热喷涂概述与材料.
- 格式:ppt
- 大小:1.00 MB
- 文档页数:29
热喷涂综述一、热喷涂的定义热喷涂技术,是采用某种高温热源,将欲涂覆的涂层材料熔化或至少软化,并用气体使之雾化成微细液滴或高温颗粒,高速喷射到经过预处理的基体表面形成涂层的技术。
当热源的比能量足以使基体表面发生薄层熔化,与喷射的熔融颗粒形成完全致密的冶金结合涂层时,称为热喷焊,简称喷焊。
使用高温热源,如氧——可燃气体燃烧火焰、电弧、等离子电弧、激光束、爆炸能等,是热喷涂技术区别于其他喷涂方法和表面涂覆方法的主要特征。
不同热源的最高温度列于附表。
附表:不同热源的最高温度二、热喷涂技术的特点采用热喷涂技术,制备各种表面强化和表面防护涂层,具有许多独特的优点:(1)能够喷涂的材料范围特别广,包括各种金属及合金、陶瓷及金属陶瓷、塑料、非金属矿物等几乎所有固态工程材料。
因而能够制备耐磨、减摩、耐蚀、耐高温、抗氧化、绝缘、导电、催化、辐射、防辐射、抗干扰、超导、非晶态及生物功能等各种功能涂层;(2)能够在多种基体材料上形成涂层,包括金属基体、陶瓷基体、塑料基体、石膏、木材甚至纸板上都能喷涂,被喷涂的材料范围也十分广泛;(3)一般不受被喷涂工件尺寸和施工场所的限制,既可厂内施工,也可现场施工;(4)涂层沉积效率较高,特别适合沉积薄膜涂层。
涂层厚度可以控制,从几十微米到几毫米甚至可厚达 20mm;(5)除喷焊外,热喷涂施工对基体的热影响很小,基体受热温度不超过200℃,基体不会发生变形和性能变化;(6)在满足强度要求的前提下,制件基体可以采用普通材料代替贵重材料,仅涂层使用优质材料,使“好钢用在刀刃上”;(7)热喷涂施工艺灵活,方便,迅速,适应性强。
当然,热喷涂技术也有如下一些缺点:(1)除喷焊外,热喷涂涂层与基体的结合主要是物理机械结合,结合强度不大高,涂层耐冲击和重载性能较差;(2)喷涂涂层含有不同程度的孔隙,对于耐腐蚀、抗氧化、绝缘等应用,一般不如整体材料。
但可通过复合涂层系统设计等方法予以改进提高;(3)喷涂小件时,涂层材料的收得率低;(4)热喷涂手工操作时的劳动条件较差,有噪音、粉尘、热和弧光辐射问题,必须注意劳动保护措施。
热喷涂技术及应用学校:西南大学班级:材料科学与能源学部学号:***************姓名:***热喷涂技术及应用㈠热喷涂的定义热喷涂是利用热源讲喷涂材料加热到熔化或半融化状态,用高速气流将其雾化并喷射到基体表面形成涂层的技术。
热喷涂技术在普通材料的表面上,制造一个特殊的工作表面,使其达到:防腐、耐磨、减摩、抗高温、抗氧化、隔热、绝缘、导电、防微波辐射等一系多种功能,使其达到节约材料,节约能源的目的,我们把特殊的工作表面叫涂层,把制造涂层的工作方法叫热喷涂。
㈡热喷涂基本原理⒈热喷涂的基本过程①喷涂材料被加热到熔化或半融化状态②喷涂材料的熔滴被雾化③雾化或软化的微细颗粒喷射飞行④微小颗粒撞击基体表面并形成涂层⒉涂层的结构热喷涂涂层是由燃烧火焰或等离子热源将某种材料加热至熔化或热塑性状态,形成一簇高速的熔态粒子流(熔滴流),熔滴依次撞击基体或已形成的涂层表面,经过粒子的横向流动扁平化、急速凝固冷却、不断堆积起来而形成的。
