2018年秋东方思维高三物理第一轮复习课时跟踪练:第十四章第六讲实验十五:测定玻璃的折射率 Word版含解析
- 格式:doc
- 大小:267.00 KB
- 文档页数:8
章末整合提升1.(多选)(2016·全国卷Ⅰ)如图,一光滑的轻滑轮用细绳OO′悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b.外力F向右上方拉b,整个系统处于静止状态.若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则( )A.绳OO′的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化命题意图:本题考查共点力平衡.同一根绳子的拉力大小处处相等,则物体a 和b 受到绳的拉力大小均等于物体a 的重力.由于物体始终处于平衡状态,利用正交分解可求解.解析:由题意,在F 保持方向不变,大小发生变化的过程中,物体a 、b 均保持静止,选a 受力分析得,绳子拉力F T =m a g ,所以物体a 和b 受到绳的拉力保持不变,C 选项错误;a 、b 受到绳的拉力大小和方向均不变,所以OO ′的张力不变,A 选项错误;对b 进行受力分析,并将各力沿水平方向和竖直方向分解,如图所示.由受力平衡得:F T x +F f =F x ,F y +F N +F T y =m b g ,F T 和m b g 始终不变,当F 大小在一定范围内变化时,支持力在一定范围内变化,B 选项正确;摩擦力也在一定范围内发生变化,D 选项正确;故答案选BD.答案:BD2.(多选)(2017·全国卷Ⅰ)如图,柔软轻绳ON 的一端O 固定,其中间某点M 拴一重物,用手拉住绳的另一端N .初始时,OM 竖直且MN 被拉直,OM 与MN 之间的夹角为α(α>).现将重物向右上方π2缓慢拉起,并保持夹角α不变.在OM 由竖直被拉到水平的过程中( )A.MN上的张力逐渐增大B.MN上的张力先增大后减小C.OM上的张力逐渐增大D.OM上的张力先增大后减小命题意图:本题属于动态平衡问题,可用图解法解决本题,通过两绳子的夹角不变,又知重力的大小和方向不会改变,把重力的大小作为弦长,两拉力的夹角变为圆周角,根据圆的特性可作出图.本题要求学生熟练掌握三角形定则和数学的平面几何知识,是一道要求比较高的难题.解析:由题意画出矢量三角形如下图,α不变,则图中θ角不变,形成下图共圆形式,在圆中直径的弦长最大,则F MN逐渐增大,F OM先增大后减小.答案:AD3.(2017·全国卷Ⅱ)如图,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动.若保持F的大小不变,而方向与水平面成60°角,物块也恰好做匀速直线运动.物块与桌面间的动摩擦因数为( )A .2- B. C. D.3363332命题意图:本题考查滑块摩擦力和共点力平衡问题.利用正交分解把F 进行分解,F 的竖直分量与支持力的合力与重力平衡,水平分量与摩擦力相等.但注意此进滑块摩擦力F f ≠μmg .解析:当拉力水平时,物体匀速速度,则拉力等于摩擦力,即F =μmg ;当拉力倾斜时,物体受力分析如图,由F f =μF N ,F N =mg -F sin θ,可知摩擦力为F f =μ(mg -F sin θ),F f =F ,12代入数据为:μmg =μ(mg -F ),1232联立可得μ=.33答案:C4.(2017·全国卷Ⅲ)一根轻质弹性绳的两端分别固定在水平天花板上相距80 cm 的两点上,弹性绳的原长也为80 cm.将一钩码挂在弹性绳的中点,平衡时弹性绳的总长度为100 cm ;再将弹性绳的两端缓慢移至天花板上的同一点,则弹性绳的总长度变为(弹性绳的伸长始终处于弹性限度内)( )A.86 cm B.92 cmC.98 cm D.104 cm命题意图:此题是物体的平衡问题,考查平行四边形定则的应用;在处理共点力平衡问题时,关键是对物体进行受力分析,然后根据正交分解法将各个力分解成两个方向上的力,然后列式求解,如果物体受到三力处于平衡状态,且两个力大小相等,则可根据矢量三角形法,将三个力移动到一个三角形中,然后根据角度列式求解.前后两次始终处于静止状态,即合外力为零,在改变绳长的同时,绳与竖直方向的夹角跟着改变.解析:如图所示:绳子原长是80 cm,伸长为100 cm,则AC段长50 cm,故∠ACD=53°.由受力平衡2F1cos 53°=mg,当弹性绳的两端缓慢移至天花板上的同一点2F2=mg.假设绳子的劲度系数为k,则绳子拉力F1=k(50 cm-40 cm),F2=k(x-40 cm),解得x=46 cm,所以此时绳子总长度为92 cm.答案:B5.(2016·全国卷Ⅱ)如图,两个轻环a和b套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m 的小球.在a 和b 之间的细线上悬挂一小物块.平衡时,a 、b 间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为( )A. B.m C .m D .2mm 232解析:设悬挂小物块的点为O ′,圆弧的圆心为O ,由于ab =R ,所以三角形Oab 为等边三角形,根据几何知识可得∠aO ′b =120°.而一条绳子的拉力相等,故F T =mg ,小物块受到两条绳子的拉力作用,两力大小相等,夹角为120°,故受到的拉力的合力等于mg ,所以小物块的质量为m ,C 正确.答案:C。
第一章直线运动第二讲匀变速直线运动和自由落体运动的规律课时跟踪练(二)匀变速直线运动和自由落体运动的规律时间:40分钟答案见P35A组基础巩固1.(2018·河南林州一中质检)某航母跑道长160 m,飞机发动机产生的最大加速度为5 m/s2,起飞需要的最低速度为50 m/s,飞机在航母跑道上起飞的过程可以简化为做匀加速直线运动,若航母沿飞机起飞方向以某一速度匀速航行,为使飞机安全起飞,航母匀速运动的最小速度为()A.10 m/s B.15 m/sC.20 m/s D.30 m/s解析:设航母匀速运动的最小速度为v1,飞机起飞速度为v2,对于航母则有x1=v1t,对于飞机则有v2=v1+at,飞机起飞时的位移满足v22-v21=2ax2,两者相对位移等于航母的跑道长,故有x2-x1=160 m,联立解得v1=10 m/s,故A正确.答案:A2.(多选)(2018·湖南常德一中模拟)A与B两个质点向同一方向运动,A做初速度为零的匀加速直线运动,B做匀速直线运动.开始计时时,A,B位于同一位置,则当它们再次位于同一位置时() A.两质点速度相等B.A与B在这段时间内的平均速度相等C.A的瞬时速度是B的2倍D.A与B的位移相同解析:要求A、B同一时刻到达同一位置,初始时刻A、B位于同一位置,末时刻又在同一位置,所以两质点位移相等,故D正确;A、B同时开始运动,所以相遇时运动的时间相等,可知平均速度相等,故B正确;相遇时位移相等,设A的速度为v A,B的速度为v B,=2v B,故C正确,A错误.则有v A2t=v B t,得v A答案:BCD3.(2018·福建师大附中模拟)在空中的某点O以一定的初速度竖直向上抛出一物体,不计空气阻力,0.8 s后物体的速率变为8 m/s,关于此时物体的位置和速度方向的说法,正确的是(g取10 m/s2)()A.在O点上方,速度方向向下B.在O点上方,速度方向向上C.在O点,速度方向向下D.在O点下方,速度方向向下解析:取竖直向上为正方向,若物体此时的位置在O点上方或下方,速度方向向下,v=8 m/s,由公式v=v0-gt得,v0=0,与物体以一定的初速度竖直向上抛出不符,故A、D错误;若物体此时的位置在O点上方,速度方向向上,v=8 m/s,由公式v=v0-gt得,v0=16 m/s,与物体以一定的初速度竖直向上抛出相符,故B正确;若物体在O点,则上升和下降的时间均为0.4 s,回到O点的速度为v=gt=4 m/s,与题目数据不符,故C错误.答案:B4.(2018·株洲二中模拟)为估测一照相机的曝光时间,实验者从某砖墙前的高处使一个石子自由落下,拍摄石子在空中的照片如图所示.由于石子的运动,它在照片上留下了一条模糊的径迹AB.已知每层砖的平均厚度为6 cm,拍摄到的石子位置A距石子起始落点的竖直距离约5 m.这个照相机的曝光时间约为(g取10 m/s2)()A.1×10-3 s B.1×10-2 sC.5×10-2 s D.0.1 s解析:自由落体运动位移为5 m时的末速度为:v1=2gh=10 m/s;由于0.12 m远小于5 m,故可能近似地将AB段当成匀速运动,=0.012 s≈0.01 s,故选B.故时间为:t=ABv1答案:B5.(2017·株洲二中检测)如图所示,在水平面上有一个质量为m 的小物块,在某时刻给它一个初速度,使其沿水平面做匀减速直线运动,依次经过A 、B 、C 三点,最终停在O 点.A 、B 、C 三点到O 点的距离分别为L 1、L 2、L 3,小物块由A 、B 、C 三点运动到O 点所用的时间分别为t 1、t 2、t 3,则下列结论正确的是( )A.L 1t 1=L 2t 2=L 3t 3B.L 1t 1<L 2t 2<L 3t 3C.L 1t 21=L 2t 22=L 3t 23D.L 1t 21<L 2t 22<L 3t 23解析:研究小物块运动的逆过程,小物块从O 点开始做初速度为零的匀加速直线运动,由运动学公式可知,x =12at 2,故a =2x t 2, 故位移与时间平方的比值为定值,即L 1t 21=L 2t 22=L 3t 23,故选C. 答案:C6.(多选)汽车由静止开始从A 点沿直线ABC 做匀变速直线运动,第4 s 末通过B 点时关闭发动机,再经6 s 到达C 点时停止.已知AC 的长度为30 m ,则下列说法正确的是( )A .通过B 点时速度是3 m/sB .通过B 点时速度是6 m/sC .AB 的长度为12 mD .汽车在AB 段和BC 段的平均速度相同解析:汽车由静止开始从A 点沿直线ABC 做匀变速直线运动,画出v-t 图象,由图可得x AC =12v B t ,解得v B =6 m/s ,所以选项A 错误,B 正确;0~4 s 内,x AB =12v B t 1=12 m ,所以选项C 正确;由v=v 0+v t 2,知汽车在AB 段和BC 段的平均速度相同,选项D 正确.答案:BCD7.