第七章空间解析几何与向量代数
- 格式:ppt
- 大小:631.00 KB
- 文档页数:3
第七章 空间解析几何与向量代数 为了学习多元函数微积分的需要,本章首先建立空间直角坐标系,并引进在工程技术 上有着广泛应用的向量,介绍向量的一些运算.然后以向量为工具来讨论空间的平面与直线 方程,最后介绍空间曲面与空间曲线及二次曲面.第一节 空间直角坐标系一、 空间直角坐标系众所周知,实数x 与数轴上的点是一一对应的,二元数组(x ,y )与坐标平面上的点是一一对应的,从而可以用代数的方法讨论几何问题.类似地,通过建立空间直角坐标系,把空间中的点与一个三元有序数组(x ,y ,z )建立一一对应关系,用代数的方法研究空间问题.1.空间直角坐标系的建立过空间定点O 作三条互相垂直的数轴,它们都以O 为原点,并且通常取相同的长度单位.这三条数轴分别称为x 轴、y 轴、z 轴.各轴正向之间的顺序通常按下述法则确定:以右手握住z 轴,让右手的四指从x 轴的正向以π/2的角度转向y 轴的正向,这时大拇指所指的方向就是z 轴的正向.这个法则叫做右手法则(图7-1).这样就组成了空间直角坐标系.O 称为坐标原点,每两条坐标轴确定的平面称为坐标平面,简称为坐标面.x 轴与y 轴所确定的坐标面称为xOy 坐标面.类似地有yOz 坐标面、zOx 坐标面.这些坐标面把空间分成八个部分,每一部分称为一个卦限(图7-2).x 、y 、z 轴的正半轴的卦限称为第Ⅰ卦限,从第Ⅰ卦限开始,从z 轴的正向向下看,按逆时针方向,先后出现的卦限依次称为第Ⅱ、Ⅲ、Ⅳ卦限,第Ⅰ、Ⅱ、Ⅲ、Ⅳ卦限下方的空间部分依次称为第Ⅴ、Ⅵ、Ⅶ、Ⅷ卦限。
图7-1 图7-22.空间中点的直角坐标设M 为空间的一点,若过点M 分别作垂直于三坐标轴的平面,与三坐标轴分别相交于P ,Q ,R 三点,且这三点在x 轴、y 轴、z 轴上的坐标依次为x ,y ,z ,则点M 唯一地确定了一个有序数组(x ,y ,z ).反之,设给定一个有序数组(x ,y ,z ),且它们分别在x 轴、y 轴和z 轴上依次对应于P ,Q 和R 点,若过P ,Q 和R 点分别作平面垂直于所在坐标轴,则这三个平面确定了唯一的交点M .这样,空间的点就与一个有序数组(x ,y ,z )之间建立了一一对应关系(图7-3).有序数组(x ,y ,z )就称为点M 的坐标,记为M (x ,y ,z ),它们分别称为横坐标、纵坐标和竖坐标.显然,原点O的坐标为(0,0,0),坐标轴上的点至少有两个坐标为0,坐标面上的点至少有一个坐标为0.例如,在x轴上的点,均有y=z=0;在xOy坐标面上的点,均有z =0.图7-3 图7-4二、空间两点间的距离公式设空间两点M1(x1, y1, z1)、M2 (x2, y2, z2),求它们之间的距离d=12M M.过点M 1,M2各作三个平面分别垂直于三个坐标轴,形成如图7-4所示的长方体.易知 2222121212()d M M M Q QM M QM==+∆是直角三角形222121()M P PQ QM M PQ=++∆是直角三角形222122M P P M QM''''=++()()()222212121x x y y z z=-+-+-所以d=(7-1-1 )特别地,点M(x,y,z)与原点O(0,0,0)的距离(图7-3)d OM==例1在z轴上求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解因所求的点M在z轴上,故设该点坐标为M(0,0,z),依题意MA MB=,即=解得z=149,所求点为M ( 0,0,149).习题7-11.在空间直角坐标系中,定出下列各点的位置:A (1,3,2),B (1,2,-1),C (-1,-2,3),D(0,-2,0),E (-3,0,1).2. 求点(a ,b ,c )关于(1) 各坐标面;(2) 各坐标轴;(3) 坐标原点的对称点的坐标.3. 自点P 0(x 0, y 0, z 0)分别作各坐标面和坐标轴的垂线,写出各垂足的坐标.4. 求点M (4,-3,5)到各坐标轴间的距离.5. 在y Oz 面上,求与三个已知点A (3,1,2),B (4,-2,2)和C (0,5,1)等距离的点.6. 试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.第二节 向量及其运算一、 向量的概念在物理学和工程技术中经常会碰到一些既有大小又有方向的量,如力、速度等,我们把这类量称为向量(或矢量).空间中的向量常用具有一定长度且标有方向的线段(称为有向线段)来表示。
