线性代数期末知识点总结线性代数知识点总结(免费)
- 格式:doc
- 大小:19.50 KB
- 文档页数:10
线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。
它广泛应用于物理、工程、计算机科学等领域。
下面将对线性代数的主要知识点进行全面归纳。
1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。
常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。
2.向量及其运算:向量是一个有序数组,具有大小和方向。
常见的向量运算有加法、减法、数乘、点乘和叉乘等。
3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。
解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。
4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。
线性变换是一种保持向量空间结构的映射。
5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。
维度是向量空间中基的数量。
6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。
如果向量组中的向量线性无关,则任何线性组合的系数都为零。
7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。
矩阵乘法可以将多个线性变换组合为一个线性变换。
8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。
9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。
正定矩阵是指二次型在所有非零向量上的取值都大于零。
10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。
正交性是指两个向量的内积为零,表示两个向量互相垂直。
11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。
正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。
线性代数的重点知识点总结线性代数是数学中的一个重要分支,它研究向量空间和线性变换的性质。
在数学、物理、计算机科学等领域中,线性代数都有着广泛的应用。
本文将总结线性代数的一些重点知识点,帮助读者更好地理解和应用线性代数。
1. 向量和矩阵向量是线性代数中的基本概念,它表示空间中的一点或者一个方向。
向量可以表示为一个有序的数列,也可以表示为一个列矩阵。
矩阵是由多个向量按照一定规则排列而成的矩形阵列。
矩阵可以进行加法、减法和数乘等运算。
矩阵的转置、逆矩阵和行列式等概念也是线性代数中的重要内容。
2. 线性方程组线性方程组是线性代数中的一个重要问题,它可以表示为多个线性方程的组合。
线性方程组的求解可以通过消元法、矩阵的逆等方法进行。
当线性方程组有唯一解时,称为可逆方程组;当线性方程组无解或者有无穷多解时,称为不可逆方程组。
3. 向量空间和子空间向量空间是线性代数中的一个核心概念,它包含了所有满足线性组合和封闭性的向量的集合。
子空间是向量空间中的一个子集,它也满足线性组合和封闭性的性质。
子空间可以通过一组线性无关的向量来生成,这组向量称为子空间的基。
子空间的维度等于基向量的个数。
4. 线性变换线性变换是线性代数中的一个重要概念,它是指一个向量空间到另一个向量空间的映射,并且保持向量空间的线性性质。
线性变换可以用矩阵表示,矩阵的每一列表示线性变换后的基向量。
线性变换有很多重要的性质,比如保持向量的线性组合、保持向量的线性无关性等。
5. 特征值和特征向量特征值和特征向量是线性代数中的一个重要概念,它们描述了线性变换对向量的影响。
特征向量是指在线性变换下保持方向不变或者仅仅改变长度的向量,特征值是特征向量对应的标量。
特征值和特征向量可以通过求解线性方程组来得到。
6. 内积和正交性内积是线性代数中的一个重要概念,它表示两个向量之间的夹角和长度的关系。
内积可以用来判断向量是否相互垂直或者平行,还可以用来计算向量的长度和夹角。
《线性代数》知识点归纳整理线性代数是一门研究向量空间和线性映射的数学学科,是数学中的一个重要分支。
它的应用范围非常广泛,包括物理学、工程学、计算机科学、经济学等等。
下面是对线性代数的一些重要知识点的归纳整理。
1.向量和向量空间:-向量的定义和性质:向量是有方向和大小的量,可以进行加法和数乘运算。
-向量空间的定义和性质:向量空间是一组向量的集合,满足加法和数乘运算的封闭性、结合律、交换律、零向量存在性等性质。
2.矩阵和矩阵运算:-矩阵的定义和性质:矩阵是一个由数构成的矩形阵列,可以进行加法和数乘运算。
-矩阵的乘法和转置:矩阵可以进行乘法运算,满足结合律和分配律;矩阵的转置是将矩阵的行和列互换得到的新矩阵。
3.线性方程组和矩阵求解:-线性方程组的解的存在性和唯一性:线性方程组的解存在的条件是系数矩阵的秩等于增广矩阵的秩;解的唯一性与线性方程组的自由变量有关。
-矩阵求解线性方程组的方法:高斯消元法、矩阵的逆、克拉默法则等。