(多选)(2017·温州五校联考)近来交警部门开展的“车让人”活动深入人心,不遵守“车让人”的驾驶员将受到罚款、扣分的严厉处罚.假设一辆以8 m/s 的速度匀速行驶的汽车即将通过路口,有一老人正在过人行横道,此时汽车的车头距离停车线8 m .该车减速时的加速度大小为 5 m/s 2.则下列说法中正确的是( )A .如果驾驶员立即刹车制动,则t =2 s 时,汽车离停车线的距离为1.6 mB .如果在距停车线6 m 处开始刹车制动,汽车能在停车线处停车让人C .如果驾驶员的反应时间为0.4 s ,汽车刚好能在停车线处停车让人D .如果驾驶员的反应时间为0.2 s ,汽车刚好能在停车线处停车让人解析:若汽车做匀减速直线运动,速度减为零的时间t 0=0-v 0a=-8-5 s =1.6 s<2 s ,所以从刹车到停止的位移大小x 1=⎪⎪⎪⎪⎪⎪⎪⎪-v 202a =6410 m =6.4 m ,汽车离停车线的距离为8 m -6.4 m =1.6 m ,故A 正确;如果汽车在距停车线6 m 处开始刹车制动,刹车位移是6.4 m ,所以汽车不能在停车线处停车让人,故B 错误;刹车的位移是6.4 m ,所以汽车可做匀速运动的位移是1.6 m ,则驾驶员的反应时间t =1.68s =0.2 s 时汽车刚好能停在停车线处让人,故C 错误,D 正确.答案:AD8.一质点由静止从A 点出发,先做匀加速直线运动,加速度大小为a ,后做匀减速直线运动,加速度大小为3a ,速度为零时到达B 点.A 、B 间距离为x ,求质点运动过程中的最大速度.解析:设运动过程中的最大速度为v ,则匀加速直线运动的位移x 1=v 22a, 匀减速直线运动的位移x 2=v 22×3a, 由题意x =v 22a +v 22×3a, 解得v = 3ax 2. 答案: 3ax 2B 组 能力提升9.(2018·蚌埠模拟)一质点由静止开始做匀加速直线运动,加速度大小为a 1,经时间t 后做匀减速直线运动,加速度大小为a 2,若再经时间t 恰能回到出发点,则a 1∶a 2应为( )A .1∶1B .1∶2C .1∶3D .1∶4解析:规定初速度方向为正方向,在加速阶段有x =12a 1t 2,减速阶段有-x =v 0t -12a 2t 2,其中v 0=a 1t ,可得a 1∶a 2=1∶3,C 正确. 答案:C10.(2018·湖南长沙雅礼中学月考)如图所示,一物体做匀加速直线运动,依次经过A 、B 、C 三点,其中B 是AC 的中点.已知物体在AB 段的平均速度大小为3 m/s ,在BC 段的平均速度大小为6 m/s ,则物体经过B 点时的速度大小是( )A .4 m/sB .4.5 m/sC .5 m/sD .5.5 m/s解析:因为物体在AB 段的平均速度大小为3 m/s ,所以3 m/s =v A +v B 2,在BC 段的平均速度大小为6 m/s ,所以6 m/s =v C +v B 2;又因为AB =AC ,故v 2B -v 2A =v 2C -v 2B ,联立解得v B =5 m/s ,C 正确.答案:C11.(2018·福州模拟)某校一课外活动小组自制一枚火箭,设火箭发射后始终在垂直于水平地面的方向上运动.火箭点火后可认为做匀加速直线运动,经过4 s 到达离地面40 m 高处时燃料恰好用完,若不计空气阻力,取重力加速度大小g =10 m/s 2,求:(1)燃料恰好用完时火箭的速度大小;(2)火箭上升离地面的最大高度;(3)火箭从发射到返回发射点的时间.解析:设燃料恰好用完时火箭的速度为v 1,所用时间为t 1,火箭的上升阶段可分为两个过程,第一个过程做匀加速上升运动,第二个过程做竖直上抛运动至最高点.(1)对第一个过程有h 1=v 12t 1, 代入数据解得v 1=20 m/s.(2)对第二个过程有h 2=v 212g, 代入数据解得h 2=20 m ,所以火箭上升离地面的最大高度h =h 1+h 2=60 m.(3)第二个过程用时t 2=v 1g, 代入数据解得t 2=2 s ,设火箭从最高点返回发射点用时t 3由h =12gt 23得t 3= 2h g, 代入数据解得t 3≈3.5 s ,火箭从发射到返回发射点的时间t =t 1+t 2+t 3=9.5 s.答案:(1)20 m/s (2)60 m (3)9.5 s12.(2018·山东潍坊中学模拟)我国东部14省市ETC 联网已正常运行,ETC 是电子不停车收费系统的简称.汽车分别通过ETC 通道和人工收费通道的流程如图所示.假设汽车以v 1=15 m/s 的速度朝收费站正常沿直线行驶,如果过ETC 通道,需要在收费站中心线前x =10 m 处正好匀减速至v 2=5 m/s ,匀速通过中心线后,再匀加速至v 1正常行驶;如果过人工收费通道,需要恰好在中心线处匀减速至速度为0,经过t =20 s 缴费成功后,再启动汽车匀加速至v 1正常行驶.设汽车加速和减速过程中的加速度大小均为1 m/s 2.求:(1)汽车过ETC 通道时,从开始减速到恢复正常行驶过程中的位移大小;(2)汽车通过ETC 通道比通过人工收费通道节约的时间是多少? 解析:(1)过ETC 通道时,减速的位移和加速的位移相等,均为x 1=v 21-v 222a=100 m , 所以总的位移x 总1=2x 1+x =210 m.(2)过ETC 通道时t 1=v 1-v 2a ×2+x v 2=22 s , 过人工收费通道时t 2=v 1a×2+t =50 s , x 2=v 212a×2=225 m , 二者的位移差Δx =x 2-x 总1=(225-210) m=15 m ,在这段位移内汽车过ETC 通道时是做匀速直线运动,所以Δt =t 2-⎝⎛⎭⎪⎪⎫t 1+Δx v 1=27 s. 答案:(1)210 m (2)27 s。
章末整合提升1.(2017·全国卷Ⅰ)扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是()命题意图:本题考查电磁感应、电磁阻尼及其相关的知识点.解析:施加磁场来快速衰减STM的微小振动,其原理是电磁阻尼,在振动时通过紫铜薄板的磁通量变化,紫铜薄板中产生感应电动势和感应电流,则其受到安培力作用,该作用阻碍紫铜薄板振动,即促使其振动衰减.方案A中,无论紫铜薄板上下振动还是左右振动,通过它的磁通量都发生变化;方案B中,当紫铜薄板上下振动时,通过它的磁通量可能不变,当紫铜薄板向右振动时,通过它的磁通量不变;方案C中,紫铜薄板上下振动、左右振动时,通过它的磁通量可能不变;方案D中,当紫铜薄板上下振动时,紫铜薄板中磁通量可能不变.综上可知,对于紫铜薄板上下及左右振动的衰减最有效的方案是A.答案:A2.(多选)(2015·全国卷Ⅰ)1824年,法国科学家阿拉果完成了著名的“圆盘实验”,实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示,实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后,下列说法正确的是()A.圆盘上产生了感应电动势B.圆盘内的感应电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成了电流,此电流产生的磁场导致磁针转动命题意图:本题考查电磁感应、涡流及其相关的知识点,意在考查考生综合运用电磁感应知识分析解释实验现象的能力.难度中等偏难.解析:当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,圆盘的半径切割磁感线产生感应电动势和感应电流,选项A正确;圆盘内的涡电流产生的磁场对磁针施加磁场力作用,导致磁针转动,选项B正确,D错误;由于圆盘中心正上方悬挂小磁针,在圆盘转动过程中,磁针的磁场穿过整个圆盘的磁通量不变,选项C错误.答案:AB3.(多选)(2017·全国卷Ⅱ)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m、总电阻为0.005 Ω的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图甲所示.已知导线框一直向右做匀速直线运动,cd边于t=0时刻进入磁场.线框中感应电动势随时间变化的图线如图乙所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是()图甲图乙A.磁感应强度的大小为0.5 TB.导线框运动速度的大小为0.5 m/sC.磁感应强度的方向垂直于纸面向外D .在t =0.4 s 至t =0.6 s 这段时间内,导线框所受的安培力大小为0.1 N命题意图:本题考查电磁感应与力学规律的综合应用.解析:由题图乙可知,导线框运动的速度大小v =L t =0.10.2m/s =0.5 m/s ,B 项正确;导线框进入磁场的过程中,cd 边切割磁感线,由E =BL v ,得B =E L v =0.010.1×0.5T =0.2 T ,A 项错误;由图可知,导线框进入磁场的过程中,感应电流的方向为顺时针方向,根据楞次定律可知,磁感应强度方向垂直纸面向外,C 项正确;在0.4~0.6 s 这段时间内,导线框正在出磁场,回路中的电流大小I =E R =0.010.005A =2 A ,则导线框受到的安培力F =BIL =0.2×2×0.1 N =0.04 N ,D 项错误.答案:BC4.(2017·全国卷Ⅲ)如图,在方向垂直于纸面向里的匀强磁场中有一U 形金属导轨,导轨平面与磁场垂直.金属杆PQ 置于导轨上并与导轨形成闭合回路PQRS ,一圆环形金属线框T 位于回路围成的区域内,线框与导轨共面.现让金属杆PQ 突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是( )A .PQRS 中沿顺时针方向,T 中沿逆时针方向B .PQRS 中沿顺时针方向,T 中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向命题意图:本题考查楞次定律、右手定则.解析:金属杆PQ向右切割磁感线,根据右手定则可知PQRS中感应电流沿逆时针方向;原来T中的磁场方向垂直于纸面向里,金属杆PQ中的感应电流产生的磁场方向垂直于纸面向外,使得穿过T的磁通量减小,根据楞次定律可知T中产生顺时针方向的感应电流,综上所述,可知A、B、C项错误,D项正确.答案:D5.