高等数学下册知识点第七章 空间解析几何与向量代数一、填空与选择1、已知点A (,,)321-和点B (,,)723-,取点M 使MB AM 2=,则向量OM=。
2 已知点A (,,)012和点B =-(,,)110,则AB=。
3、设向量与三个坐标面的夹角分别为ξηζ,,,则cos cos cos 222ξηζ++= 。
4、设向量a 的方向角απβ=3,为锐角,γπβ=-4=,则a = 。
5、向量)5,2,7(-=a 在向量)1,2,2(=b 上的投影等于。
6、过点()121-,,P 且与直线1432-=-=+-=t z t y t x ,,, 垂直的平面方程为_____________________________. 7、已知两直线方程是130211:1--=-=-z y x L ,11122:2zy x L =-=+,则过1L 且平行2L 的平面方程为____________________ 8、设直线182511:1+=--=-z y x L ,⎩⎨⎧=-+=--03206:2z y y x L ,则1L 与2L 的夹角为( ) (A ). 6π (B ).4π (C ).3π (D )2π.9、平面Ax By Cz D +++=0过x 轴,则( )(A )A D ==0 (B )B C =≠00, (C )B C ≠=00, (D )B C ==0 10、平面3510x z -+=( )(A )平行于zox 平面 (B )平行于y 轴(C )垂直于y 轴 (D )垂直于x 轴 11、点M (,,)121到平面x y z ++-=22100的距离为( )(A )1 (B )±1 (C )-1 (D )1312、与xoy坐标平面垂直的平面的一般方程为 。
13、过点(,,)121与向量k j S k j i S--=--=21,32平行的平面方程为 。
14、平面0218419=++-z y x和0428419=++-z y x 之间的距离等于⎽⎽⎽⎽⎽⎽ 。
第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。
【最新整理,下载后即可编辑】第七章空间解析几何与向量代数1.求点(2,-3,-1)关于:(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点.解答:(1)xOy面:()---,zOx面:()2,3,12,3,1-;2,3,1-,yOz面:()(2)x轴:()2,3,1,y轴:()2,3,1--;--,z轴:()2,3,1(3)()-2,3,1.所属章节:第七章第一节难度:一级2.求点(4,-3,5)到坐标原点和各坐标轴的距离.解答:点(4,-3,5)到坐标原点的距离为=点(4,-3,5)到x=点(4,-3,5)到y=点(4,-3,5)到z5=.所属章节:第七章第一节难度:一级3.把两点(1,1,1)和(1,2,0)间的线段分成两部分,使其比等于2:1,试求分点的坐标.解答:设分点坐标为(,,)x y z ,则由条件11121201x y z x y z ---===---,解得511,,33x y z ===,即所求分点坐标为511,,33⎛⎫⎪⎝⎭.所属章节:第七章第一节 难度:一级4.设立方体的一个顶点在原点,三条棱分别在三条坐标轴的正半轴上,已知棱长为a ,求各顶点的坐标. 解答:各顶点的坐标为:()()()()()()()()0,0,0,,0,0,0,,0,0,0,,,,,,,0,,0,,0,,.a a a a a a a a a a a a所属章节:第七章第一节 难度:一级5.在yOz 平面上求一点,使它与点A (3,1,2),点B (4,-2,-2)和点C (0,5,1)的距离相等.