由于热喷涂涂层为典型的层状结构,所以涂层的性能具有方向性。
在垂直和平行涂层为向上的性能有显著的差异。
对涂层进行适当地处理和重熔,既可以使层状结构转变为均质结构,还可以消除层状中的氧化物夹杂和气孔。
⒊涂层的结合方式涂层的结合包括涂层与基体表面的结合和涂层内聚的结合。
前者的结合强度称为结合力。
后者的结合强度称为内聚力。
涂层的一般结合方式有三种:①机械结合熔融态的粒子撞击基体表面并快速冷却凝固时,会因收缩而咬住高低不平的基体部分,形成了机械结合。
②物理结合借助于分子(原子)之间的范德华力是喷涂层附着于基体表面的结合方式。
③冶金结合当熔融的微细颗粒高速撞击基体表面是时,涂层和基体界面出现扩散和合金化时的一种结合方式。
⒋涂层的残余应力一般情况下,热喷涂涂层存在着明显的残余应力。
当熔融颗粒高速碰撞碰撞基体表面,在产生形变的同时快速冷却凝固,这时会在颗粒内部产生张应力,而在基体表面产生压应力。
热喷涂再制造技术1 概述1.热喷涂是一种材料表面强化和表面改性的新技术,是表面工程技术的重要组成部分,一直是我国重点推广的新技术项目.它是利用某种热源(如电弧、等离子喷涂或燃烧火焰等)将粉末状或丝状的金属或非金属材料加热到熔融或半熔融状态,然后借助焰留本身或压缩空气以一定速度喷射到预处理过的基体表面,沉积而形成具有各种功能的表面涂层的一种技术。
它可以使基体表面具有耐磨、耐蚀、耐高温氧化、电绝缘、隔热、防辐射、减磨、密封等性能。
原则上讲可在任何固体物质上喷涂。
可喷涂的材料有金属、合金、塑料、陶瓷、金属陶瓷以及它们的复合物等等。
热喷涂技术的应用主要包括:长效防腐、机械修复及先进制造技术、模具制作与修复、制造特殊的功能涂层等四个方面。
目前,热喷涂技术已广泛应用于几乎所有工业领域以及家庭用品(如不粘锅、红外线保健电热器等)。
2.热喷涂原理:热喷涂是指一系列过程,在这些过程中,细微而分散的金属或非金属的涂层材料,以一种熔化或半熔化状态,沉积到一种经过制备的基体表面,形成某种喷涂沉积层。
涂层材料可以是粉状、带状、丝状或棒状。
热喷涂枪由燃料气、电弧或等离子弧提供必需的热量,将热喷涂材料加热到塑态或熔融态,再经受压缩空气的加速,使受约束的颗粒束流冲击到基体表面上。
冲击到表面的颗粒,因受冲压而变形,形成叠层薄片,粘附在经过制备的基体表面,随之冷却并不断堆积,最终形成一种层状的涂层。
该涂层因涂层材料的不同可实现耐高温腐蚀、抗磨损、隔热、抗电磁波等功能,如下图所示。
3.定义:热喷涂是指采用氧—乙炔焰、电弧、等离子弧、爆炸波等提供不同热源的喷涂装置,产生高温高压焰流或超音速焰流,将要制成涂层的材料如各种金属、陶瓷、金属加陶瓷的复合材料、各种塑料粉末的固态喷涂材料,瞬间加热到塑态或熔融态,高速喷涂到经过预处理(清洁粗糙)的零部件表面形成涂层的一种表面加工方法。
我们把特殊的工作表面叫“涂层”,把制造涂层的工作方法叫“热喷涂”,它是采用各种热源进行喷涂和喷焊的总称。
热喷涂行业知识
热喷涂是一种表面处理技术,通过将粉末、金属丝或其他材料加热至熔融状态,然后以高速喷射到工件表面形成涂层的方法。