(2016·全国卷Ⅰ)如图,两固定的绝缘斜面倾角均为θ,上沿相连.两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平.右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上.已知两根导线刚好不在磁场中,回路电阻为R,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g.已知金属棒ab匀速下滑.求(1)作用在金属棒ab上的安培力的大小;(2)金属棒运动速度的大小.命题意图:本题主要考查平衡条件、法拉第电磁感应定律、安培力、闭合电路欧姆定律及其相关知识,意在考查考生灵活运用知识分析、解决问题的能力.解析:(1)设两根导线的总的张力的大小为F T ,右斜面对ab 棒的支持力的大小为F N1作用在ab 棒上的安培力的大小为F ,左斜面对cd 棒的支持力大小为F N2.对于ab 棒,由力的平衡条件得2mg sin θ=μF N1+F T +F ,① F N1=2mg cos θ,②对于cd 棒,同理有mg sin θ+μF N2=F T ,③ F N2=mg cos θ,④联立①②③④式得F =mg (sin θ-3μcos θ).⑤(2)由安培力公式得F =BIL ,⑥这里I 是回路abdca 中的感应电流.ab 棒上的感应电动势为E =BL v ,⑦式中,v 是ab 棒下滑速度的大小.由欧姆定律得I =E R,⑧ 联立⑤⑥⑦⑧式得v =(sin θ-3μcos θ)mgR B 2L 2. 答案:(1)mg (sin θ-3μcos θ)(2)(sin θ-3μcos θ)mgR B 2L 2。
第六章动量及动量守恒定律第一讲动量定理及其应用课时跟踪练A组基础巩固1.(多选)(2018·北京模拟)关于动量和冲量,下列说法正确的是()A.物体所受合外力的冲量的方向与物体动量的方向相同B.物体所受合外力的冲量等于物体动量的变化C.物体所受合外力的冲量等于物体的动量D.物体动量的方向与物体的运动方向相同解析:物体所受合外力的冲量的方向与合外力的方向相同,与物体动量变化量的方向相同,与动量的方向不一定相同,故A错误;由动量定理可知,物体所受合外力的冲量等于物体动量的变化,故B 正确,C错误;物体的动量p=m v,故物体动量的方向与物体的运动方向相同,D正确.答案:BD2.(2017·天津市河北区一模)从地面上方同一高度沿水平和竖直向上方向分别抛出两个等质量的小物体,抛出速度大小都是为v,不计空气阻力,对两个小物体以下说法正确的是()A.落地时的速度相同B.落地时重力做功的瞬时功率相同C.从抛出到落地重力的冲量相同D.两物体落地前动量变化率相等解析:根据动能定理两物体落地时,速度大小相等,方向不同,重力做功的瞬时功率P=mg v sin θ,故A、B错误;竖直上抛与平抛相比,平抛时间短,所以重力的冲量mgt小,故C错误;根据动量定理mgΔt=Δp可知,ΔpΔt=mg,故D正确.答案:D3.(2017·合肥一模)一质量为m的物体静止在光滑水平面上,在水平力F作用下,经时间t,通过位移L后,动量变为p、动能变为E k.若上述过程F不变,物体的质量变为m2,以下说法正确的是()A.经过时间2t,物体动量变为2pB.经过位移2L,物体动量变为2pC.经过时间2t,物体动能变为4E kD.经过位移2L,物体动能变为4E k解析:以初速度方向为正方向,根据动量定理有:Ft=p,故时间变为2t后,动量变为2p,故A正确;根据E k=p22m,动量变为2倍,质量减半,故动能变为8E k,故C错误;经过位移2L,根据动能定理有:FL=E k,故位移变为2倍后,动能变为2E k,故D错误;根据p=2mE k,动能变为2倍,质量减半,故动量不变,故B错误.答案:A4.(2017·山东省枣庄市高三上学期期末)质量为60 kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护,使他悬挂起来;已知弹性安全带的缓冲时间是1.2 s,安全带长5 m,不计空气阻力影响,g取10 m/s2,则安全带所受的平均冲力的大小为()A.100 N B.500 NC.600 N D.1 100 N解析:在安全带产生拉力过程中,人受重力、安全带的拉力作用做减速运动,此过程的初速度就是自由落体运动的末速度,所以有:v0=2gh=10 m/s.取竖直向下为正,由动量定理得(mg-F)t=0-m v0,解F=1 100 N.答案:D5.(2018·唐山模拟)如图所示为某运动员用头颠球,若足球用头顶起,每次上升高度为80 cm,足球的重量为400 g,与头顶作用时间Δt为0.1 s,则足球一次在空中的运动时间t及足球对头部的作用力大小F N分别为(空气阻力不计,g=10 m/s2)()A.t=0.4 s,F N=40 N B.t=0.4 s,F N=36 NC.t=0.8 s,F N=36 N D.t=0.8 s,F N=40 N解析:足球自由下落时有h=12gt21,解得t1=2hg=0.4 s,竖直向上运动的时间等于自由下落运动的时间,所以t=2t1=0.8 s;设竖直向上为正方向,由动量定理得(F-mg)Δt=m v-(-m v),又v=gt =4 m/s,联立解得F=36 N,由牛顿第三定律知足球对头部的作用力F N=36 N,故C正确.答案:C6.(2015·重庆卷)高空作业须系安全带.如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动),此后经历时间t安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t+mg B.m 2gh t -mg C.m gh t +mg D.m gh t-mg 解析:人做自由落体运动时,有v =2gh ,选向下为正方向,又mgt -Ft =0-m v ,得F =m 2gh t+mg ,所以A 项正确. 答案:A7.(多选)(2017·合肥二模)一质点静止在光滑水平面上,现对其施加水平外力F ,力F 随时间按正弦规律变化,如图所示,下列说法正确的是( )A .第2 s 末,质点的动量为0B .第4 s 末,质点回到出发点C .在0~2 s 时间内,力F 的功率先增大后减小D .在1~3 s 时间内,力F 的冲量为0解析:由题图可知,0~2 s 时间内F 的方向和质点运动的方向相同,质点经历了一个加速度逐渐增大的加速运动和加速度逐渐减小的加速运动,所以第2 s 末,质点的速度最大,动量最大,故A 错误;该质点在2~4 s 内F 的方向与0~2 s 内F 的方向不同,0~2 s 内做加速运动,2~4 s 内做减速运动,所以质点在0~4 s 内的位移均为正,故B 错误;0~2 s 内,质点速度在增大,力F 先增大后减小,根据瞬时功率P =F v 得,力F 瞬时功率开始为0,2 s 末时为0,所以在0~2 s 时间内,力F 的功率先增大后减小,故C 正确;在Ft 图象中,图线与横轴所围的面积表示力F的冲量大小,由题图可知,1~2 s 内的面积与2~3 s内的面积大小相等,一正一负,则在1~3 s 时间内,力F的冲量为0,故D正确.答案:CD8.(2018·济南质检)2017年9月在济青高速公路上,一辆轿车强行超车时,失控冲出车道与另一辆迎面驶来的轿车相撞,两车相撞后,两车车身因相互挤压,皆缩短了0.5 m,据测算两车相撞前速度约为30 m/s.(1)试求车祸中车内质量约60 kg的人受到的平均冲力是多大?(2)若此人系有安全带,安全带在车祸过程中与人体的作用时间是1 s,求这时人体受到的平均冲力为多大?解析:(1)两车相撞时认为人与车一起做匀减速运动直到停止,位移为0.5 m.设运动的时间为t,根据x=v02t得t=2xv0=130s.根据动量定理有Ft=Δp=m v0,得F=m v0t=60×30130N=5.4×104 N.(2)若人系有安全带,则F′=m v0t′=60×301N=1.8×103 N.答案:(1)5.4×104 N(2)1.8×103 NB组能力提升9.(2017·天津卷)“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是()A.摩天轮转动过程中,乘客的机械能保持不变B.在最高点时,乘客重力大于座椅对他的支持力C.摩天轮转动一周的过程中,乘客重力的冲量为零D.摩天轮转动过程中,乘客重力的瞬时功率保持不变解析:乘客随座舱在竖直面内做匀速圆周运动,速度大小不变,则动能不变,但高度变化,所以机械能在变化,A错误;在最高点处于失重状态,则B正确;转动一周,重力的冲量为I=mgT,不为零,C错误;速度方向时刻在变所以重力的瞬时功率在变化,D错误.答案:B10.(2017·洛阳一模)如图所示,一段不可伸长的轻质细绳长为L,一端固定在O点,另一端系一个质量为m的小球(可以视为质点),保持细绳处于伸直状态,把小球拉到跟O点等高的位置由静止释放,在小球摆到最低点的过程中,不计空气阻力,重力加速度大小为g,则()A.合力做的功为0 B.合力的冲量为0C.重力做的功为mgL D.重力的冲量为m2gL解析:小球在向下运动的过程中,由动能定理mgL=12m v2得v =2gL,故A错误,C正确;由动量定理可得合力的冲量I合=Δp=m v-0=m2gL,故B错误;从开始到最低点的时间t大于自由落体的时间t′,L=12gt′2,则t>t′=2Lg,所以重力的冲量I G=mgt>mgt′=m2gL,故D错误.答案:C11.水平恒定推力F1和F2分别作用于水平面上原来静止的、质量相等的a、b两物体上,作用一段时间后撤去推力,由于惯性,物体将继续运动一段时间后才能停下,两物体的v-t图象如图所示,已知图中线段AB∥CD,则()A.a物体受到的摩擦力小于b物体受到的摩擦力B.a物体受到的摩擦力大于b物体受到的摩擦力C.F1的冲量大于F2的冲量D.F1的冲量小于F2的冲量解析:由题图知,AB与CD平行,说明撤去推力后物体的合力等于摩擦力,两物体受到的摩擦力大小相等,故A、B错误.根据动量定理,对整个过程研究得,F1t1-F f t OB=0,F2t2-F f t OD=0,由题图看出t OB<t OD,则有F1t1<F2t2,即F1的冲量小于F2的冲量,故C 错误,D正确.答案:D12.(2017·吉林省吉林一中校级考试)质量m=0.60 kg的篮球从距地板H=0.80 m高处由静止释放,与水平地板撞击后反弹上升的最大高度h=0.45 m,从释放到弹跳至h高处经历的时间t=1.1 s,忽略空气阻力,重力加速度g=10 m/s2,求:(1)篮球与地板撞击过程中损失的机械能;(2)篮球对地板的平均撞击力.解析:(1)篮球与地板撞击过程中损失的机械能为 ΔE =mgH -mgh =2.1 J.(2)设篮球从H 高处下落到地板所用时间为t 1,刚接触地板时的速度为v 1;反弹离地时的速度为v 2,上升的时间为t 2,由动能定理和运动学公式下落过程:mgH =12m v 21,解得:v 1=4 m/s ,t 1=v 1g =0.4 s.上升过程:-mgh =0-12m v 22,解得:v 2=3 m/s ,t 2=v 2g =0.3 s.篮球与地板接触时间为Δt =t -t 1-t 2=0.4 s , 设地板对篮球的平均撞击力为F ,由动量定理得 (F -mg )Δt =m v 2+m v 1解得F =16.5 N.答案:(1)2.1 J (2)16.5 N。