解答:设所求点为(0,,)P y z ,则由条件有PA PB PC ==,故==,解得1,2y z ==-.即所求点为(0,1,2)-. 所属章节:第七章第一节 难度:一级6.在z 轴上求一点,使它到点A (-4,1,7)和点B (3,5,-2)的距离相等.解答:设所求点为(0,0,)P z ,则由条件有PA PB =,故=解得149z =.即所求点为14(0,0,)9. 所属章节:第七章第一节 难度:一级7.已知向量a 和b 的夹角为60°,且5,8,==a b 试求+a b 和.-a b 解答:由于222((2cos 129θ+=+⋅+++=a b a b)a b)=a b a b ,代入已知条件,即可得+=a b又由于222((2cos 49θ-=-⋅-+-=a b a b)a b)=a b a b ,故7-=a b .所属章节:第七章第三节 难度:二级8.设向量a 和b 的夹角为2π3,且3,4,==a b 试求: (1)⋅a b(2)()()322-⋅+a b a b解答:(1)2cos 34cos 63θπ⋅⋅⋅=⨯⨯=-a b =a b ;(2)22(32)(2)34461-⋅+=-+⋅-a b a b a b a b =. 所属章节:第七章第三节 难度:二级9.设23,3,=+=-A a b B a b 其中2,1,==a b 向量a 和b 的夹角为π3,试求⋅A B 及Pr oj B A . 解答:2222(23)(3)637637cos 28θ⋅=+⋅-=-+⋅=-+⋅⋅=A B a b a b a b a b a b a b ;由于22222(3)(3)9696cos 31θ=⋅-⋅-=+-⋅=+-⋅⋅=B B B =a b a b a b a b a b a b ,所以Pr oj31B ⋅===A B A B . 所属章节:第七章第三节 难度:二级10.设2,,1,2,k =+=+==A a b B a b a b 且,⊥a b 问: (1)k 为何值时,;⊥A B(2)k 为何值时,A 与B 为邻边的平行四边形面积为6.解答:(1) 要使⊥A B ,则⋅=A B ,即22(2)()2(2)0k k k +⋅+=+++⋅=a b a b a b a b ,代入条件即240k +=,解得2k =-;(2)要使以A 与B 为邻边的平行四边形面积为6,即6⨯=A B ,代入条件即23k -=,解得1k =-或 5.k = 所属章节:第七章第四节 难度:二级11.已知向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,试求向量a 与b 的夹角.解答:因为a +3b ⊥7a -5b ,a -4b ⊥7a -2b ,所以 (a +3b )⋅(7a -5b )=0, (a -4b )⋅(7a -2b )=0,即 7|a |2+16a ⋅b -15|b |2 =0, 7|a |2-30a ⋅b +8|b |2 =0, 由以上两式可得 b a b a ⋅==2||||,于是21||||) ,cos(^=⋅⋅=b a b a b a ,3) ,(^π=b a . 所属章节:第七章第三节 难度:二级12.设[],,2,=a b c 求:()()(),,.+++⎡⎤⎣⎦a b b c c a 解答:()()()[],,[()()]()()()2,,4+++=+⨯+⋅+=⨯+⨯⋅+==⎡⎤⎣⎦a b b c c a a b b c c a a b a c c a a b c .所属章节:第七章第四节 难度:二级13.设{}{}3,2,6,2,1,0,=-=-a b 试求下列各向量的坐标: (1);+a b (2)1;2-b (3)1.3+a b 解答:(1){}{}{}3,2,62,1,01,1,6+---a b =+=; (2){}1112,1,01,,0222⎧⎫----⎨⎬⎩⎭b ==;(3){}{}1113,2,62,1,01,,2333⎧⎫+-+-=-⎨⎬⎩⎭a b =. 所属章节:第七章第二节 难度:一级14.求向量=++a i k 的模以及它与坐标轴之间的夹角.解答:2==a ;与坐标轴的夹角余弦分别为1111cos ,cos 222αβγ======a a a , 故与坐标轴的夹角分别为°°°60,45 ,60αβγ===.