热喷涂技术具有制备工艺简单、涂层质量高、适用范围广等优点,被广泛应用于航空航天、石油化工、钢铁冶金等领域。
以下是热喷涂行业的一些知识:
1. 热喷涂技术分类
热喷涂技术主要分为火焰喷涂、电弧喷涂、等离子喷涂、超音速喷涂等几类。
不同的热喷涂技术适用于不同的材料和工件表面,具有不同的特点和优缺点。
2. 热喷涂材料
热喷涂材料主要包括金属粉末、非金属粉末和金属丝材等。
金属粉末主要有铝、镍、钛等,非金属粉末主要有陶瓷、石墨等,金属丝材主要有钨、钼、钢等。
3. 热喷涂工艺
热喷涂工艺主要包括预热、喷涂、冷却和固化等步骤。
在喷涂过程中,需要控制喷枪的距离、速度和角度等参数,以保证涂层的均匀性和质量。
4. 热喷涂应用
热喷涂技术被广泛应用于各种领域,如航空航天、石油化工、钢铁冶金、电力等。
在这些领域中,热喷涂技术主要
用于强化金属表面性能、提高耐腐蚀性、耐磨损性和导电性等。
总之,热喷涂技术是一种表面处理技术,具有制备工艺简单、涂层质量高、适用范围广等优点,被广泛应用于航空航天、石油化工、钢铁冶金等领域。
热喷涂行业的发展前景广阔,未来将会有更多的创新和应用。
热喷涂原理及介绍1.热喷涂原理及介绍热喷涂技术是表面工程领域的重要技术之一,它的原理是利用各种不同的热源,将预喷涂的各种材料如金属、合金、陶瓷、塑料及其各类复合材料加热至熔化或熔融状态,借助气流的高速雾化形成微粒雾流沉积在已预处理的工件表面形成堆积状,与基体紧密结合的涂层。
而将Ni-Cr-B-Si系列喷涂层进行重熔处理形成的具有冶金结合特征的涂层称为喷熔层或重熔层。
热喷涂技术可用来喷涂几乎所有的固体工程材料,如硬质合金、陶瓷、金属、石墨和尼龙等,形成耐磨、耐蚀、隔热、抗氧化、绝缘、导电、防辐射等具有各种特殊功能的涂层。
该技术还具有工艺灵活、施工方便、适应性强及经济效益好等优点,被广泛应用于宇航、机械、化工、冶金、地质、交通、建筑等工业部门,并获得了迅猛的发展。
从喷涂材料进入热源到形成涂层称喷涂过程,一般经历四个阶段既加热、雾化、飞行和沉积。
首先是喷涂材料被加热熔化或软化阶段。
当端部材料进入热源的高温区域,即被加热,形成熔滴,进而形成的熔滴,在外加压缩气流或热源自身射流的作用下,雾化成细微的熔粒。
第二阶段熔粒流飞行过程中,被加速。
当这些具有一定温度和速度的颗粒以一定的动能冲击基材表面,产生强烈的碰撞,在碰撞瞬间,颗粒的动能转化成热能传给基材,并沿凹凸不平的表面产生变形,变形的颗粒迅速冷凝并产生收缩,呈扁平状连续不断地沉积在基材表面,从而形成涂层。
众所周知,除少数贵金属外,金属材料会与周围介质发生化学反应和电化学反应而遭受腐蚀。
此外,金属表面受各种机械作用而引起的磨损也极为严重,大量的金属构件因腐蚀和磨损而失效,造成极大的浪费和损失。
据一些工业发达国家统计,每年钢材因腐蚀和磨损而造成的损失约占钢材总产量的10%,损失金额约占国民经济总产值的2-4%。
如果将因金属腐蚀和磨损而造成的停工、停产和相应引起的工伤、失火、爆炸事故等损失统计在内的话,其数值更加惊人。