第十四章波与相对论第三讲光的折射全反射课时跟踪练A组基础巩固1.(2018·徐州模拟)光射到两种不同介质的分界面,分析其后的传播情形可知()A.折射现象的出现说明光是纵波B.光总会分为反射光和折射光C.折射光与入射光的传播方向总是不同的D.发生折射是因为光在不同介质中的传播速度不同解析:光的折射不能反映光是纵波还是横波,由光的偏振现象可知光是横波,选项A错误;当光从光密介质射入光疏介质,且入射角大于等于临界角时,发生全反射现象,没有折射光,选项B错误;当光线垂直于界面入射时,折射光与入射光的传播方向相同,选项C 错误;发生折射是因为光的传播速度在不同介质中不同,选项D正确.答案:D2.(2018·潍坊模拟)公园里灯光喷泉的水池中有处于同一深度的若干彩灯,在晚上观察不同颜色彩灯的深度和水面上被照亮的面积,下列说法正确的是()A.红灯看起来较浅,红灯照亮的水面面积较小B.红灯看起来较深,红灯照亮的水面面积较小C.红灯看起来较浅,红灯照亮的水面面积较大D.红灯看起来较深,红灯照亮的水面面积较大解析:光从水里射入空气发生折射,入射角相同时,折射率越大,折射角越大,从水面上看光源越浅,红灯发出的红光的折射率最小,看起来最深;设光源的深度为d,光的临界角为C,则光能够照亮的水面面积大小为S=π(d tan C)2,可见,临界角越大,照亮的面积越大,各种色光中,红光的折射率最小,临界角最大,所以红灯照亮的水面面积较大,选项D正确.答案:D3.(2015·重庆卷)虹和霓是太阳光在水珠内分别经过一次和两次反射后出射形成的,可用白光照射玻璃球来说明.两束平行白光照射到透明玻璃球后,在水平的白色桌面上会形成MN和PQ两条彩色光带,光路如图所示.M、N、P、Q点的颜色分别为()A.紫、红、红、紫B.红、紫、红、紫C.红、紫、紫、红D.紫、红、紫、红解析:白光中的可见光部分从红到紫排列,对同一介质的折射率n 紫>n 红,由折射定律知紫光的折射角较小,由光路可知,紫光将到达M 点和Q 点,而红光到达N 点和P 点,故选A.答案:A4.如图所示,一块两面平行的玻璃砖平放在纸面上,将它的前、后两个边界PQ 、MN 记录在纸面上.若单色光沿纸面从真空中以入射角i =60°从MN 表面射入时,光通过玻璃砖的时间为t ;若保持入射光的方向不变,现撤去玻璃砖,光通过PQ 、MN 之间的区域的时间也为t ,那么,这块玻璃砖对该入射光的折射率为( )A .2 B. 3 C .1.5 D. 2解析:设玻璃砖的厚度为d ,折射率为n ,折射角为γ,则d /cos γv=d /cos γc /n =nd c cos γ=t ,d /cos 60°c =2d c =t ,n =sin 60°sin γ,可得n =3,选项B 正确.答案:B5.(多选)(2017·苏北四校联考)如图所示,有一束平行于等边三棱镜截面ABC 的单色光从空气射向E 点,并偏折到F 点,已知入射方向与边AB 的夹角为 θ=30°,E 、F 分别为边AB 、BC 的中点,则( )A.该棱镜的折射率为 3B.光在F点发生全反射C.光从空气进入棱镜,波长变小D.从F点出射的光束与入射到E点的光束平行解析:在E点作出法线可知入射角为60°,折射角为30°,折射率为3,选项A正确;由光路的可逆性可知,在BC边上的入射角小于临界角,不会发生全反射,选项B错误;光从空气进入棱镜时,频率不变,波速变小,由波速公式v=λf得知,波长变小,可知选项C正确;从F点出射的反射光线与法线的夹角为30°,折射光线与法线的夹角为60°,由几何关系知,不会与入射到E点的光束平行,选项D错误.答案:AC6.(多选)(2018·承德模拟)频率不同的两束单色光1和2以相同的入射角从同一点射入一厚玻璃板后,其光路如图所示,下列说法正确的是()A.单色光1的波长小于单色光2的波长B.在玻璃中单色光1的传播速度大于单色光2的传播速度C.单色光1通过玻璃板所需的时间小于单色光2通过玻璃板所需的时间D.单色光1从玻璃到空气的全反射临界角小于单色光2从玻璃到空气的全反射临界角解析:由题图知单色光1在界面折射时的偏折程度大,则单色光1的折射率大,因此单色光1的频率大于单色光2的,那么单色光1的波长小于单色光2的,选项A正确;由n=c v知,折射率大的单色光1在玻璃中传播速度小,而在玻璃板中单色光1通过的路程比单色光2短,二者通过的时间将无法确定,选项B、C都错误;由sin C 及单色光1的折射率大知,选项D正确.=1n答案:AD7.(多选)(2018·青岛模拟)如图所示,实线为空气和水的分界面,一束蓝光从空气中的A点沿AO1方向(O1点在分界面上,图中O1点和入射光线都未画出)射向水中,折射后通过水中的B点,图中O点为A、B连线与分界面的交点,下列说法正确的是()A.O1点在O点的右侧B.蓝光从空气中射入水中时,速度变小C.若沿AO1方向射向水中的是一束紫光,则折射光线有可能通过B点正下方的C点D.若沿AO1方向射向水中的是一束红光,则折射光线有可能通过B点正上方的D点E .若蓝光沿AO 方向射向水中,则折射光线有可能通过B 点正上方的D 点解析:由折射定律n =sin i sin γ知,蓝光从空气射向水中,入射角比折射角大,O 1点在O 点的左侧,选项A 错误;由v =c n 知,蓝光进入水中的速度变小,选项B 正确;若沿AO 1方向射向水中的是一束紫光,紫光折射率大,折射角小,则折射光线有可能通过B 点正下方的C 点,选项C 正确;若沿AO 1方向射向水中的是一束红光,红光折射率小,折射角大,则折射光线有可能通过B 点正上方的D 点,选项D 正确;若蓝光沿AO 方向射向水中,则折射光线有可能通过B 点正下方的C 点,不可能通过B 点正上方的D 点,选项E 错误.答案:BCD8.(2015·海南卷)一半径为R 的半圆形玻璃砖,横截面如图所示.已知玻璃的全反射临界角γ⎝⎛⎭⎪⎫γ<π3.与玻璃砖的底平面成⎝ ⎛⎭⎪⎫π2-γ角度、且与玻璃砖横截面平行的平行光射到玻璃砖的半圆柱面上.经柱面折射后,有部分光(包括与柱面相切的入射光)能直接从玻璃砖底面射出.若忽略经半圆柱内表面反射后射出的光,求底面透光部分的宽度.解析:光路图如图所示,沿半径方向射入玻璃砖的光线,即光线①射到MN 上时,根据几何知识入射角恰好等于临界角,即恰好在圆心O 处发生全反射,光线①左侧的光线,经球面折射后,射到MN 上的角一定大于临界角,即在MN 上发生全反射,不能射出,光线①右侧的光线射到MN 上的角小于临界角,可以射出,如图光线③与球面相切,入射角θ1=90°,从MN 上垂直射出,根据折射定律可得sin θ2=sin θ1n ,根据全反射定律n =1sin γ, 两式联立解得θ2=γ,根据几何知识,底面透光部分的宽度OE =R sin γ.答案:R sin γB 组 能力提升9.(2018·威海模拟)如图所示,一束复色光从空气射入水面,进入水中分成a 、b 两束.已知它们与水面间的夹角分别是α、β,则a 、b 两束光在水中的传播速度之比v a v b为( )A.sin αsin βB.sin βsin αC.cos αcos βD.cos βcos α解析:设入射角为θ,由折射定律可得n b =c v b =sin θsin (90°-β)=sin θcos β, n a =c v a =sin θsin (90°-α)=sin θcos α, 两式相比可得v a v b =cos αcos β,故选项C 正确. 答案:C10.(多选)(2018·大连模拟)固定的半圆形玻璃砖的横截面如图所示,O 点为圆心,OO ′为直径MN 的垂线.足够大的光屏PQ 紧靠玻璃砖右侧且垂直于MN .由A 、B 两种单色光组成的一束光沿半径方向射向O 点,入射光线与OO ′夹角θ较小时,光屏NQ 区域出现两个光斑,逐渐增大θ角,当θ=α时,光屏NQ 区域A 光的光斑消失,继续增大θ角,当θ=β时,光屏NQ 区域B 光的光斑消失,则( )A .玻璃砖对A 光的折射率比对B 光的大B .A 光在玻璃砖中传播速度比B 光的大C .α<θ<β时,光屏上只有1个光斑D .β<θ<π2时,光屏上只有1个光斑 解析:当入射角θ逐渐增大时,A 光的光斑先消失,说明A 光的折射角大于B 光的折射角,即玻璃对A 光的折射率大于对B 光的折射率(n A >n B ),所以v A <v B ,选项A 正确,B 错误;当A 光、B 光都发生全反射时,光屏上只有1个光斑,选项C 错误,D 正确.答案:AD11.(2018·衡水模拟)DVD 光盘由塑料保护层和信息记录层组成.如图所示,激光束以入射角θ1从空气入射到厚度为d 、折射率为n 的塑料保护层后,聚焦到信息记录层的光斑宽度为a ,才能有效获取信息.(1)写出sin θ1应当满足的关系式;(2)在保证a 不变的前提下,减小激光束照到塑料保护层的宽度l (l =a +2b ),可采取哪些措施(答出三条措施)?解析:(1)由折射定律得n =sin θ1sin θ2,式中θ2为折射角,sin θ2=b b 2+d 2, 解得sin θ1=nbb 2+d 2.(2)要保证a 不变的前提下,减小宽度l ,即减小b ,由(1)的求解过程得b 2=d 2n 2sin 2θ1-1,故在θ1和n 不变时,减小d ,或在θ1和d 不变时,增大n ,或在n 和d 不变时,减小θ1.答案:(1)sin θ1=nb b 2+d2 (2)见解析 12.(2017·江苏卷)人的眼球可简化为如图所示的模型.折射率相同、半径不同的两个球体共轴.平行光束宽度为D ,对称地沿轴线方向射入半径为R 的小球,会聚在轴线上的P 点.取球体的折射率为2,且D =2R .求光线的会聚角α(示意图未按比例画出).解析:设入射角为i ,折射角为γ,由几何关系sin i =D 2R,解得i =45°,【东方思维】2018年秋高三物理一轮复习:课时跟踪练11 则由折射定律sin i sin γ=n ,解得γ=30°, 且i =γ+α2,解得α=30°. 答案:30°。