所属章节:第七章第二节 难度:一级15.已知一向量的起点是A (2,-2,5),终点是B (-1,6,7),试求: (1)向量AB 在各坐标轴上的投影; (2)向量AB 的模和方向余弦; (3)AB 的单位向量. 解答:由于向量{}3,8,2AB =-,所以(1)向量AB 在各坐标轴上的投影为382-,,;(2)向量AB 的模(3)-=,方向余弦为cosαβγ===;(3)AB 的单位向量AB AB ⎧=⎨⎩. 所属章节:第七章第二节 难度:一级16.已知向量{}3,1,2-的起点坐标为(2,0,-5),求它的终点坐标.解答:终点坐标为()()()3,1,22,0,55,1,3-+-=--. 所属章节:第七章第二节 难度:一级17. 已知向量的终点为B (2,-1,7),它在坐标轴上的投影依次为4、-4和7,求该向量起点A 的坐标. 解答:起点A 的坐标()()()2,1,74,4,72,3,0---=-. 所属章节:第七章第二节 难度:一级18.已知向量{}{}1,1,5,2,3,5,==-a b 求与3-a b 同向的单位向量. 解答:由于{}{}{}31,1,532,3,55,10,10-=--=--a b ,单位化,与3-a b 同向的单位向量为{}311225,10,10,,315333-⎧⎫=--=--⎨⎬-⎩⎭a b a b . 所属章节:第七章第二节 难度:一级19.设向量{}{},5,1,3,,,l l m =-=a b 且//a b ,试求l 与m 的值. (题目与解答不统一)如果题目中向量为{}{},5,1,3,1,l m =-=a b ,则答案为115,.5l m ==-即原参考答案,下面按原题解答. 参考答案:115,.5l m ==-解答:由于//a b ,所以513l l m-==,解得l m ==或5l m ==.所属章节:第七章第二节 难度:一级20.已知向量32,23,=++=--a i j k b i j k 试求⋅a b 与.⨯a b 解答:321(3)2(1)1⋅=⨯+⨯-+⨯-=a b ;{}3125,7,11231⨯==---ij ka b .所属章节:第七章第四节 难度:一级21.已知()()()1,2,34,4,32,4,3A B C ---、、和()8,6,6D ,试求向量AB 在向量CD 上的投影.解答:{}3,2,6AB =--,{}6,2,3CD =,4Pr oj 7CD AB CD AB CD⋅==-. 所属章节:第七章第四节 难度:一级22.设直线L 通过点(-2,1,3)和(0,-1,2),求点(10,5,10)到直线L 的距离.解答:设(2,1,3),(0,1,2),(10,5,10)A B P --,点P 到直线L 的距离为d ,则{}{}{}12,4,7,10,6,8,2,2,1PA PB AB =---=---=--利用12PAB S PA PB ∆=⨯,12PAB S AB d ∆=⨯,解得d =所属章节:第七章第四节 难度:二级23.求点(1,-3,2)关于点(-1,2,1)的对称点. 解答:设(1,3,2),(1,2,1)A B --,所求点为(,,)C x y z ,由题意知AB BC →→=,即{}{}2,5,11,2,1x y z --=+--,解得(3,7,0)C -. 所属章节:第七章第四节 难度:一级24.求以向量25,33,25=+=+=-a i j b j k c j k 为相邻三棱的平行六面体的体积.解答:由于25[,,]03342025==--a b c ,所以所求六面体的体积为[,,]42V ==a b c .所属章节:第七章第四节 难度:三级25.试证()()()2,1,2,1,2,1,2,3,0A B C --和()5,0,6D -四点共面. 解答:由题意{}{}{}1,3,3,0,4,2,3,1,4AB AC AD =-==-,由于133[,,]0420314AB AC AD -==-,所以,,,A B C D 四点共面. 所属章节:第七章第四节 难度:三级26.确定球面22224470x y z x y z ++-+--=的球心和半径. 