4.线性映射和线性变换:-线性映射的定义和性质:线性映射是一种保持向量空间的加法和数乘运算的映射,满足线性性质。
-线性变换的矩阵表示:线性变换可以用矩阵表示,矩阵的列向量是线性变换作用在基向量上的结果。
5.特征值和特征向量:-特征值和特征向量的定义和性质:对于一个线性变换,特征向量是指在这个变换下保持方向不变的向量,特征值是对应特征向量的缩放因子。
-特征值分解:特征值分解是将一个矩阵分解成特征向量和特征值的形式。
6.内积和正交性:-内积的定义和性质:内积是一种度量向量之间夹角的方法,满足对称性、线性性和正定性等性质。
-正交性和正交基:正交向量是指两个向量的内积为零,正交基是一组两两正交的向量。
7.线性相关和线性无关:-线性相关和线性无关的定义和性质:一组向量中,如果存在不全为零的线性组合等于零向量,则称这组向量线性相关;否则称线性无关。
-维数和基:一组线性无关的向量可以作为向量空间的基,基的个数称为向量空间的维数。
《线性代数》期末复习提纲第一部分:基本要求(计算方面)1. 四阶行列式的计算;2. N 阶特殊行列式的计算(如有行和、列和相等);3. 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);4. 求矩阵的秩、逆(两种方法);解矩阵方程;5. 含参数的线性方程组解的情况的讨论;6. 齐次、非齐次线性方程组的求解(包括唯一、无穷多解);7. 讨论一个向量能否用和向量组线性表示;8. 讨论或证明向量组的相关性;9. 求向量组的极大无关组,并将多余向量用极大无关组线性表示;10.将无关组正交化、单位化;11.求方阵的特征值和特征向量;12.讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;13.通过正交相似变换(正交矩阵)将对称矩阵对角化;14.写出二次型的矩阵,并将二次型标准化,写出变换矩阵;15.判定二次型或对称矩阵的正定性。
第二部分:基本知识一、行列式1.行列式的定义用2n 个元素ij a 组成的记号nnn n n n a a a a a a a a a212222111211称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算1. 一阶行列式a a =,二、三阶行列式有对角线法则;2. N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
3. 特特情况(1) 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0;Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例;Ⅳ 奇数阶的反对称行列式。
二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB =BA ,称A 、B 是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A 、B 为同阶方阵,则B A AB ⋅=; ④n kA k A =3.矩阵的秩(1)定义 非零子式的最大阶数称为矩阵的秩;(2)秩的求法 一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
《线性代数知识点总结(免费)_》摘要:(是非奇异矩阵),②、矩阵列等价:(右乘,可逆),、的行向量线性无关1、行列式 1. 行列式共有个元素,展开后有项,可分解为行列式; 2. 代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为; 3. 代数余子式和余子式的关系: 4. 设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值; 6. 对于阶行列式,恒有:,其中为阶主子式; 7. 证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值; 2、矩阵 1. 是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵; 2. 对于阶矩阵:无条件恒成立; 3. 4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯) 3、矩阵的初等变换与线性方程组 1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0; 3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5. 矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则; 6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、 8. 关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0; 9. 线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程; 10. 线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得; 11. 由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数) 4、向量组的线性相关性 1. 