因此,发展金属表面防护和强化技术,是各国普遍关心的重大课题。
热喷涂纳米氧化锆粉末及涂层制备工艺技术条件简介任务背景热喷涂技术是一种常用的表面涂覆技术,用于在材料表面形成陶瓷涂层,提高材料的硬度、耐磨性和耐腐蚀性能。
在热喷涂过程中,选择合适的喷涂材料对于获得优质涂层至关重要。
其中,纳米氧化锆粉末作为一种常用的喷涂材料,具有出色的耐磨、耐腐蚀和高温抗氧化性能。
工艺目标本文将探讨纳米氧化锆粉末的制备工艺及其在热喷涂过程中的应用技术条件,旨在提供一种可行的方法,以获得高质量的氧化锆涂层。
纳米氧化锆粉末制备工艺原料准备氧化锆粉末选择选择具有较高纯度和较小颗粒大小的氧化锆粉末,以确保喷涂材料的质量。
粉末后处理方法通过球磨、机械混合等方法处理氧化锆粉末,以获得较小的粒径和均匀的颗粒分布。
纳米氧化锆粉末制备水热合成法1.将预处理过的氧化锆粉末悬浮于适量的水溶液中。
2.在恒定的温度和压力条件下进行水热反应,使氧化锆粉末与水溶液中的离子发生反应生成纳米氧化锆颗粒。
3.过滤、干燥和研磨得到纳米氧化锆粉末。
气相沉积法1.利用化学气相沉积设备,在高温条件下将气态的锆化合物分子分解生成纳米氧化锆颗粒。
2.调节反应温度、气体流量和反应时间等参数,实现纳米颗粒的控制生长和分散性。
纳米氧化锆涂层热喷涂工艺喷涂设备选择选择适合纳米氧化锆粉末喷涂的热喷涂设备,常用的包括等离子喷涂、电弧喷涂和火焰喷涂等。
气氛控制在喷涂过程中,维持合适的气氛,以避免杂质对涂层质量的影响。
可以通过惰性气体保护气氛,如氩气或氮气。
涂层结构控制调节喷涂工艺参数,如喷涂速度、喷涂距离和喷涂角度等,以控制生成的纳米氧化锆涂层的结构和性能。
纳米氧化锆涂层性能评价涂层硬度测试使用硬度计或类似仪器测试涂层的硬度,以评估其耐磨性和耐腐蚀性能。
显微结构观察使用扫描电子显微镜(SEM)观察涂层的表面形貌和颗粒分布情况,以评估涂层的致密性和均匀性。
热稳定性测试将纳米氧化锆涂层置于高温环境中,观察其抗高温氧化性能和热稳定性。
摩擦磨损性能测试通过旋转摩擦测试机等设备,评估纳米氧化锆涂层在摩擦条件下的耐磨性能。
热喷涂在制氢电极上的应用概述说明以及解释1. 引言1.1 概述:随着环境问题和能源危机的不断加剧,制氢技术作为一种清洁能源的解决方案受到了广泛关注。
制氢电极作为制氢过程中重要的组成部分,其性能对于制氢效率和经济性有着至关重要的影响。
热喷涂技术作为一种表面工程处理方法,已经被广泛应用于各个领域以改善材料的表面性能。
本文将聚焦于探讨热喷涂技术在制氢电极上的应用及其对电极性能的影响。
1.2 文章结构:本文主要分为五个部分进行阐述。
引言部分首先介绍了文章主题和研究背景,接下来将进入正文部分。
正文包括热喷涂技术概述、热喷涂在制氢电极上的应用介绍以及其优点和挑战等内容。
然后,我们将进行热喷涂对制氢电极性能的影响分析,包括表面改性效果评价指标介绍、研究方法和实验装置描述以及结果和讨论等方面。
接着,通过一个实例研究,我们将详细分析热喷涂在制氢电极上的成功案例,包括案例背景介绍、方案设计和实施过程描述以及成果分析和评估结果展示。
