连续性间断点,连续函数的运算
- 格式:pdf
- 大小:868.55 KB
- 文档页数:36
第一章第八节函数的连续性定义1.10.)()(00内有定义的某邻域在点设x U x x f 1.函数在一点连续的定义存在;)(lim )1(0x f x x →若)()(lim )2(00x f x f x x =→则称函数.)(0处连续在点x x f 注1°函数在一点连续的等价定义之一设有函数y = f (x ). 当自变量x 从增量概念:0x 变到,0x x ∆+x ∆则称为自变量的增量(或改变量).若相应地函数y 从)(0x f ),(0x x f ∆+变到则称)()(00x f x x f y −∆+=∆为函数的增量(或改变量).定义1.9(函数在一点连续的增量定义),00→∆→x x x 就是.0)()(0→∆→y x f x f 就是.0lim 0=→y x ∆∆.)()(00内有定义的某邻域在点设x U x x f ⇔处连续在点0)(x x f定理处连续点在函数0)(x x f 处既左连续又右连续点在0)(x x f ⇔).()()(000x f x f x f ==⇔+−例2解⎪⎪⎩⎪⎪⎨⎧≤<−=<≤=.21,2,1,2,10,)(2x x x x x x f 讨论函数在点x = 1处的连续性.由于=−→)(lim 1x f x 21lim x x −→,1==+→)(lim 1x f x )2(lim 1x x −+→,1=1)(lim 1=→x f x ,2)1(=f 所以f (x ) 在点x = 1 处不连续.≠在区间上每一点都连续的函数, 叫做在该区间上连续的函数, 或者说函数在该区间上连续.,),(内连续如果函数在开区间b a 连续函数的图形是一条连续而不间断的曲线.3. 函数在区间上的连续性.],[)(b a C x f ∈记作, 处右连续端点并且在左a x =,处左连续在右端点b x =.],[)(上连续在闭区间则称函数b a x f如果上述三个条件中有一个不满足,则称f (x )在二、函数的间断点及其分类:)(00条件连续必须满足以下三个处在点函数的去心邻域内有定义的在点x x f x ;)()1(0有定义在点x x f ;)(lim )2(0存在x f x x →).()(lim )3(00x f x f x x =→内有定义,的某去心邻域在点设)()(00x U x x f o1. 定义(或间断点).点x 0 处不连续(或间断),并称点x 0为f (x )的不连续点lim lim 1=+∞=>−∞→+∞→xx xx a a a 时,当lim lim 1=+∞=>−∞→+∞→xx xx a a a 时,当,x x cot ,tan x csc ,sec 结论:三角函数在其定义域内连续.利用极限的四则运算法则可以证明:推论(连续函数的线性运算法则))( )(x g x f 和α和β是常数,)()(x g x f βα+若函数此运算法则对有限个函数成立.在点0x 连续,则函数)( )(x g x f 和的线性组合在点0 x 连续.结论:反三角函数在其定义域内连续.结论:指数函数,对数函数在其定义域内皆连续.1. 函数记号f 与极限记号可以交换次序;意义:变量代换x=.2的理论依据uϕ(.))(特别地,若定理1.17是定理1.16 的特殊情形例9.),0()(内连续在为常数证明:+∞=µµxy 证xx y ln e µµ==内连续,在),0(ln )(+∞==x x u µϕQ 内连续在而),(e )(+∞−∞==uu f y .),0()(内连续在为常数+∞=∴µµx y 可以证明:µx y =对于μ取任何实数,均在其定义域内连续.结论:幂函数在其定义域内连续.结论:一切初等函数在其定义区间内连续.是指包含在定义域内的区间.)端点为单侧连续=])([x f ϕ1,2≤x x 1,2>−−x x.0,0,2,0,2)(连续性处的在讨论函数=⎩⎨⎧<−≥+=x x x x x x f 解)2(lim )(lim 0+=++→→x x f x x 2=)2(lim )(lim 0−=−−→→x x f x x 2−=.0)(处不连续在点故函数=x x f 备用题例2-1)0()0(+−≠f f =+)0(f =−)0(f ∵∴不存在)(lim 0x f x→例2-3解⎪⎩⎪⎨⎧≥+<=,0,,0,)(x x a x e x f x 设函数应当怎样选择a,使得f (x ) 在x =0 处连续.=−)0(f xx e−→0lim ,1==+)0(f )(lim 0x a x ++→,a =,)0(a f =由连续的充要条件)0()0()0(f f f ==+−得a =1.所以当a =1时,f (x )在x =0处连续.。