个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应; 2. ①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程) 3. 矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14) 4. ;(例15) 5. 维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面; 6. 线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定; 7. 向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论) 8. 方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆); 9. 对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩; 10. 若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置) 11. 齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解; 12. 设向量组可由向量组线性表示为:(题19结论)()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13. ①、对矩阵,存在,、的列向量线性无关;()②、对矩阵,存在,、的行向量线性无关; 14. 线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数; 15. 设的矩阵的秩为,则元齐次线性方程组的解集的秩为:; 16. 若为的一个解,为的一个基础解系,则线性无关;(题33结论) 5、相似矩阵和二次型 1. 正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:; ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似; 5. 相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格); 6. 为对称阵,则为二次型矩阵; 7. 元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。
线性代数知识点总结1 行列式〔一〕行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:〔用于化简行列式〕〔1〕行列互换〔转置〕,行列式的值不变〔2〕两行〔列〕互换,行列式变号〔3〕提公因式:行列式的某一行〔列〕的所有元素都乘以同一数k,等于用数k 乘此行列式〔4〕拆列分配:行列式中如果某一行〔列〕的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
〔5〕一行〔列〕乘k加到另一行〔列〕,行列式的值不变。
〔6〕两行成比例,行列式的值为0。
〔二〕重要行列式4、上〔下〕三角〔主对角线〕行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:〔A是m阶矩阵,B是n阶矩阵〕,那么7、n阶〔n≥2〕X德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:〔三〕按行〔列〕展开9、按行展开定理:〔1〕任一行〔列〕的各元素与其对应的代数余子式乘积之和等于行列式的值〔2〕行列式中某一行〔列〕各个元素与另一行〔列〕对应元素的代数余子式乘积之和等于0〔四〕行列式公式10、行列式七大公式:〔1〕|kA|=k n|A|〔2〕|AB|=|A|·|B|〔3〕|A T|=|A|〔4〕|A-1|=|A|-1〔5〕|A*|=|A|n-1〔6〕假设A的特征值λ1、λ2、……λn,那么〔7〕假设A与B相似,那么|A|=|B|〔五〕克莱姆法那么11、克莱姆法那么:〔1〕非齐次线性方程组的系数行列式不为0,那么方程为唯一解〔2〕如果非齐次线性方程组无解或有两个不同解,那么它的系数行列式必为0 〔3〕假设齐次线性方程组的系数行列式不为0,那么齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。
2 矩阵〔一〕矩阵的运算1、矩阵乘法考前须知:〔1〕矩阵乘法要求前列后行一致;〔2〕矩阵乘法不满足交换律;〔因式分解的公式对矩阵不适用,但假设B=E,O,A-1,A*,f(A)时,可以用交换律〕〔3〕AB=O不能推出A=O或B=O。
线性代数知识点总结汇总线性代数知识点总结行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=kn|A|(2)|AB|=|A|·|B|(3)|AT|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。
矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。
完整版线性代数知识点总结线性代数是数学的一个分支,研究向量空间及其上的线性变换。