章末整合提升1.(多选)(2015·全国卷Ⅰ)如图甲,一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图乙所示.若重力加速度及图中的v0、v1、t1均为已知量,则可求出()图甲图乙A.斜面的倾角B.物块的质量C.物块与斜面间的动摩擦因数D.物块沿斜面向上滑行的最大高度命题意图:本题考查牛顿第二定律、受力分析、速度图象及其相关的知识点,意在考查考生运用相关知识分析解决实际问题的能力.难度中等偏难.解析:由运动的v-t图线可求出物块向上滑行的加速度和返回向下滑行的加速度,对上升时和返回时分析受力,运用牛顿第二定律可分别列出方程,联立两个方程可解得斜面倾角和物块与斜面之间的动摩擦因数,选项A、C正确;根据运动的v t图线与横轴所围面积表示位移可求出物块向上滑行的最大高度,选项D正确.答案:ACD2.(多选)(2015·全国卷Ⅱ)在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机车在东边拉着这列车厢以大小为a 的加速度向东行驶时,连接某两相邻车厢的挂钩P和Q间的拉力大小为F;当机车在西边拉着车厢以大小为23a的加速度向西行驶时,P 和Q间的拉力大小仍为F.不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为()A.8B.10C.15 D.18命题意图:本题借助连接体问题考查了牛顿第二定律和隔离法,意在考查考生的逻辑推理能力.解析:设每节车厢的质量为m,这列车厢的节数为n,东边车厢的节数为x,西边车厢的节数为n-x.当机车在东边拉车厢时,对西边车厢受力分析,由牛顿第二定律可得F=(n-x)ma;当机车在西边拉车厢时,对东边车厢受力分析,由牛顿第二定律可得F=23max,联立可得n=53x,x为3的倍数,则n为5的倍数,选项B、C正确,选项A、D错误.答案:BC3.(2017·全国卷Ⅱ)为提高冰球运动员的加速能力,教练员在冰面上与起跑线相距s0和s1(s1<s0)处分别放置一个挡板和一面小旗,如图所示.训练时,让运动员和冰球都位于起跑线上,教练员将冰球以速度v 0击出,使冰球在冰面上沿垂直于起跑线的方向滑向挡板;冰球被击出的同时,运动员垂直于起跑线从静止出发滑向小旗.训练要求当冰球到达挡板时,运动员至少到达小旗处.假定运动员在滑行过程中做匀加速运动,冰球到达挡板时的速度为v 1.重力加速度大小为g .求:(1)冰球与冰面之间的动摩擦因数;(2)满足训练要求的运动员的最小加速度.命题意图:本题考查运动学公式与动能定理的应用.解析:(1)设冰球的质量为m ,冰球与冰面之间的动摩擦因数为μ,由动能定理得-μmgs 0=12m v 21-12m v 20,① 解得μ=v 20-v 212gs 0.② (2)冰球到达挡板时,满足训练要求的运动员中,刚好到达小旗处的运动员的加速度最小.设这种情况下,冰球和运动员的加速度大小分别为a 1和a 2,所用的时间为t .由运动学公式得v 20-v 21=2a 1s 0③v 0-v 1=a 1t ④s 1=12a 2t 2⑤ 联立③④⑤式得a 2=s 1(v 1+v 0)22s 20. 答案:(1)v 20-v 212gs 0 (2)s 1(v 1+v 0)22s 204.(2017·全国卷Ⅲ)如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1.某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s.A 、B 相遇时,A 与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2.求:(1)B 与木板相对静止时,木板的速度;(2)A 、B 开始运动时,两者之间的距离.命题意图:本题通过滑块—木板模型考查牛顿运动定律、匀变速直线运动规律等相关知识点.解析:(1)滑块A 和B 在木板上滑动时,木板也在地面上滑动.设A 、B 和木板所受的摩擦力大小分别为F f 1、F f 2和F f 3,A 和B 相对于地面的加速度大小分别为a A 和a B ,木板相对于地面的加速度大小为a 1,在物块B 与木板达到共同速度前有F f 1=μ1m A g ,①F f 2=μ1m B g ,②F f 3=μ2(m +m A +m B )g ,③由牛顿第二定律得F f 1=m A a A ,④F f 2=m B a B ,⑤F f 2-F f 1-F f 3=ma 1,⑥设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1=v0-a B t1,⑦v1=a1t1,⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s.⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21,⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有F f1+F f3=(m B+m)a2,⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A 和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式对木板有:v2=v1-a2t2,⑫对A有:v2=-v1+a A t2,⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22,⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2,⑮A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B,⑯联立以上各式,并代入数据得s0=1.9 m,(也可用如图所示的速度—时间图线求解).答案:(1)1 m/s(2)1.9 m5.(2015·全国卷Ⅰ)一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5 m,如图甲所示.t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1 s时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1 s时间内小物块的v t图线如图乙所示.木板的质量是小物块质量的15倍,重力加速度大小g取10 m/s2.求:图甲图乙(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2;(2)木板的最小长度;(3)木板右端离墙壁的最终距离.命题意图:本题主要考查牛顿运动定律、板块模型、速度图象、匀变速直线运动规律,意在考查考生运用力学知识解决实际问题的能力.解析:(1)规定向右为正方向.木板与墙壁相碰前,小物块和木板一起向右做匀变速运动,设加速度为a1,小物块和木板的质量分别为m和M.由牛顿第二定律有-μ1(m+M)g=(m+M)a1,①由题图乙可知,木板与墙壁碰撞前瞬间的速度v1=4m/s,由运动学公式有v1=v0+a1t1,②x0=v0t1+12a1t21,③式中,t1=1 s,x0=4.5 m是木板碰撞前的位移,v0是小物块和木板开始运动时的速度.联立①②③式和题给条件得μ1=0.1,④在木板与墙壁碰撞后,木板以-v1的初速度向左做匀变速运动,小物块以v1的初速度向右做匀变速运动.设小物块的加速度为a2,由牛顿第二定律有-μ2mg=ma2,⑤由题图乙可得a2=v2-v1t2-t1,⑥式中,t2=2 s,v2=0,联立⑤⑥式和题给条件得μ2=0.4.⑦(2)设碰撞后木板的加速度为a3,经过时间Δt,木板和小物块刚好具有共同速度v3.由牛顿第二定律及运动学公式得μ2mg+μ1(M+m)g=Ma3,⑧v3=-v1+a3Δt,⑨v3=v1+a2Δt,⑩碰撞后至木板和小物块刚好达到共同速度的过程中,木板运动的位移为x1=-v1+v32Δt,⑪小物块运动的位移为x2=v1+v32Δt,⑫小物块相对木板运动的位移为Δx=x2-x1,⑬联立⑥⑧⑨⑩⑪⑫⑬式,并代入数值得Δx=6.0 m.⑭因为运动过程中小物块没有脱离木板,所以木板的最小长度应为6.0 m.(3)在小物块和木板具有共同速度后,两者向左做匀变速运动直至停止,设加速度为a4,此过程中小物块和木板运动的位移为x3.由牛顿第二定律及运动学公式得μ1(m+M)g=(m+M)a4,⑮0-v23=2a4x3,⑯碰后木板运动的位移为x=x1+x3,⑰联立⑥⑧⑨⑩⑪⑮⑯⑰式,并代入数值得x=-6.5 m,木板右端离墙壁的最终距离为6.5 m.答案:(1)0.10.4(2)6.0 m(3)6.5 m。
