-y=0.16.解因为圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0<y0<7,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.(2)因为直线l∥OA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d=.因为BC=OA==2,而MC2=d2+,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.(3)设P(x1,y1),Q(x2,y2).因为A(2,4),T(t,0),,所以①因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.②将①代入②,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,所以5-5≤≤5+5,解得2-2≤t≤2+2.因此,实数t的取值范围是[2-2,2+2].17.D解析因为点M(cosα,sinα)在圆x2+y2=1上,又直线=1过点M,所以直线与圆相交或相切.所以≤1,所以≥1.。