它在各个领域中都有广泛的应用,包括物理学、计算机科学、工程学等。
以下是线性代数的一些重要知识点总结:1.向量和向量空间:向量是有方向和大小的量,可以用来表示力、速度、位移等。
向量空间是向量的集合,具有加法和标量乘法运算,同时满足一定的性质。
2.线性方程组和矩阵:线性方程组是一组线性方程的集合,研究其解的性质和求解方法。
矩阵是一个由数构成的矩形数组,可以用来表示线性方程组中的系数和常数。
3.矩阵的运算:包括矩阵的加法、减法和乘法运算。
矩阵乘法是一种重要的运算,可以用来表示线性变换和复合变换。
4.行列式和特征值:行列式是一个标量,表示矩阵的一些性质,如可逆性和面积/体积的变换。
特征值是矩阵对应的线性变换中特殊的值,表示该变换在一些方向上的伸缩程度。
5.向量的内积和正交性:向量的内积是一种二元运算,可以用来表示向量之间的夹角和长度。
正交向量是指内积为零的向量,可以用来表示正交补空间等概念。
6.向量的投影和正交分解:向量的投影是一个向量在另一个向量上的投影,可以用来表示向量的分解。
正交分解是将一个向量分解为与另一个向量正交和平行的两个向量之和。
7.线性变换和线性映射:线性变换是指保持向量加法和标量乘法运算的变换。
线性映射是向量空间之间的函数,具有保持线性运算的性质。
8.特征值和特征向量:特征值和特征向量是线性变换或矩阵中一个重要的概念,用于描述变换的性质和方向。
9.正交矩阵和对称矩阵:正交矩阵是一个方阵,其列向量组成的矩阵是正交的。
对称矩阵是一个方阵,其转置等于自身。
10.奇异值分解:奇异值分解(SVD)是一种矩阵的分解方法,用来将一个矩阵分解为三个矩阵的乘积。
SVD在数据压缩、图像处理和机器学习等领域有广泛的应用。
11.最小二乘法:最小二乘法是一种数学优化方法,用来找到一条曲线或超平面,使得这些数据点到该曲线或超平面的距离平方和最小。
线代期末重点总结一、向量空间1. 向量空间定义向量空间是指具有加法和标量乘法运算的集合,满足一定条件。
a) 任意向量 u、v 属于向量空间 V,有 u + v 属于 V。
b) 任意标量 k 和向量 u 属于 V,有 k * u 属于 V。
c) 向量加法满足交换律、结合律和存在零向量的性质。
d) 标量乘法满足结合律和分配律的性质。
2. 子空间集合 V 的一个子集 W 是 V 的子空间,如果 W 本身也是向量空间。
a) 非空集合 W 对于向量加法和标量乘法封闭。
b) 非空集合 W 包含零向量,即原空间中的零向量也属于子空间 W。
c) 非空集合 W 对于向量加法和标量乘法满足分配律和结合律的性质。
3. 线性相关与线性无关a) 如果存在非零向量 c1, c2, ..., cn,使得线性组合 a1c1 + a2c2 + ... + ancn = 0,其中 ai 是标量,那么称向量组 c1, c2, ..., cn 线性相关。
b) 如果向量组 c1, c2, ..., cn 不是线性相关,那么称它们线性无关。
4. 基与维数a) 如果向量组 v1, v2, ..., vn 线性无关,并且能够生成向量空间 V,那么称它们是 V 的一个基。
b) 向量空间 V 中的向量个数称为维数,记作 dim(V)。
c) 如果 V 的一个基含有 n 个向量,则维数 dim(V) = n。
5. 线性变换线性变换是指一个向量空间到另一个向量空间的映射。
a) 线性变换必须满足保持向量加法性质:T(u + v) = T(u) + T(v)。
b) 线性变换必须满足保持标量乘法性质:T(k * u) = k * T(u)。
二、矩阵表示和运算1. 矩阵表示a) 矩阵是一个二维数组,由若干个行和列组成。
b) 行向量和列向量可用矩阵表示。
c) 线性变换可用矩阵表示。
2. 矩阵乘法a) 两个矩阵 A(m × n) 和 B(n × p) 的乘积 C(m × p) 定义为 C_ij = sum(A_ik * B_kj),其中 i = 1, ..., m;j = 1, ..., p。
线性代数知识点总结一、向量1、向量的定义向量是指具有大小和方向的量,通常用定位矢量、力、速度、加速度等概念来描述,是线性代数的基础概念之一。
在向量的表示上,通常用箭头表示。
2、向量的加法向量的加法满足结合律和交换律,即对于任意两个向量a、b和任意数α,有a+b=b+a,(a+b)+c=a+(b+c),α(a+b)=αa+αb。
3、向量的数量积向量的数量积又称内积或点积,是指两个向量相乘后相加的结果。
表示为a•b,数值为|a||b|cosθ,其中θ为a、b之间的夹角。
4、向量的线性相关与线性无关若存在一组不全为零的实数α1、α2、…、αn,使得α1a1+α2a2+…+αnan=0,则向量a1、a2、…、an为线性相关。
否则为线性无关。
5、向量的外积向量的外积又称叉积,是指两个向量相乘后得到一个垂直于原两个向量的新向量。
其模长为两个向量长度的乘积与夹角的正弦。
6、向量的投影向量a在向量b上的投影是指垂直于b的向量a′,满足a=a′+a″,其中a″即为a在b上的投影。
7、标量标量是没有方向的,只有大小的量。
标量和向量共同构成线性代数的基础。
二、矩阵1、矩阵的定义矩阵是由m行n列的数按特定顺序排列的格式,通常用方括号表示。
其中m、n分别称为矩阵的行数和列数。
2、矩阵的运算矩阵的加法、数乘、矩阵乘法等运算是线性代数中矩阵的重要运算。
矩阵乘法中的常见性质有结合律、分配律、非交换性等。
3、矩阵的转置矩阵的转置是指行列互换,即对于矩阵A,其转置记为A',且满足(a')ij=(a)ji。