章末整合提升1.(2017·全国卷Ⅰ)(1)如图(a),在xy平面内有两个沿z方向做简谐振动的点波源S1(0,4)和S2(0,-2).两波源的振动图线分别如图(b)和图(c)所示.两列波的波速均为1.00 m/s.两列波从波源传播到点A(8,-2)的路程差为________m,两列波引起的点B(4,1)处质点的振动相互________(选填“加强”或“减弱”),点C(0,0.5)处质点的振动相互______(选填“加强”或“减弱”).(2)如图,一玻璃工件的上半部是半径为R的半球体,O点为球心;下半部是半径为R、高为2R的圆柱体,圆柱体底面镀有反射膜.有一平行于中心轴OC的光线从半球面射入,该光线与OC之间的距离为0.6R.已知最后从半球面射出的光线恰好与入射光线平行(不考虑多次反射).求该玻璃的折射率.(1)命题意图:本题考查波的干涉及其相关的知识点.解析:点波源S1(0,4)的振动形式传播到点A(8,-2)的路程为L1=10 m,点波源S2(0,-2)的振动形式传播到点A(8,-2)的路程为L2=8 m,两列波从波源传播到点A(8,-2)的路程差为ΔL=L1-L2=2 m.由于两列波的波源到点B(4,1)的路程相等,路程差为零,且t=0时两列波的波源的振动方向相反,所以两列波到达点B 时振动方向相反,引起的点B处质点的振动相互减弱;由振动图线可知,波动周期为T=2 s,波长λ=v T=2 m,由于两列波的波源到点C(0,0.5)的路程分别为3.5 m和2.5 m,路程差为1 m,而t=0时两列波的波源的振动方向相反,所以两列波到达点C时振动方向相同,引起的点C处质点的振动相互加强.(2)命题意图:本题考查光的折射定律、反射定律及其相关的知识点.解析:如图,根据光路的对称性和光路可逆性,与入射光线相对于OC轴对称的出射光线一定与入射光线平行.这样,从半球面射入的折射光线,将从圆柱体底面中心C点反射.设光线在半球面的入射角为i,折射角为γ.由折射定律有sin i=n sin γ①由正弦定理有sin γ2R=sin (i-γ)R,②由几何关系,入射点的法线与OC的夹角为i.由题设条件和几何关系有sin i=L R,③式中L是入射光线与OC的距离.由②③式和题给数据得sin γ=6205,④由①③④式和题给数据得n = 2.05≈1.43.答案:(1)2 减弱 加强 (2)1.432.(2017·全国卷Ⅱ)(1)在双缝干涉实验中,用绿色激光照射在双缝上,在缝后的屏幕上显示出干涉图样.若要增大干涉图样中两相邻亮条纹的间距,可选用的方法是________(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分;每选错1个扣3分,最低得分为0分).A .改用红色激光B .改用蓝色激光C .减小双缝间距D .将屏幕向远离双缝的位置移动E .将光源向远离双缝的位置移动(2)一直桶状容器的高为2l ,底面是边长为l 的正方形;容器内装满某种透明液体,过容器中心轴DD ′、垂直于左右两侧面的剖面图如图所示.容器右侧内壁涂有反光材料,其他内壁涂有吸光材料.在剖面的左下角处有一点光源,已知由液体上表面的D 点射出的两束光线相互垂直,求该液体的折射率.(1)命题意图:本题考查双缝干涉实验的相关知识.解析:由Δx =L dλ可知,改用波长更长的激光照射在双缝上,相邻亮条纹的间距Δx 增大,A 项正确,B 项错误;减小双缝间距d ,相邻亮条纹的间距Δx增大,C项正确;将屏幕向远离双缝的位置移动,增大了屏幕与双缝的距离L,相邻亮条纹的间距Δx增大,D项正确;相邻亮条纹的间距与光源到双缝的距离无关,E项错误.(2)命题意图:本题考查光的反射和光的折射.解析:设从光源发出直接射到D点的光线的入射角为i1,折射角为γ1.在剖面内作光源相对于反光壁的镜像对称点C,连接C、D,交反光壁于E点,由光源射向E点的光线,反射后沿ED射向D点.光线在D点的入射角为i2,折射角为γ2,如图所示.设液体的折射率为n,由折射定律有n sin i1=sin γ1,①n sin i2=sin γ2,②由题意知γ1+γ2=90°,③联立①②③式得n2=1sin2i1+sin2i2,④由几何关系可知sin i1=l24l2+l24=117,⑤sin i 2=32l 4l 2+9l 24=35,⑥ 联立④⑤⑥式得n =1.55.答案:(1)ACD (2)1.553.(2017·全国卷Ⅲ)(1)如图,一列简谐横波沿x 轴正方向传播,实线为t =0时的波形图,虚线为t =0.5 s 时的波形图.已知该简谐波的周期大于0.5 s .关于该简谐波,下列说法正确的是________(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分.每选错1个扣3分,最低得分为0分).A .波长为2 mB .波速为6 m/sC .频率为1.5 HzD .t =1 s 时,x =1 m 处的质点处于波峰E .t =2 s 时,x =2 m 处的质点经过平衡位置(2)如图,一半径为R 的玻璃半球,O 点是半球的球心,虚线OO ′表示光轴(过球心O 与半球底面垂直的直线).已知玻璃的折射率为1.5.现有一束平行光垂直入射到半球的底面上,有些光线能从球面射出(不考虑被半球的内表面反射后的光线).求:①从球面射出的光线对应的入射光线到光轴距离的最大值;②距光轴R3的入射光线经球面折射后与光轴的交点到O点的距离.(1)命题意图:本题考查简谐横波的图象问题.解析:由图象可知简谐横波的波长为λ=4 m,A项错误;波沿x轴正向传播,t=0.5 s=34T,可得周期T=23s、频率f=1T=1.5 Hz,波速v=λT=6 m/s,B、C项正确;t=0时刻,x=1 m处的质点在波峰,经过1 s=32T,一定在波谷,D项错误;t=0时刻,x=2 m处的质点在平衡位置,经过2 s=3T,质点一定经过平衡位置,E项正确.(2)命题意图:本题考查光的全反射和折射定律.解析:①如图,从底面上A处射入的光线,在球面上发生折射时的入射角为i,当i等于全反射临界角i c时,对应入射光线到光轴的距离最大,设最大距离为l.i=i c,①设n是玻璃的折射率,由全反射临界角的定义有n sin i c=1,②由几何关系有sin i=lR,③联立①②③式并利用题给条件,得l=23R.④②设与光轴相距R 3的光线在球面B 点发生折射时的入射角和折射角分别为i 1和γ1,由折射定律有n sin i 1=sin γ1,⑤设折射光线与光轴的交点为C ,在△OBC 中,由正弦定理有 sin ∠C R =sin (180°-γ1)OC ,⑥由几何关系有∠C =γ1-i 1,⑦sin i 1=13,⑧联立⑤⑥⑦⑧式及题给条件得OC =3(22+3)5R ≈2.74R .答案:(1)BCE (2)①23R ②2.74R。
章末整合提升动量及动量守恒定律⎩⎪⎪⎪⎨⎪⎪⎪⎧动量p =m v ,矢量,p 与v 同向,Δp =p ′-p 也是矢量动量守恒定律⎩⎪⎨⎪⎧守恒条件⎩⎪⎨⎪⎧系统不受外力或受外力的合力为零系统内力远大于外力系统在某一方向上的合力为零表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′碰撞⎩⎪⎨⎪⎧弹性碰撞:动量守恒,动能守恒非弹性碰撞:动量守恒,动能不守恒完全非弹性碰撞:动量守恒,动能不守恒且损失最大1.(2017·全国卷Ⅰ)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg ·m/sB .5.7×102 kg ·m/sC .6.0×102 kg ·m/sD .6.3×102 kg ·m/s命题意图:本题考查动量守恒定律及其相关的知识点.解析:燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p ,根据动量守恒定律,可得p -m v 0=0,解得p =m v 0=0.050 kg ×600 m/s =30 kg ·m/s ,选项A 正确.答案:A2.(多选)(2017·全国卷Ⅲ)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动.F随时间t变化的图线如图所示,则()A.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零命题意图:本题通过Ft图象考查动量定理.解析:根据Ft图线与时间轴围成的面积的物理意义为合外力F 的冲量,可知在0~1 s、0~2 s、0~3 s、0~4 s内合外力冲量分别为2 N·s、4 N·s、3 N·s、2 N·s,应用动量定理I=mΔv可知物块在1 s、2 s、3 s、4 s末的速率分别为1 m/s、2 m/s、1.5 m/s、1 m/s,物块在这些时刻的动量大小分别为2 kg·m/s、4 kg·m/s、3 kg·m/s、2 kg·m/s,则A、B项均正确,C、D项均错误.答案:AB3.(2016·全国卷Ⅰ)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中.为计算方便,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g.求:(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.命题意图:本题考查竖直上抛运动、动量定理及其相关的知识点,意在考查考生灵活运用知识解决实际问题的能力.解析:(1)设Δt 时间内,从喷口喷出的水的体积为ΔV ,质量为Δm ,则Δm =ρΔV ,①ΔV =v 0S Δt ,②由①②式得,单位时间内从喷口喷出的水的质量为Δm Δt=ρv 0S .③ (2)设玩具悬停时其底面相对于喷口的高度为h ,水从喷口喷出后到达玩具底面时的速度大小为v .对于Δt 时间内喷出的水,由能量守恒定律得12(Δm )v 2+(Δm )gh =12(Δm )v 20,④ 在h 高度处,Δt 时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为Δp =(Δm )v ,⑤设水对玩具的作用力的大小为F ,根据动量定理得F Δt =Δp ,⑥由于玩具在空中悬停,由力的平衡条件得F =Mg ,⑦联立③④⑤⑥⑦式得h =v 202g -M 2g 2ρ2v 20S 2. 答案:(1)ρv 0S (2)v 202g -M 2g 2ρ2v 20S 2 4.(2016·全国卷Ⅲ)如图,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m .两物块与地面间的动摩擦因数均相同.现使a 以初速度v 0向右滑动.此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞.重力加速度大小为g .求物块与地面间的动摩擦因数满足的条件.命题意图:本题考查能量守恒定律、动能定理、动量守恒定律等,意在考查考生对多过程问题的综合分析能力和推理计算能力.解析:设物块与地面间的动摩擦因数为μ.若要物块a 、b 能够发生碰撞,应有12m v 20>μmgl ,① 即μ<v 202gl,② 设在a 、b 发生弹性碰撞前的瞬间,a 的速度大小为v 1,由能量守恒定律有12m v 20=12m v 21+μmgl ,③设在a 、b 碰撞后的瞬间,a 、b 的速度大小分别为v 1′、v 2′,由动量守恒和能量守恒定律有m v 1=m v 1′+3m 4v 2′,④ 12m v 21=12m v ′21+12⎝ ⎛⎭⎪⎫3m 4v ′22,⑤ 联立④⑤式解得v 2′=87v 1,⑥ 由题意知,b 没有与墙发生碰撞,由功能关系可知12⎝ ⎛⎭⎪⎫3m 4v ′22≤μ3m 4gl ,⑦ 联立③⑥⑦式,可得μ≥32v 20113gl,⑧ 联立②⑧式,a 与b 发生碰撞,但b 没有与墙发生碰撞的条件32v 20113gl ≤μ<v 202gl. 