参考答案:球心()1,2,2, 4.R -=(本题参考答案有误) 解答:将原方程22224470x y z x y z ++-+--=配方,得222(1)(2)(2)9x y z -+++-=,故球心为(1,2,2)-,半径为3R =.所属章节:第七章第五节 难度:一级27.一球面过坐标原点和()()()2,0,01,1,01,0,1A B C -、、三点,试确定该球面的方程. 参考答案:()2221 1.x y z -++=解答:设球面的方程为2222000()()()x x y y z z R -+-+-=,将它所经过的四个点的坐标代入,即可解得0001,0,1x y z R ====,即球面方程为()22211x y z -++=. 所属章节:第七章第五节 难度:二级28.试求与()()122,1,34,1,2M M --、距离相等的点的轨迹方程. 参考答案:44107.x y z +-=解答:设动点坐标为(,,)P x y z ,则由条件有12PM PM =,故有222222(2)(1)(3)(4)(1)(2)x y z x y z -+++-=-+-++,化简得44107x y z +-=. 所属章节:第七章第五节 难度:一级29.指出下列方程所表示的曲面:(1)22111;222x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭(2)221;49x y -=(3)221;49y z += (4)22z y =+解答:(1)母线平行于z 轴的圆柱面; (2)母线平行于z 轴的双曲柱面; (3)母线平行于x 轴的椭圆柱面; (4)母线平行于x 轴的抛物柱面. 所属章节:第七章第五节 难度:一级30.说明下列旋转曲面是如何形成的并写出其名称:(1)2221;4y x z +-=(2)224;x y z +=(3)2221;169z x y +-= (4)2224x y z +=解答:(1)旋转单叶双曲面,它是由双曲线221,40y x z ⎧-=⎪⎨⎪=⎩或221,40y z x ⎧-=⎪⎨⎪=⎩绕y 轴旋转而成;(2)旋转抛物面,它由抛物线24,0x z y ⎧=⎨=⎩或24,0y z x ⎧=⎨=⎩绕z 轴旋转而成;(3)旋转双叶双曲面,它是由双曲线221,1690z x y ⎧-=⎪⎨⎪=⎩或221,1690z y x ⎧-=⎪⎨⎪=⎩绕z 轴旋转而成;(4)圆锥面,它由相交的两条直线224,0x z y ⎧=⎨=⎩或224,y z x ⎧=⎨=⎩绕z 轴旋转而成.所属章节:第七章第五节 难度:一级31.建立下列旋转曲面的方程:(1)曲线25:,0z xL y ⎧=⎨=⎩绕x 轴旋转一周所生成的旋转曲面;(2)yOz 平面上的椭圆22149y z +=绕z 轴旋转一周所生成的曲面;(3)xOy 平面上的双曲线224936x y -=绕y 轴和x 轴旋转一周所生成的曲面; (4)直线2,0y xz =⎧⎨=⎩绕x 轴旋转一周所生成的曲面.解答:(1)225;y z x +=(2)2221;449x y z ++=(3)绕y 轴:22249436,x y z -+= 绕x 轴:22249936;x y z --= (4)22240.x y z --= 所属章节:第七章第五节 难度:一级32.指出下列方程所表示的曲线:(1)22225.3;x y z x ⎧++=⎨=⎩(2)()()2221425,10;x y z y ⎧-+++=⎪⎨+=⎪⎩(3)221;9420y z x ⎧-=⎪⎨⎪-=⎩(4)24;1x yz ⎧=⎨=⎩(5)2221;169420.x y z x ⎧++=⎪⎨⎪-=⎩解答:(1)平面x =3上的圆; (2)平面y =-1上的圆;(3)平面x =2上的双曲线; (4)平面z =1上的抛物线; (5)平面x =2上的椭圆. 所属章节:第七章第五节 难度:一级33.求曲线22236,2x y z z ⎧++=⎨=⎩在xOy 平面上的投影曲线.(原参考答案有误)解答:在所给方程中消去z ,得2212x y +=,加上0z =,即得22320x y z ⎧+=⎨=⎩. 所属章节:第七章第五节 难度:一级34.