4、矩阵的秩矩阵的秩是指矩阵的列向量(或行向量)组成的矩阵的秩。
矩阵的秩有着一系列重要性质和应用。
5、矩阵的逆若矩阵A存在逆矩阵A-1,使得AA-1=A-1A=I,其中I是单位矩阵,则称矩阵A可逆。
良态矩阵的逆矩阵具有诸多性质。
6、矩阵幂矩阵的幂是指将矩阵连续乘积的运算。
矩阵幂在线性代数以及其他数学领域中有着广泛的应用。
线性代数知识点全面总结线性代数是数学的一个重要分支,在许多领域,如物理学、计算机科学、工程学等都有着广泛的应用。
接下来,让我们一起来全面了解线性代数的主要知识点。
首先,我们来谈谈行列式。
行列式是一个数值,它可以通过一定的计算规则从一个方阵中得出。
对于二阶行列式,它的计算很简单,就是“左上乘右下减去右上乘左下”。
而对于更高阶的行列式,计算方法就较为复杂,通常会使用按行(列)展开法则、化为上三角行列式等方法。
行列式具有许多重要的性质,比如某行(列)元素乘以同一数后,加到另一行(列)的对应元素上,行列式的值不变。
矩阵是线性代数中的另一个核心概念。
矩阵可以看作是一组数按照一定的规则排列而成的矩形数组。
矩阵的运算包括加法、减法、数乘和乘法。
矩阵加法和减法要求两个矩阵具有相同的行数和列数,运算时对应位置的元素相加减。
数乘则是将矩阵中的每个元素乘以一个数。
矩阵乘法相对复杂一些,只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘。
矩阵的转置也是一个重要的操作,即将矩阵的行和列互换。
还有逆矩阵,如果一个矩阵 A 存在逆矩阵 A⁻¹,那么 AA⁻¹= A⁻¹A =单位矩阵。
求逆矩阵的方法有伴随矩阵法和初等变换法。
向量是具有大小和方向的量。
在线性代数中,向量通常表示为一列数或一行数。
向量组的线性相关性是一个关键概念,如果存在一组不全为零的数,使得向量组的线性组合等于零向量,那么这个向量组线性相关,否则线性无关。
线性方程组是线性代数中的常见问题。
可以用矩阵的形式来表示线性方程组,通过对增广矩阵进行初等行变换,来求解方程组。
当方程组有唯一解、无解或有无穷多解时,对应的矩阵的秩会有不同的情况。
接下来是特征值和特征向量。
对于一个矩阵 A,如果存在一个数λ和一个非零向量 x,使得 Ax =λx,那么λ就是矩阵 A 的特征值,x 就是对应的特征向量。
通过求解特征方程可以得到特征值,再代入方程求解特征向量。
线性代数知识点全面总结线性代数是一门重要的数学学科,它研究的是向量空间、线性映射和线性方程组等基本概念及其相互关系。
线性代数在数学、物理、计算机科学、经济学等各个领域都有广泛的应用。
下面是线性代数的一些重要知识点的全面总结:1. 向量空间(Vector Space)向量空间由一组满足一些性质的向量组成。
向量空间的定义要求满足加法和数量乘法封闭性、零向量存在性、加法逆元存在性等性质。
在向量空间中,还可以定义线性组合、线性相关性、线性无关性等概念。
2. 矩阵(Matrix)矩阵是由一组数按照一个确定的规律排列成的矩形阵列。
矩阵的加法、数量乘法等运算满足线性运算的性质。
矩阵可以表示线性方程组、线性映射等。
3. 线性映射(Linear Mapping)线性映射是指将一个向量空间的元素映射到另一个向量空间的元素,并保持向量空间的加法和数量乘法运算。
线性映射可以用矩阵表示,并且具有一些重要的性质,比如保持零向量、保持加法和数量乘法等。
4. 线性方程组(Linear System)线性方程组是一组线性方程的集合。
线性方程组可以用矩阵和向量表示,形式为Ax=b,其中A是系数矩阵,x是未知向量,b是常数向量。
线性方程组的求解可以使用消元法、矩阵求逆等方法。
5. 特征值和特征向量(Eigenvalues and Eigenvectors)特征值和特征向量是线性映射中的重要概念。
对于一个线性映射,如果存在一个非零向量x,使得线性映射作用于x的结果等于x乘以一个常数λ(即f(x)=λx),那么λ就是这个线性映射的特征值,x就是对应的特征向量。
6. 内积空间(Inner Product Space)内积空间是向量空间中引入内积运算的概念。
内积可以用来度量向量的夹角和长度,并且可以定义向量的正交性、正交投影等概念。
内积空间可以是实数域或复数域上的。
7. 正交性和正交基(Orthogonality and Orthogonal Basis)正交性是指向量之间的夹角为直角。
线性代数知识点全面总结线性代数是数学的一个重要分支,在科学、工程、计算机科学等领域都有着广泛的应用。
下面就为大家全面总结一下线性代数的主要知识点。
一、行列式行列式是线性代数中的一个基本概念,它是一个数值。
对于一个二阶行列式,其计算公式为“左上角元素乘以右下角元素减去右上角元素乘以左下角元素”。
对于高阶行列式,可以通过按照某一行(列)展开来计算。
行列式具有很多重要的性质,比如:某一行(列)元素乘以同一数后,加到另一行(列)对应元素上,行列式的值不变;如果行列式某一行(列)元素全为零,则行列式的值为零;交换行列式的两行(列),行列式的值变号等。
二、矩阵矩阵是线性代数的核心概念之一。
它是一个按照矩形排列的数表。
矩阵可以进行加法、减法、数乘和乘法运算。
矩阵加法和减法要求两个矩阵的行数和列数都相同,对应位置的元素相加减。
数乘则是将矩阵的每个元素乘以一个数。
矩阵乘法相对复杂一些,只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘。
而且,矩阵乘法一般不满足交换律。
矩阵还有转置、逆等概念。