最后,在结论与展望部分,我们将对整个文章进行总结,并提出未来发展的建议和展望。
1.3 目的:本文的主要目的是系统地概述热喷涂技术在制氢电极上的应用,并深入探讨其对电极性能的影响。
通过对已有研究和成功案例进行分析和归纳,在全面了解热喷涂技术在此领域应用情况的基础上,为进一步推动该技术的发展提供参考和指导。
同时,本文还旨在为相关领域专业人士提供一个全面了解热喷涂技术在制氢电极上应用现状与挑战的视角,促进学术界与工业界间的交流与合作。
2. 正文:2.1 热喷涂技术概述热喷涂技术是一种将材料在高温下加热融化,并通过喷枪将其喷射到基材表面形成涂层的方法。
它主要包括火焰喷涂、电弧喷涂、等离子喷涂和高速火焰喷涂等多种类型。
热喷涂技术具有操作简便、成本低廉以及能够制备均匀致密的薄膜等优点,因而广泛应用于许多领域。
2.2 热喷涂在制氢电极上的应用介绍制氢电极是用于水电解制氢过程中的重要组件之一,其性能对整个水电解制氢系统的效率和稳定性有着重大影响。
热喷涂中的喷涂涂层的组织结构与性能分析热喷涂是一种常见的表面处理技术,通过高温喷涂将涂层材料喷涂在被涂物表面上,形成一层具有特定性能的涂层。
在热喷涂技术中,涂层的组织结构对于涂层性能的影响非常大。
本文通过分析热喷涂中的喷涂涂层的组织结构与性能,探讨涂层组织结构与性能之间的关系。
一、涂层组织结构涂层组织结构是指涂层内部不同材料相对分布的情况,通常包括涂层材料的晶体结构、孔隙度、厚度、相对密度等。
热喷涂涂层的组织结构受到多种因素的影响,其中包括涂层材料的物理化学性质、喷涂参数、喷涂设备性能、喷涂的物理环境等。
1. 涂层材料的晶体结构涂层材料的晶体结构是影响涂层性能的重要因素之一。
晶体结构的不同会影响涂层的硬度、强度、耐腐蚀性等性能。
例如,钨合金涂层中晶体结构的稳定性会影响涂层的耐腐蚀性。
2. 孔隙度涂层的孔隙度是指涂层中存在的毛孔和微缺陷的数量以及分布情况。
孔隙度会影响涂层的耐腐蚀性、耐磨损性和耐热性能。
例如,在涂层的热膨胀系数中,孔隙度是一个非常重要的因素。
3. 厚度涂层的厚度会影响其多种性能,包括耐冲击性、耐磨损性和导电性等。
通常情况下,增加涂层厚度可以提高涂层的硬度和综合性能。
4. 相对密度涂层的相对密度是指涂层的实际密度与材料理论密度之比。
相对密度越高,涂层的耐磨损性和硬度越高,但其制备难度也会增加。
二、涂层性能分析涂层性能是指涂层在使用过程中表现出来的各种性能特点。
涂层的性能分析需要考虑其用途和使用环境。
通常涂层的性能特点包括硬度、强度、耐腐蚀性、耐磨损性、耐热性和导电性等。
1. 硬度和强度涂层的硬度和强度可以通过厚度和组织结构的控制来调节。
例如,增加硬质相的含量和晶粒尺寸可以提高涂层的硬度和强度。
2. 耐腐蚀性涂层的耐腐蚀性是指在化学腐蚀介质中,涂层的表面不受腐蚀和破坏的能力。
通过增加涂层相对密度、减少涂层孔隙度、增加薄膜厚度等方式可以提高涂层的耐腐蚀性。
3. 耐磨损性涂层的耐磨损性是指涂层在机械磨损和摩擦过程中,表面不受磨损和破坏的能力。
半导体氧化钇热喷涂