求曲线22,1z x y x y z ⎧=+⎨++=⎩在xOy 平面上的投影曲线.解答:在所给方程中消去z ,得22113222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,加上0z =,即得221132220x y z ⎧⎛⎫⎛⎫+++=⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎪=⎩. 所属章节:第七章第五节难度:一级35.求下列曲线在xOy 平面上的投影:(1)22222241,;x y z x y z ⎧++=⎪⎨=+⎪⎩(2)222224, 1.x y x y z ⎧+=⎪⎨-+=-⎪⎩解答:(1)在所给方程中消去z ,得22531x y -=,加上0z =,即得22531x y z ⎧-=⎨=⎩; (2)在所给方程中消去z ,得224x y +=,加上0z =,另外由2221x y z -+=-知2221y x z =++,故1y ≥,于是投影曲线为224x y z ⎧+=⎨=⎩ 且1y ≥.所属章节:第七章第五节 难度:二级36.求曲线()2222221,11x y z x y z ⎧++=⎪⎨++-=⎪⎩在各坐标面上的投影:? 解答:xOy面:223,,40x y z ⎧+=⎪⎨⎪=⎩yOz 面:210,z x -=⎧⎨=⎩且y ≤xOz 面:210,0z y -=⎧⎨=⎩且2x ≤所属章节:第七章第五节 难度:二级37.求下列各平面的方程:(1)平行与(于)Oy轴,且通过点(1,-5,1)和(3,2,-2);(2)通过Ox轴和点(4,-3,-1);(3)平行于xOz平面,且通过点(3,2,-7).解答:(1)由于所求平面平行于Oy轴,故可设方程为+-=;++=,将另外两点坐标代入即得3250x zAx Cz D(2)由于所求平面通过Ox轴,故可设方程为0+=,By Cz 将另一点坐标代入即得30-=;y z(3)由于所求平面平行于xOz平面,故可设方程为y=.-,故2By D+=,又通过点(3,2,7)所属章节:第七章第六节难度:一级38. 设点P(3,-6,2)为原点到一平面的垂足,求该平面的方程.解答:法向量为{}n OP→3,6,2==-,所求平面的方程为x y z--++-=,即3(3)6(6)2(2)0-+-=.x y z362490所属章节:第七章第六节难度:一级39.求通过两点(8,-3,1)和(4,7,2),且垂直于平面+--=的平面方程.35210x y z解答:由条件可设法向量为{}{}{}n=-⨯-=---,4,10,13,5,115,1,50由点法式方程得++-=.15501670x y z所属章节:第七章第六节难度:二级40.求通过点()1,2,1P且垂直于两平面0y z+=的平面方+=和50x y程.解答:由条件可设法向量为{}{}{}1,1,00,5,11,1,5n=⨯=-,由点法式方程得-+-=.x y z540所属章节:第七章第六节难度:二级41.求一个通过点()3,2,1-且平行y轴的平面方程.-和()1,5,1解答:由条件可设法向量为{}{}{}2,7,20,1,02,0,2n =-⨯=,由点法式方程得20x z +-=.所属章节:第七章第六节 难度:二级42.求a 和b 的值,使:(1)平面2350x ay z ++-=与620bx y z --+=平行; (2)平面3530x y az -+-=与3250x y z +++=垂直. 解答:(1)要使平面2350x ay z ++-=与620bx y z --+=平行,则两个法向量平行,故有2361a b ==--,解得218,3a b ==-; (2)要使平面3530x y az -+-=与3250x y z +++=垂直,必须两个法向量垂直,故有31(5)320a ⨯+-⨯+⨯=,解得6a =. 所属章节:第七章第六节 难度:一级43.求过点(2,-3,8)且平行于直线243325x y z --+==-的直线方程.解答:由于两直线平行,方向向量相同,故得所求直线方程238325x y z -+-==-. 所属章节:第七章第七节 难度:一级44.