矩阵的转置是将行和列互换得到的新矩阵。
如果一个矩阵存在逆矩阵,那么它与原矩阵相乘得到单位矩阵。
三、线性方程组线性方程组是线性代数中的重要内容。
可以用矩阵的形式来表示线性方程组,通过对增广矩阵进行初等行变换来求解。
齐次线性方程组(常数项都为零的线性方程组)一定有零解,如果系数矩阵的秩小于未知数的个数,则有非零解。
非齐次线性方程组,如果系数矩阵的秩等于增广矩阵的秩,则有解;如果秩相等且等于未知数的个数,则有唯一解;如果秩相等但小于未知数的个数,则有无穷多解。
四、向量向量是既有大小又有方向的量。
在线性代数中,向量可以表示为行向量或列向量。
向量组的线性相关和线性无关是重要概念。
如果存在一组不全为零的数,使得向量组的线性组合等于零向量,则称向量组线性相关;否则,称向量组线性无关。
向量组的秩是指极大线性无关组中向量的个数。
五、特征值与特征向量对于一个方阵 A,如果存在一个数λ和一个非零向量 x,使得 Ax =λx,那么λ称为矩阵 A 的特征值,x 称为矩阵 A 对应于特征值λ的特征向量。
线性代数重要知识点总结线性代数是数学中的一个重要分支,它研究向量、向量空间以及线性变换等概念。
在科学、工程、计算机科学等领域中都广泛应用线性代数的知识。
下面是线性代数的一些重要知识点的总结。
1.向量:向量是表示大小和方向的量,可以用有序数组表示。
向量的加法和数乘运算满足交换律、结合律和分配律。
2.向量空间:向量空间是一组向量的集合,在其中向量可以进行加法和数乘运算。
向量空间必须满足闭合性、加法逆元、加法交换律、加法结合律、数乘结合律和数乘分配律等性质。
3.线性相关与线性无关:向量组中的向量可以是线性相关的,也可以是线性无关的。
线性相关表示一些向量可以由其他向量线性表示出来,而线性无关表示所有向量不能通过线性组合得到零向量。
4.矩阵:矩阵是二维数组,也可以看作是向量的扩展。
矩阵的加法和数乘运算满足交换律、结合律和分配律。
5.矩阵乘法:矩阵乘法是矩阵之间的一种运算,前提是第一个矩阵的列数等于第二个矩阵的行数。
矩阵乘法满足结合律,但不满足交换律。
6.线性方程组:线性方程组是一组线性方程的集合。
可以使用矩阵的形式表示线性方程组,通过高斯消元法或矩阵求逆等方法求解线性方程组。
7.特征值与特征向量:在线性代数中,对于一个n维向量,如果它乘以一个n×n的矩阵后,仍然保持方向不变(可能会变长或变短),那么这个向量称为这个矩阵的特征向量,而乘以矩阵后的长度变化倍数称为特征值。
8.内积与外积:内积是向量之间的一种运算,满足交换律和分配律,内积为一个标量。
外积是向量之间的一种运算,满足反对称性和分配律,外积为一个向量。
9.正交与正交子空间:正交指的是两个向量的内积为零,正交子空间是由正交向量组成的向量空间。
10.线性变换:线性变换是将一个向量空间映射到另一个向量空间的变换,保持向量空间的线性运算性质。
11.特征值分解:矩阵的特征值分解是将一个矩阵分解为特征值和特征向量的乘积的形式。
12.奇异值分解:矩阵的奇异值分解是将一个矩阵分解为奇异值和左右奇异向量的乘积的形式。
线性代数知识点总结本文将对线性代数的关键概念进行总结和概述。
1. 向量和矩阵向量是线性代数中的基本概念之一,它可以表示为具有大小和方向的量。
向量可以通过坐标表示,例如二维向量可以表示为 (x, y),三维向量可以表示为 (x, y, z)。
矩阵是由一组数字排列成的矩形阵列。
矩阵可以表示为 m 行 n 列的形式,其中 m 表示矩阵的行数,n 表示矩阵的列数。
矩阵的元素可以用小写字母表示,例如矩阵 A 的元素可以表示为a<sub>ij</sub>,其中 i 表示行索引,j 表示列索引。
2. 向量和矩阵的运算2.1 向量运算- 向量的加法:向量加法是指将对应位置上的元素相加得到新的向量。
- 向量的数乘:向量的数乘是指将向量的每个元素都乘以一个实数得到新的向量。
- 向量的点乘:向量的点乘是指将两个向量对应位置上的元素相乘,并将乘积相加得到一个标量。
2.2 矩阵运算- 矩阵的加法:矩阵加法是指将对应位置上的元素相加得到新的矩阵。
- 矩阵的数乘:矩阵的数乘是指将矩阵的每个元素都乘以一个实数得到新的矩阵。
- 矩阵的乘法:矩阵的乘法是指将一个矩阵的每一行乘以另一个矩阵的对应列,并将乘积相加得到一个新的矩阵。
3. 线性方程组线性方程组是由一组线性方程构成的方程组。
线性方程组可以用矩阵的形式表示,即 AX = B,其中 A 是系数矩阵,X 是未知数向量,B 是常数向量。
解线性方程组可以使用消元法、矩阵的逆、矩阵的转置等方法。
4. 特征值与特征向量在线性代数中,特征值与特征向量是矩阵的重要性质。
特征值是一个实数或复数,表示矩阵在特定方向上的伸缩程度。
特征向量是与特征值相对应的向量,表示矩阵在该方向上的不变性质。
5. 线性代数的应用线性代数在许多领域都有广泛的应用,例如计算机图形学、数据分析、机器研究等。
在计算机图形学中,线性代数用于描述和处理三维图形的变换和投影。
在数据分析中,线性代数用于处理和分析大量的数据。
线性代数知识点总结线性代数知识点总结线性代数是数学的一个分支,它的研究对象是向量,向量空间,线性变换和有限维的线性方程组。
下面是小编想跟大家分享的线性代数知识点总结,欢迎大家浏览。
线性代数知识点总结篇1第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断线性代数知识点总结篇2行列式一、行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