答案:32v 20113gl ≤μ<v 202gl5.(2015·全国卷Ⅰ)如图,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间.A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态.现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞.设物体间的碰撞都是弹性的.命题意图:本题主要考查动量守恒定律、能量守恒定律、弹性碰撞及其相关知识,意在考查考生综合运用相关知识解决问题的能力.解析:A 向右运动与C 发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒.设速度方向向右为正,开始时A 的速度为v 0,第一次碰撞后C 的速度为v C 1,A 的速度为v A 1.由动量守恒定律和机械能守恒定律得m v 0=m v A 1+M v C 1,①12m v 20=12m v 2A 1+12M v 2C 1,② 联立①②式得v A 1=m -M m +Mv 0,③ v C 1=2m m +Mv 0,④ 如果m >M ,第一次碰撞后,A 与C 速度同向,且A 的速度小于C 的速度,不可能与B 发生碰撞;如果m =M ,第一次碰撞后,A 停止,C 以A 碰前的速度向右运动,A 不可能与B 发生碰撞;所以只需考虑m <M 的情况.第一次碰撞后,A 反向运动与B 发生碰撞.设与B 发生碰撞后,A 的速度为v A 2,B 的速度为v B 1,同样有v A 2=m -M m +M v A 1=⎝ ⎛⎭⎪⎫m -M m +M 2v 0,⑤ 根据题意,要求A 只与B 、C 各发生一次碰撞,应有v A2≤v C1,⑥联立④⑤⑥式得m2+4mM-M2≥0,⑦解得m≥(5-2)M,⑧另一解m≤-(5+2)M舍去.所以,m和M应满足的条件为(5-2)M≤m<M.答案:(5-2)M≤m<M。
第十四章波与相对论第二讲机械波课时跟踪练A组基础巩固1.(2018·恩施模拟)利用发波水槽得到的水面波形如图甲、乙所示,则()A.图甲、乙均显示了波的干涉现象B.图甲、乙均显示了波的衍射现象C.图甲显示了波的干涉现象,图乙显示了波的衍射现象D.图甲显示了波的衍射现象,图乙显示了波的干涉现象解析:由题图容易看出甲是小孔衍射,图乙是波的干涉,选项D 正确.答案:D2.(2018·长沙模拟)下列物理现象:①在春天里一次闪电过后,有时雷声轰鸣不绝;②“闻其声而不见其人”;③学生围绕振动的音叉转一圈会听到忽强忽弱的声音;④当正在鸣笛的火车向着我们疾驶而来时,我们听到汽笛声的音调变高.分别属于波的() A.反射、衍射、干涉、多普勒效应B.折射、衍射、多普勒效应、干涉C.反射、折射、干涉、多普勒效应D.衍射、折射、干涉、多普勒效应解析:在春天里一次闪电过后,有时雷声轰鸣不绝,属于声波的反射;“闻其声而不见其人”属于声波的衍射;学生围绕振动的音叉转一圈会听到忽强忽弱的声音属于声波的干涉;当正在鸣笛的火车向着我们疾驶而来时,我们听到汽笛声的音调变高属于多普勒效应.正确选项是A.答案:A3.(2018·济南模拟)小河中有一个实心桥墩P,A为靠近桥墩浮在水面上的一片树叶,俯视图如图所示,小河水面平静.现在S处以某一频率拍打水面,使形成的水波能带动树叶A振动起来,可以采用的方法是()A.提高拍打水面的频率B.降低拍打水面的频率C.无论怎样拍打,A都不会振动起来D.无需拍打,A也会振动起来解析:使形成的水波能带动树叶A振动起来,必须使水面形成的波波长足够长,衍射现象明显,可以采用的方法是降低拍打水面的频率,选项B正确.答案:B4.(2015·福建卷)简谐横波在同一均匀介质中沿x轴正方向传播,波速为v.若某时刻在波的传播方向上,位于平衡位置的两质点a、b 相距为s,a、b之间只存在一个波谷,则从该时刻起,下列四副波形中质点a 最早到达波谷的是( )解析:由图A 知,波长λ=2s ,周期T =2s v ,由图知质点a 向上振动,经3T 4第一次到达波谷,用时t 1=34T =3s 2v,B 图对应波长λ=s ,周期T =s v ,由图知质点a 向下振动,经T 4第一次到达波谷,用时t 2=14T =s 4v,C 图对应波长λ=s ,周期T =s v ,由图知质点a 向上振动,经3T 4第一次到达波谷,用时t 3=34T =3s 4v ,D 图对应波长λ=2s 3,周期T =2s 3v ,由图知质点a 向下振动,经T 4第一次到达波谷,用时t 4=14T =s 6v,所以D 正确. 答案:D5.(2015·北京卷)周期为 2.0 s 的简谐横波沿x 轴传播,该波在某时刻的图象如图所示,此时质点P 沿y 轴负方向运动,则该波( )A .沿x 轴正方向传播,波速v =20 m/sB .沿x 轴正方向传播,波速v =10 m/sC .沿x 轴负方向传播,波速v =20 m/sD.沿x轴负方向传播,波速v=10 m/s解析:根据机械波的速度公式v=λT,由图可知波长为20 m,再结合周期为2 s,可以得出波速为10 m/s.应用“同侧法”等方法判断波沿x轴正方向传播.因此答案为B.答案:B6.(多选)(2018·衡水模拟)为了研究乐音的物理规律,某同学用计算机录制下优美的笛音do和sol,然后在电脑上用软件播放,分别得到如图中a和b的两个振动图线,由此可以判断()A.do和sol的频率之比约为2∶3B.do和sol的周期之比约为2∶3C.do和sol在空气中传播的波速之比约为3∶2D.do和sol在空气中传播的波长之比约为3∶2解析:由题图可知,相同长度的do的4个波长对应sol的6个波长,故do和sol在空气中传播的波长之比约为3∶2,选项D正确;由于二者在空气中传播速度相等,由v=λf可知,do和sol的频率之比约为2∶3,do和sol的周期之比约为3∶2,选项A正确,选项B、C错误.答案:AD7.(多选)(2018·唐山模拟)如图所示,实线和虚线分别表示振幅、频率均相同的两列波的波峰和波谷,此刻,M是波峰与波峰相遇点,下列说法中正确的是()A.该时刻质点O正处在平衡位置B.P、N两点始终处于平衡位置C.点M到两波源的距离之差一定是波长的整数倍D.从该时刻起,经过14周期,质点M到达平衡位置解析:由题图可知,O、M为振动加强的点,此时点O处于波谷,点M处于波峰,点M是峰、峰相遇,只有当两波源振动相位相同时,点M到两波源的距离差才是波长的整数倍,若两波源振动相位相反,则点M到两波源的距离差为半波长的奇数倍,故A、C均错误;P、N两点为减弱点,又因为两列波的振幅相同,因此P、N两点的振幅为零,即两点始终处于平衡位置,B正确;从该时刻经1 4周期,两列波分别引起的振动都使点M位于平衡位置,故点M位于平衡位置,D正确.答案:BD8.(2015·全国卷Ⅱ)平衡位置位于原点O的波源发出简谐横波在均匀介质中沿水平x轴传播,P、Q为x轴上的两个点(均位于x轴正向),P与O的距离为35 cm,此距离介于一倍波长与二倍波长之间,已知波源自t=0时由平衡位置开始向上振动,周期T=1 s,振幅A =5 cm.当波传到P点时,波源恰好处于波峰位置;此后再经过5 s,平衡位置在Q处的质点第一次处于波峰位置,求:(1)P、Q之间的距离;(2)从t=0开始到平衡位置在Q处的质点第一次处于波峰位置时,波源在振动过程中通过路程.解析:(1)由题意,O 、P 两点的距离与波长满足OP =54λ, 波速与波长的关系为v =λT. 在t =5 s 时间间隔内波传播的路程为v t ,由题意有v t =PQ +λ4,综上解得PQ =133 cm.(2)Q 处的质点第一次处于波峰位置时,波源运动时间为t 1=t +54T . 波源由平衡位置开始运动,每经过T 4,波源运动的路程为A ,由题意可知t 1=25×14T , 故t 1时间内,波源运动的路程为s =25A =125 cm.答案:(1)133 cm (2)125 cmB 组 能力提升9.(2018·烟台模拟)如图甲所示,S 点为振源,P 点距S 的距离为r ,t =0时刻S 点由平衡位置开始振动,产生沿直线向右传播的简谐横波,图乙为P 点从t 1时刻开始振动的振动图象,则以下说法正确的是( )A .t =0时刻振源S 的振动方向沿y 轴负方向B.t2时刻P点振动速度最大,方向沿y轴负方向C.该简谐波的波长为r(t2-t1)t1D.若波源停止振动,则P点也马上停止振动解析:据题意,当机械波在t1时刻刚传到P点时,P点的起振方向向上,说明这列波的起振方向向上,则t=0时,振源的振动方向沿y轴正方向,A选项错误;据图可知,t2时刻质点P处于平衡位置向上振动,即此时质点P具有正向的最大速度,B选项错误;这列波从波源S传到距离r的P点时所用的时间为t1,则这列波的传播速度为v=rt1,那么由图可得这列波的波长为λ=v T=r(t2-t1)t1,则C选项正确;如果波源停止振动,则P点需要经过t1时间才会停止振动,所以D选项错误.答案:C10.(多选)(2015·海南卷)一列沿x轴正方向传播的简谐横波在t =0时刻的波形如图所示,质点P的x坐标为3 m.已知任意振动质点连续2次经过平衡位置的时间间隔为0.4 s.下列说法正确的是()A.波速为4 m/sB.波的频率为1.25 HzC.x坐标为15 m的质点在t=0.2 s时恰好位于波谷D.x坐标为22 m的质点在t=0.2 s时恰好位于波峰E.当质点P位于波峰时,x坐标为17 m的质点恰好位于波谷解析:任意振动质点连续2次经过平衡位置的时间间隔为0.4 s,则12T =0.4 s ,解得T =0.8 s ,从图象中可知λ=4 m ,所以根据公式v =λT =40.8 m/s =5 m/s ,故选项A 错误;根据公式f =1T可得波的频率为1.25 Hz ,选项B 正确;x 坐标为15 m 的质点和x 坐标为3 m 的质点相隔12 m ,为波长的整数倍,即两质点为同相点,而x 坐标为3 m 的质点经过t =0.2 s ,即四分之一周期振动到平衡位置,所以x 坐标为15 m 的质点在t =0.2 s 时振动到平衡位置,选项C 错误;x 的坐标为22 m 的质点和x 的坐标为2 m 的质点为同相点,x 的坐标为2 m 的质点经过t =0.2 s ,即四分之一周期恰好位于波峰,故x 的坐标为22 m 的质点在t =0.2 s 时恰好位于波峰,选项D 正确;当质点P 位于波峰时,经过了半个周期,而x 坐标为17 m 的质点和x 坐标为1 m 的质点为同相点,经过半个周期x 坐标为1 m 的质点恰好位于波谷,选项E 正确.