求过点(4,-2,3)且垂直于平面2310x y z +-+=的直线方程.解答:由于所求直线垂直于已知平面,它的方向向量与该平面的法向量相同,即{}1,2,3s =-,于是所求方程为423123x y z -+-==-. 所属章节:第七章第七节 难度:一级45.求过点(-1,2,1)且平行于直线210,210x y z x y z +--=⎧⎨+-+=⎩的直线方程.解答:已知直线的方向向量为{}{}{}1,1,21,2,13,1,1s =-⨯-=-,所求直线方向向量与它相同,于是所求直线方程为121311x y z +--==-. 所属章节:第七章第七节 难度:二级46.试求下列直线的标准方程:(1)240,3290;x y z x y z -+=⎧⎨--+=⎩(2)350;280.x z y z -+=⎧⎨-+=⎩解答:(1)令0x =,代入方程,求得直线上一点坐标为(0,1,4),方向向量为{}{}{}2,4,13,1,29,7,10s =-⨯--=, 于是标准方程为14;9710x y z --== (2)令0z =,代入方程,求得直线上一点坐标为(5,8,0)--,方向向量为{}{}{}1,0,30,1,23,2,1s =-⨯-=,于是标准方程为58.321x y z++== 所属章节:第七章第七节 难度:二级47.确定下列直线与平面的位置关系: (1)34273x y z++==-与42230;x y z ---=(2)327x y z ==--与641490.x y z -+-= 解答:(1)直线的方向向量{}2,7,3s =-,平面的法向量{}4,2,2n =--,易证s n ⊥,故所给直线与平面平行;(2)直线的方向向量{}3,2,7s =--,平面的法向量{}6,4,14n =-,易证sn ,故所给直线与平面垂直.所属章节:第七章第七节 难度:一级48.确定下列直线间的平行或垂直关系:(1)27,27x y z x y z +-=⎧⎨-++=⎩与3638,20.x y z x y z +-=⎧⎨--=⎩(2)21,21x y y z +=⎧⎨-=⎩与1,2 3.x y x z -=⎧⎨-=⎩解答:(1)直线27,27x y z x y z +-=⎧⎨-++=⎩的方向向量为{}11213,1,5211i j ks =-=-,直线3638,20.x y z x y z +-=⎧⎨--=⎩的方向向量为{}23639,3,15211i j ks =-=-----,由于它们平行,所以两条直线平行; (2)直线21,21x y y z +=⎧⎨-=⎩的方向向量为{}11202,1,2021ij ks ==--,直线1,2 3.x y x z -=⎧⎨-=⎩的方向向量为{}21102,2,1102ijk s =-=-,由于它们垂直,所以两条直线垂直. 所属章节:第七章第七节 难度:二级49.求直线221312x y z +-+==与平面23380x y z ++-=的交点和交角. 参考答案:()1,1,1,arcsin 154(参考答案有误?)解答:将直线方程221312x y z +-+==改写成参数形式32221x t y t z t =-⎧⎪=-+⎨⎪=-⎩,代入所给平面方程23380x y z ++-=,解得1t =,再代回直线方程,即得交点(1,1,1);由于直线的方向向量为{}3,1,2s =,平面的法向量{}2,3,3n =,所以交角的正弦为sin 15414s n s nϕ⋅===⋅⋅,于是交角为arcsin154.所属章节:第七章第七节 难度:二级50.求点(3,-1,-1)在平面23300x y z ++-=上的投影. 解答:过已知点()3,1,1--向已知平面作垂线311123x y z -++==,参数形式为32131x t y t z t =+⎧⎪=-⎨⎪=-⎩,代入已知平面解得参数167t =,于是交点也即所求投影点为372541,,777⎛⎫⎪⎝⎭. 所属章节:第七章第七节 难度:二级51.求点(2,3,1)在直线722123x y z +++==上的投影.解答:过已知点作垂直于已知直线的平面(2)2(1)3(1)0x y z -+-+-=,再将已知直线的参数方程72232x t y t z t =-⎧⎪=-⎨⎪=-⎩代入,即得参数2t =,两者交点即所求投影点为(5,2,4)-. 