线性代数知识点总结线性代数是数学中的一个重要分支,研究向量、向量空间、线性变换、矩阵等概念及其性质。
它是许多学科领域的基础,包括物理学、工程学、计算机科学等。
本文将对线性代数的主要知识点进行总结。
1.向量:向量是有方向和大小的量,用箭头表示。
一个向量可以表示一个物体的位移、速度、加速度等。
向量有加法和标量乘法两种运算。
在数学中,一般用坐标表示一个向量,如n维向量可以表示为(x1,x2,...,xn)。
2.向量空间:向量空间是指由一组向量及其运算构成的集合。
它有以下特点:-任意两个向量的加法运算仍为向量空间中的向量。
-向量与标量的乘法运算仍为向量空间中的向量。
-加法运算满足交换律和结合律。
-标量乘法运算满足结合律和分配律。
-向量空间中存在零向量,即加法运算的单位元。
-每一个向量都存在相反向量,即加法运算的逆元。
3.线性变换:线性变换是指将一个向量空间的向量映射到另一个向量空间的向量,并保持向量的线性组合关系。
线性变换有以下特点:-保持向量加法:T(u+v)=T(u)+T(v)。
-保持标量乘法:T(λv)=λT(v)。
-保持零向量:T(0)=0。
4.矩阵:矩阵是一个由元素排列成矩形阵列的数学结构。
矩阵可以表示线性方程组,其中每个方程可以看作是一个向量的线性组合。
矩阵有以下运算:-矩阵加法:对应位置元素相加。
-矩阵数乘:将矩阵的每个元素乘以一个标量。
-矩阵乘法:行乘以列的方式进行运算。
5.矩阵的性质:-矩阵的转置:将矩阵的行转换为列,列转换为行。
-矩阵的逆:若矩阵A与矩阵A的逆矩阵相乘结果为单位矩阵,则称矩阵A可逆。
-矩阵的秩:矩阵的秩是指矩阵中的线性无关行或列的最大数目。
- 矩阵的特征值和特征向量: 矩阵A的特征值是指满足方程det(A-λI)=0的λ值,而对应于特征值的特征向量是指满足方程(A-λI)x=0的非零向量。
6.行列式:行列式是一个将矩阵映射到一个实数的函数。
它用来描述矩阵的面积或体积的变化。
线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式1212n nλλλλλλ=,()()1122121n n n nλλλλλλ-=-3.行列式的性质定义记111212122212nn n n nna a a a a a D a a a =,112111222212n n T nnnna a a a a a D a a a =,行列式TD 称为行列式D 的转置行列式。
性质1行列式与它的转置行列式相等。
性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ,行列式变号。
推论如果行列式有两行〔列〕完全一样〔成比例〕,则此行列式为零。
性质3 行列式*一行〔列〕中所有的元素都乘以同一数()⨯j k r k ,等于用数k 乘此行列式; 推论1 D 的*一行〔列〕中所有元素的公因子可以提到D 的外面; 推论2 D 中*一行〔列〕所有元素为零,则=0D 。
性质4 假设行列式的*一列〔行〕的元素都是两数之和,则1112111212222212()()()i i n i i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+11121111121121222*********12i n i n i n i n n n ninnn n ninna aa a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的*一列〔行〕的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式的值不变。
而算得行列式的值。
4. 行列式按行〔列〕展开余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的1n -阶行列式叫做元素ij a 的余子式,记作ij M 。
线性代数期末知识点总结线性代数知识点总结
(免费)
1、行列式1.行列式共有个元素,展开后有项,可分解为行列式;
2.代数余子式的性质:
①、和的大小无关;
②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;
③、某行(列)的元素乘以该行(列)元素的代数余子式为;
3.代数余子式和余子式的关系:
4.设行列式:
将上、下翻转或左右翻转,所得行列式为,则;
将顺时针或逆时针旋转,所得行列式为,则;
将主对角线翻转后(转置),所得行列式为,则;
将主副角线翻转后,所得行列式为,则;
5.行列式的重要公式:
①、主对角行列式:主对角元素的乘积;
②、副对角行列式:副对角元素的乘积;
③、上、下三角行列式():主对角元素的乘积;
④、和:副对角元素的乘积;
⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;
⑦、特征值;
6.对于阶行列式,恒有:,其中为阶主子式;
7.证明的方法:
①、;
②、反证法;
③、构造齐次方程组,证明其有非零解;
④、利用秩,证明;
⑤、证明0是其特征值;
2、矩阵
1.是阶可逆矩阵:
(是非奇异矩阵);
(是满秩矩阵)
的行(列)向量组线性无关;
齐次方程组有非零解;
,总有唯一解;
与等价;
可表示成若干个初等矩阵的乘积;
的特征值全不为0;
是正定矩阵;
的行(列)向量组是的一组基;
是中某两组基的过渡矩阵;
2.对于阶矩阵:
无条恒成立;
3.