热喷涂是一种工业表面涂层技术,它利用火焰或等离子束加热
涂层材料,然后将其喷射到基底材料表面形成涂层。
对于半导体氧
化钇热喷涂来说,通常会使用高温等离子火焰或等离子喷涂技术,
确保涂层能够均匀地覆盖在基底材料上。
半导体氧化钇热喷涂涂层的制备过程通常包括原料的制备、喷
涂工艺参数的优化以及涂层的表征和性能测试。
在制备过程中,需
要选择合适的氧化钇粉末作为原料,并针对具体的应用需求进行工
艺参数的优化。
涂层的表征和性能测试则包括对涂层厚度、结合强度、孔隙率、表面粗糙度以及耐磨性、耐腐蚀性和高温性能等方面
进行评估。
半导体氧化钇热喷涂涂层的应用领域非常广泛,包括航空航天、汽车、能源、化工等行业。
例如,在航空航天领域,半导体氧化钇
热喷涂涂层常用于制造燃气涡轮发动机的涡轮叶片和燃烧室部件,
以提高其耐高温氧化和耐热腐蚀能力。
在汽车领域,该涂层也可用
于增强引擎部件和排气系统的耐磨性和耐腐蚀性能。
总的来说,半导体氧化钇热喷涂涂层技术在材料表面工程领域
具有重要的应用意义,能够显著改善材料的性能,延长其使用寿命,推动相关行业的发展。
DOI:10.16661/ki.1672-3791.2018.29.066热喷涂粉末特性概述崔珊 周鹏 周超(西安航空职业技术学院航空材料工程学院 陕西西安 710089)摘 要:热喷涂技术近年来发展迅速,热喷涂粉末在热喷涂过程中十分重要,除了需要满足涂层要求的功能,还必须要满足热喷涂工艺的需求。
本文主要对热喷涂粉末基本特性进行概述,粉末的流动性和松装密度受到粉末球化程度、粒度、表面粗糙度和粉末内部的孔洞等多种因素综合影响;而粉末球化程度也化学成分有关,粉末内部孔洞受到制备工艺影响。
关键词:热喷涂粉末 粒度分布 流动性 松装密度中图分类号:TQ174 文献标识码:A 文章编号:1672-3791(2018)10(b)-0066-02热喷涂是一种表面强化技术, 是通过某种热源(等离子体、电弧、燃烧火焰等)将涂层材料(粉末或丝材)熔化形成熔滴,并利用高速气流加速,令其喷射依次碰撞到基体材料表面,沉积形成涂层,从而使工件表面具有耐高温、耐腐蚀、绝缘、导电、抗辐射、抗氧化等优良性能[1]。
热喷涂技术,尤其是等离子喷涂技术,在航空航天、机械电子、通信、化工等众多领域受到广泛应用。
热喷涂粉末在热喷涂过程中占据极其重要的地位。
其制备方法多种多样,目前,常用的热喷涂粉末制备方法有:喷雾造粒法、球磨法、气体雾化法、烧结破碎法、包覆法等[2]。
不同的制备方法获得的粉末形貌不同,性质不同,从而影响涂层的质量和性能。
1 热喷涂粉末特性用于热喷涂的粉末不仅需要满足涂层要求的功能,还必须要满足热喷涂工艺的需求,要能保证粉体可以被流畅、稳定、均匀地输送到喷涂的焰流中,从而保证沉积效率及稳定且均匀的涂层质量。
因此,热喷涂用粉末的形貌、粒度分布、流动性及松装密度等粉末的基本特性,都会对热喷涂涂层的沉积效率和涂层的性能造成一定影响。
1.1 粉末的颗粒形貌热喷涂粉末的颗粒形貌主要是指粉体颗粒的几何形状和表面特征。
其中粉体的几何形状主要指粉末的球化程度,随着球形度的提高,粉体的固态流动性也越好。