所属章节:第七章第七节 难度:二级52.在平面1x y z ++=上求作一直线,使它与直线1,1y z ==-垂直相交.解答:由于所求直线与直线1,1y z ==-垂直,故可作平面平行与该已知直线,得平面方程0x x =,联立已知平面方程1x y z ++=,得一条直线01x x x y z =⎧⎨++=⎩,又由于所求直线与直线1,1y z ==-相交,将1,1y z ==-代入直线方程01x x x y z =⎧⎨++=⎩,可得01x =,于是所求直线方程为11x x y z =⎧⎨++=⎩,即111011x y z --+==-. 所属章节:第七章第七节 难度:三级53.通过点(-1,0,4)作一直线,使它平行于平面34100,x y z -+-=且与直线13312x y z +-== 相交.解答:过点(-1,0,4)作一平面,使它平行于平面34100x y z -+-=,得3410x y z -+-=, 由于所求直线与已知直线13312x y z+-== 相交,将已知直线方程化为参数方程3132x t y t z t =-⎧⎪=+⎨⎪=⎩,代入平面方程3410x y z -+-=,得交点413732(,,)777,此为所求直线上另一点,过两点作出直线1448374x y z +-==,即为所求. 所属章节:第七章第七节 难度:三级54.求两异面直线11112x y z +-==和12134x y z +-==之间的距离. 解答:分别在两条已知直线上任取一点,如取(1,0,1),(0,1,2)P Q --,连接两点得向量{}1,1,1PQ →=-,作与两条已知直线都垂直的向量{}{}{}1,1,21,3,42,2,2s =⨯=--,则所求距离为Pr 312s PQ s d oj PQ s→→⋅====. 所属章节:第七章第七节 难度:三级55.一直线通过点(1,2,1)并与2xy z ==-相交,且垂直于直线11,321x y z -+==求它的方程. 解答:过已知点(1,2,1)P 作垂直于已知直线11321x y z -+==的平面,得:3280x y z π++-=,它与已知直线2x y z ==-交于点1688(,,)777Q -,连接,P Q ,即得所求直线121325x y z ---==-. 所属章节:第七章第七节 难度:二级56.求通过直线0,20x y x y z +=⎧⎨-+-=⎩且平行于直线x y z ==的平面方程.解答:过直线0,20x y x y z +=⎧⎨-+-=⎩的平面束为(2)0x y x y z λ++-+-=,即(1)(1)20x y z λλλλ++-+-=,由于它与直线x y z ==平行,故(1)(1)0λλλ++-+=,解得2λ=-,于是所求平面方程为3240x y z -+-=.所属章节:第七章第七节 难度:二级57.求通过直线240,3290x y z x y z -+=⎧⎨---=⎩且垂直于平面41x y z -+=的平面方程.解答:过直线2403290x y z x y z -+=⎧⎨---=⎩的平面束为24(329)0x y z x y z λ-++---=,即(23)(4)(12)90x y z λλλλ++--+--=,由于它垂直于平面41x y z -+=,故两者的法向量平行,解得1311λ=-,代回平面束方程,即得所求平面方程1731371170x y z +--=. 所属章节:第七章第七节 难度:二级58.过两平面0x y z +-=和20x y z ++=的交线,作两个互相垂直的平面,且使其中一个平面通过点A (0,1,-1).解答:过两平面0x y z +-=和20x y z ++=的交线的平面束方程为(2)0x y z x y z λ+-+++=,即(1)(12)(1)0x y z λλλ++++-+=,由于其中一个平面经过点(0,1,1)A -,将此点坐标代入平面束方程,得2λ=-,得到一个平面330x y z ++=,由于平面束中的另一个平面与上面平面垂直,利用法向量垂直,解得98110x y z +-=. 所属章节:第七章第七节 难度:三级。