4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;
5.关于分块矩阵的重要结论,其中均、可逆:
若,则:
Ⅰ、;
Ⅱ、;
②、;(主对角分块)
③、;(副对角分块)
④、;(拉普拉斯)
⑤、;(拉普拉斯)
3、矩阵的初等变换与线性方程组
1.一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;
等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;
对于同型矩阵、,若;
2.行最简形矩阵:
①、只能通过初等行变换获得;
②、每行首个非0元素必须为1;
③、每行首个非0元素所在列的其他元素必须为0;
3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)
①、若,则可逆,且;
②、对矩阵做初等行变化,当变为时,就变成,即:;
③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;
4.初等矩阵和对角矩阵的概念:
①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;
②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;
③、对调两行或两列,符号,且,例如:;
④、倍乘某行或某列,符号,且,例如:;
⑤、倍加某行或某列,符号,且,如:;
5.矩阵秩的基本性质:
①、;
②、;
③、若,则;
④、若、可逆,则;(可逆矩阵不影响矩阵的秩)
⑤、;(※)
⑥、;(※)
⑦、;(※)
⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;
6.三种特殊矩阵的方幂:
①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;
②、型如的矩阵:利用二项展开式;二项展开式:;
注:Ⅰ、展开后有项;
Ⅱ、Ⅲ、组合的性质:;
③、利用特征值和相似对角化:
7.伴随矩阵:
①、伴随矩阵的秩:;
②、伴随矩阵的特征值:;
③、、 8.关于矩阵秩的描述:
①、,中有阶子式不为0,阶子式全部为0;(两句话)
②、,中有阶子式全部为0;
③、,中有阶子式不为0;
9.线性方程组:,其中为矩阵,则:
①、与方程的个数相同,即方程组有个方程;
②、与方程组得未知数个数相同,方程组为元方程;
10.线性方程组的求解:
①、对增广矩阵进行初等行变换(只能使用初等行变换);
②、齐次解为对应齐次方程组的解;
③、特解:自由变量赋初值后求得;
11.由个未知数个方程的方程组构成元线性方程:
①、;
②、(向量方程,为矩阵,个方程,个未知数)
③、(全部按列分块,其中);
④、(线性表出)
⑤、有解的充要条:(为未知数的个数或维数)
4、向量组的线性相关性
1.个维列向量所组成的向量组:构成矩阵;
个维行向量所组成的向量组:构成矩阵;
含有有限个向量的有序向量组与矩阵一一对应;
2.①、向量组的线性相关、无关
有、无非零解;(齐次线性方程组)
②、向量的线性表出
是否有解;(线性方程组)
③、向量组的相互线性表示
是否有解;(矩阵方程)
3.矩阵与行向量组等价的充分必要条是:齐次方程组和同解;(例14)
4.;(例15)
5.维向量线性相关的几何意义:
①、线性相关
;
②、线性相关
坐标成比例或共线(平行);
③、线性相关
共面;
6.线性相关与无关的两套定理:
若线性相关,则必线性相关;
若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)
若维向量组的每个向量上添上个分量,构成维向量组:
若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)
简言之:无关组延长后仍无关,反之,不确定;
7.向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);
向量组能由向量组线性表示,则;(定理3)
向量组能由向量组线性表示有解;
(定理2)
向量组能由向量组等价(定理2推论)
8.方阵可逆存在有限个初等矩阵,使;
①、矩阵行等价:(左乘,可逆)与同解
②、矩阵列等价:(右乘,可逆);
③、矩阵等价:(、可逆);
9.对于矩阵与:
①、若与行等价,则与的行秩相等;
②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;
③、矩阵的初等变换不改变矩阵的秩;
④、矩阵的行秩等于列秩;
10.若,则:
①、的列向量组能由的列向量组线性表示,为系数矩阵;
②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)
11.齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;
①、只有零解只有零解;
②、有非零解一定存在非零解;
12.设向量组可由向量组线性表示为:(题19结论)
()
其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)
(必要性:;充分性:反证法)
注:当时,为方阵,可当作定理使用;
13.①、对矩阵,存在,、的列向量线性无关;()
②、对矩阵,存在,、的行向量线性无关;
14.线性相关
存在一组不全为0的数,使得成立;(定义)
有非零解,即有非零解;
,系数矩阵的秩小于未知数的个数;
15.设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;
16.若为的一个解,为的一个基础解系,则线性无关;(题33结论)
5、相似矩阵和二次型
1.正交矩阵或(定义),性质:
①、的列向量都是单位向量,且两两正交,即;
②、若为正交矩阵,则也为正交阵,且;
③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;
2.施密特正交化:
;
; 3.对于普通方阵,不同特征值对应的特征向量线性无关;
对于实对称阵,不同特征值对应的特征向量正交;
4.①、与等价
经过初等变换得到;
,、可逆;
,、同型;
②、与合同
,其中可逆;
与有相同的正、负惯性指数;
③、与相似
;
5.相似一定合同、合同未必相似;
若为正交矩阵,则,(合同、相似的约束条不同,相似的更严格);
6.为对称阵,则为二次型矩阵;
7.元二次型为正定:
的正惯性指数为;
与合同,即存在可逆矩阵,使;
的所有特征值均为正数;
的各阶顺序主子式均大于0;
;(必要条)。