答案:BDE11.(2018·南京模拟)如图所示,在坐标原点O 处有一波源S ,它沿y 轴做频率为50 Hz ,振幅为2 cm 的简谐振动,形成的波可沿x 轴正、负方向传播,波速为20 cm/s ,开始振动时,S 恰好通过O 点沿y 轴正方向运动.(1)当S 完成第一次全振动时,画出此时的波形图.(2)如图,波传到坐标为x 1=2.7 cm 的M 点时,还要经过多长时间才能传到N 点?波传到N 点时,M 点在什么位置?解析:(1)波形图象如图.(2)当波到达M 点时,波也已经传到x =-2.7 cm 的位置.还要再经过t =Δx v =0.01 s 才能传到N 点.当波传播到N 点时,M 点已经振动了半个周期,故M 点正在平衡位置且正在向y 轴负向运动.答案:(1)见解析 (2)0.01 s M 点正在平衡位置12.(2016·全国卷Ⅱ)一列简谐横波在介质中沿x 轴正向传播,波长不小于10 cm.O 和A 是介质中平衡位置分别位于x =0和x =5 cm 处的两个质点.t =0时开始观测,此时质点O 的位移为y =4 cm ,质点A 处于波峰位置;t =13s 时,质点O 第一次回到平衡位置,t =1 s 时,质点A 第一次回到平衡位置.求:(1)简谐波的周期、波速和波长;(2)质点O 的位移随时间变化的关系式.解析:(1)设振动周期为T ,由于质点A 在0到1 s 内由最大位移处第一次回到平衡位置,经历的是14个周期,由此 可知T =4 s ,①由于质点O 与A 的距离5 cm 小于半个波长,且波沿x 轴正向传播,O 在t =13s 时回到平衡位置,而A 在t =1 s 时回到平衡位置,时间相差23s .两质点平衡位置的距离除以传播时间,可得波的速度v =7.5 cm/s.②利用波长、波速和周期的关系得,简谐波的波长λ=30 cm.③(2)设质点O 的位移随时间变化的关系为 y =A cos ⎝ ⎛⎭⎪⎫2πt T +φ0,④将①式及题给条件代入上式得⎩⎨⎧4=A cos φ00=A cos (π6+φ0)⑤解得φ0=π3,A =8 cm ,⑥质点O 的位移随时间变化的关系式为 y =0.08cos ⎝ ⎛⎭⎪⎫πt 2+π3(国际单位制)或y =0.08sin ⎝ ⎛⎭⎪⎫πt 2+5π6(国际单位制).答案:(1)4 s 7.5 cm/s 30 cm(2)y =0.08cos ⎝ ⎛⎭⎪⎫πt 2+π3(国际单位制)或y =0.08sin ⎝ ⎛πt 2+⎭⎪⎫5π6(国际单位制)。
第十四章波与相对论
第六讲实验十五:测定玻璃的折射率
课时跟踪练
1.(2018·九江模拟)如图所示,用插针法测定玻璃的折射率的实验中,以下各说法中正确的是()
①P1、P2及P3、P4之间的距离适当大些,可以提高准确度
②P1、P2及P3、P4之间的距离取得小些,可以提高准确度
③入射角θ1适当大些,可以提高准确度
④入射角太大,入射光线会在玻璃砖的内表面发生全反射,使实验无法进行
⑤P1、P2的间距和入射角的大小均与实验的准确度无关
A.①③B.②④
C.③⑤D.①④
解析:因为实验中的入射光线和折射光线都是隔着玻璃砖观察在一直线上的大头针确定的,相互间的距离太小,容易出现偏差,①正确,②错误.入射角适当大些,相应的折射角也增大,折射现象较明显,容易测量些,③正确,⑤错误.由于光通过玻璃砖时,各相关角
度互相制约着,其出射角恒等于入射角,而对于入射的界面,光线是从光疏介质射入光密介质,折射角必小于入射角,当入射角趋于最大值90°时,折射角也趋于最大值θ2max,而对于出射的界面,在玻璃砖内的折射光线的入射角最大值也只能为θ2max,根据光路可逆原理,出射角最大值也趋于90°,即始终能透过玻璃砖看到入射光线,④错误.答案:A
2.(2018·洛阳模拟)“测定玻璃的折射率”实验中,在玻璃砖的一侧竖直插两个大头针A、B,在另一侧再竖直插两个大头针C、D.在插入第四个大头针D时,应使它______.如图所示是在白纸上留下的实验痕迹,其中直线a、a′是描在纸上的玻璃砖的两个边.根据该图可算得玻璃的折射率n=________(计算结果保留两位有效数字).
解析:测定玻璃折射率的实验是利用大头针得到进入玻璃的入射光线,在另一侧插入大头针挡住前面的A、B的像来确定C,同样插入大头针D挡住C及A、B的像,C和D确定了出射光线,利用入射点和出射点的连线来确定折射光线,作出法线FG,连接OO′,以O点为圆心画圆,分别交AB、OO′于E、Q两点,分别过E、Q向GF作垂线EG、FQ,并用毫米刻度尺测其长度,如图所示,根据n
=sin θ1sin θ2
,可得n =EG FQ =1.8.
答案:挡住C 及A 、B 的像 1.8
3.测定玻璃等腰直角三棱镜折射率的实验中,先在白纸上放好三棱镜,在棱镜的一侧插上两枚大头针P 1和P 2,然后在棱镜的另一侧观察,调整视线使P 1的像被P 2的像挡住,接着在眼睛所在的一侧插两枚大头针P 3、P 4,使P 3挡住P 1、P 2的像,P 4挡住P 3和P 1、P 2的像,在纸上标出的大头针的位置和三棱镜轮廓如图所示.
(1)通过作图,画出通过P 1、P 2的入射光线在棱镜中的折射光线;
(2)如果测得该棱镜的折射率为1.5,则垂直于AB 边入射的光线能否从BC 边或AC 边射出________(选填“能”或“不能”).
解析:(1)如图所示.
(2)设发生全反射的临界角为C ,则sin C =1n =23
<sin 45°,故垂直于AB 边入射的光线在AC 边或BC 边会发生全反射,不能射出.
答案:(1)见解析图 (2)不能
4.(2018·苏州质检)如图甲所示为光学实验用的长方体玻璃砖,它的__________面不能用手直接接触.在用插针法测定玻璃砖折射率的实验中,两位同学绘出的玻璃砖和三个针孔a 、b 、c 的位置相同,且插在c 位置的针正好挡住插在a 、b 位置的针的像,但最后一个针孔的位置不同,分别为d 、e 两点,如图乙所示.计算折射率时,用________(选填“d ”或“e ”)点得到的值较小,用________(选填“d ”或“e ”)点得到的值误差较小.
解析:光学面若被手接触污染,会影响观察效果,增加实验误差;分别连接cd 和ce 并延长到界面,与界面分别交于f 、g 两点,由n =sin θ1sin θ2
不难得出用d 点得到的折射率值较小,过c 点的出射光线应平行于ab ,利用直尺比对并仔细观察,可知ec ∥ab ,故用e 点得到的折射率值误差较小.
答案:光学 d e
5.如图所示,一个学生用广口瓶和刻度尺测定水的折射率,请填
写下述实验步骤中的空白.
(1)用刻度尺测出广口瓶瓶口内径d.
(2)在瓶内装满水.
(3)将刻度尺沿瓶口边缘________插入水中.
(4)沿广口瓶边缘向水中刻度尺正面看去,若恰能看到刻度尺的0刻度(即图中A点),同时看到水面上的B点刻度的像B′恰与A点的像相重合.
(5)若水面恰与直尺的C点相平,读出______和______的长度.
(6)由题中所给条件,可以计算水的折射率n=________.
解析:由光路图知:sin i=
d
d2+BC2
,
sin γ=
d
d2+AC2
,
根据折射定律
n=
sin i
sin γ
=
d2+AC2
d2+(AB-AC)2
.
答案:(3)竖直(5)AC AB
(6)
d2+AC2
d2+(AB-AC)2
6.(2018·衡水模拟)某校开展研究性学习,某研究小组根据光学知识,设计了一个测液体折射率的仪器,如图所示.在一个圆盘上,过
其圆心O 作两条相互垂直的直径BC 、EF .在半径OA 上,垂直盘面插上两枚大头针P 1、P 2并保持位置不变.每次测量时让圆盘的下半部分竖直浸入液体中,而且总使得液面与直径BC 相平,EF 作为界面的法线,而后在图中右上方区域观察P 1、P 2.同学们通过计算,预先在圆周EC 部分刻好了折射率的值,这样只要根据P 3所插的位置,就可以直接读出液体折射率的值.
(1)若∠AOF =30°,OP 3与OC 之间的夹角为45°,则在P 3处刻的刻度值为________.
(2)若在同一液体中沿AO 方向射入一束白光,最靠近OC 边的是________色的光,增大入射角度,________色的光在刻度盘上先消失.
解析:(1)由题图可知,∠AOF 是入射角,∠EOP 3是折射角,但在定义折射率时光是从真空或空气射向介质的,所以用光路的可逆性
转化可得n =sin ∠EOP 3sin ∠AOF
,代入数据可得n = 2.(2)由于介质对紫光的折射率最大,所以紫光偏折得最多,故最靠近OC 边的是紫光.增大入射角,所有单色光的折射角都增大,而紫光的折射角依然最大,故紫光在刻度盘上先消失.
答案:(1)2 (2)紫 紫
7.(2018·承德模拟)如图所示是关于“测定玻璃的折射率”的实验,请回答以下问题:
(1)请证明图中的入射光线和射出玻璃砖的光线是平行的.
(2)如果光射入和射出玻璃砖的两个平面是平行的,射出玻璃砖的光线相对入射光线来说产生了侧移.证明:入射角越大,侧移越大.
(3)为了减小实验误差,入射角大一些好还是小一些好?
解析:(1)证明:设i1、γ1分别为射入玻璃的入射角和折射角,γ2
、i2分别为由玻璃射入空气的入射角和折射角,则
n=
sin i1
sin γ1
=sin i2
sin γ2
,
而γ1=γ2,所以i1=i2,
所以入射光线平行于出射光线.
(2)设玻璃砖厚度为d,侧移为s,如图所示.
则s=d
cos γ
·sin(i-γ),当入射角i增大时,折射角γ亦增大,但
由于n=sin i
sin γ
>1,因此入射角i比折射角γ增加得快,即(i-γ)增大,则有sin(i-γ)增大,cos γ减小,故入射角越大,侧移越大.
(3)当入射角i增大时,折射角γ也增大,图中N、E之间的距离
x 也就会增大,因为tan γ=x d ,而玻璃砖厚度d 一定,tan γ增大,
这样就会减小测量误差.因此,入射角大一些好.
答案:见解析。