2018年高考理数真题试卷(北京卷)
- 格式:pdf
- 大小:795.34 KB
- 文档页数:12
2018年北京高考卷数学(理科)试题附详细标准答案一、选择题(本大题共8小题,每小题5分,共40分)1. 设集合A={x|2<x<3},集合B={x|x²3x+2=0},则A∩B=()A. {1}B. {2}C. {1, 2}D. ∅2. 若复数z满足|z|=1,则|z1|的最大值为()A. 0B. 1C. √2D. 23. 在等差数列{an}中,若a1=3,a3+a5=18,则数列的前5项和为()A. 25B. 35C. 45D. 554. 已知函数f(x)=x²+2ax+a²+2(a为常数),若f(x)在区间(∞,1)上单调递减,则a的取值范围为()A. a≤0C. a≤1D. a≥15. 设平面直角坐标系xOy中,点A(2,3),点B在直线y=3上,则线段AB的中点轨迹方程为()A. y=3B. x=2C. y=3xD. x=3y6. 若sinθ+cosθ=1/2,则sinθ·cosθ的值为()A. 3/4B. 1/4C. 1/4D. 3/47. 在三角形ABC中,a=3,b=4,cosB=3/5,则三角形ABC的面积为()A. 2√6B. 3√6C. 4√6D. 5√68. 设函数f(x)=x²2ax+a²+1(a为常数),若f(x)在区间[1,+∞)上单调递增,则a的取值范围为()A. a≤1B. a≥1D. a≥0二、填空题(本大题共6小题,每小题5分,共30分)9. 已知数列{an}是等差数列,若a1=1,a3+a5=10,则a4的值为______。
10. 若复数z满足|z|=1,则|z1|+|z+1|的最大值为______。
11. 在等比数列{bn}中,b1=2,b3=16,则数列的公比为______。
12. 已知函数f(x)=x²+2x+a(a为常数),若f(x)在区间(∞,1)上单调递减,则a的取值范围为______。
2018年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(5分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2} D.{﹣1,0,1,2} 2.(5分)在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.4.(5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A. f B. f C. f D.f5.(5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.46.(5分)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1 B.2 C.3 D.48.(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A二、填空题共6小题,每小题5分,共30分。
9.(5分)设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.10.(5分)在极坐标系中,直线ρcosθ+ρsinθ=a(a>0)与圆ρ=2cosθ相切,则a=.11.(5分)设函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,则ω的最小值为.12.(5分)若x,y满足x+1≤y≤2x,则2y﹣x的最小值是.13.(5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.14.(5分)已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.三、解答题共6小题,共80分。
绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
学科:网第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 (A )32f (B )322f (C )1252f(D )1272f(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数i1i-的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ).A .12 B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于第一个单音的频率为f ,则第八个单音的频率为( ).ABC .D .5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .46.设a b ,均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,m θ变化时,d 的最大值为 (A )1 (B )2 (C )3(D )48. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈ ()B 对任意实数a ,()2,1A ∉()C 当且仅当0a <时,()2,1A ∉ ()D 当且仅当32a ≤时,()2,1A ∉二.填空(9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为 。
2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合2A x x,2,0,1,2B x ,则A BI (A )01,(B )-101,,(C )-201,,(D )-1012,,,2.在复平面内,复数i 1i的共轭复数对应的点位于(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.执行如图所示的程序框图,输出的s 值为().A .12B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为().A .32fB.322fC.1252fD.1272f5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为().A.1B.2C.3D.4a b a b”是“a b”的6.设a b,均为单位向量,则“33(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件7. 在平面直角坐标系中,记d为点P cos,sin到直线20x my的距离.当,m变化时,d的最大值为(A)1(B)2 (C)3 (D)4A x y x y ax y x ay,则8. 设集合,|1,4,2A对任意实数a,2,1A B对任意实数a,2,1AC 当且仅当0a 时,2,1AD 当且仅当32a时,2,1A二.填空(9)设n a 是等差数列,且13a ,2536a a ,则n a 的通项公式为。
(10)在极坐标系中,直线cossin(0)a a与圆2cos相切,则a。
(11)设函数cos6f xx0。
2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A ={x ||x |<2},B ={–2,0,1,2},则A B =()(A ){0,1}(B ){–1,0,1}(C ){–2,0,1,2}(D ){–1,0,1,2}1.【答案】A 【解析】2x <Q ,22x ∴-<<,因此{}(){}2,0,1,22,20,1A B =--=I I ,故选A .(2)在复平面内,复数11i -的共轭复数对应的点位于()(A )第一象限(B )第二象限(C )第三象限(D )第四象限2.【答案】D 【解析】()()11i 11i 1i 1i 1i 22+==+--+的共轭复数为11i 22-,对应点为11,22⎛⎫- ⎪⎝⎭,在第四象限,故选D .(3)执行如图所示的程序框图,输出的s 值为()(A )12(B )56(C )76(D )7123.【答案】B【解析】初始化数值1k =,1s =循环结果执行如下:第一次:()1111122s =+-⋅=,2k =,23k =≥不成立;第二次:()21151236s =+-⋅=,3k =,33k =≥成立,循环结束,输出56s =,故选B .(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为()(A (B (C )(D )4.【答案】D【解析】因为每一个单音与前一个单音频率比为,()12n n a n n -+∴=≥∈N ,,又1a f =,则7781a a q f ===,故选D .(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()(A )1(B )2(C )3(D )45.【答案】C【解析】由三视图可得四棱锥P ABCD -,在四棱锥P ABCD -中,2PD =,2AD =,2CD =,1AB =,由勾股定理可知,PA =,PC =3PB =,BC =,则在四棱锥中,直角三角形有,PAD △,PCD △,PAB △共三个,故选C .(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的()(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件6.【答案】C 【解析】2222223333699+6a b a b a b a b a a b b a a b b -=+⇔-=+⇔-⋅+=⋅+,因为a ,b 均为单位向量,所以2222699+6=0a a b b a a b b a b a b -⋅+=⋅+⇔⋅⇔⊥,即“33a b a b -=+”是“a b ⊥”的充分必要条件.故选C .(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m变化时,d 的最大值为()(A )1(B )2(C )3(D )47.【答案】C【解析】22cos sin 1θθ+=Q ,P ∴为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,故选C .(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则()(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A∉(C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉8.【答案】D 【解析】若()2,1A ∈,则32a >且0a ≥,即若()2,1A ∈,则32a >,此命题的逆否命题为,若32a ≤,则有()2,1A ∉,故选D .第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数i1i-的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ). A .12B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为( ).ABC .D .5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .46.设a b ,均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,mθ变化时,d 的最大值为 (A )1 (B )2 (C )3(D )48. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈ ()B 对任意实数a ,()2,1A ∉()C 当且仅当0a <时,()2,1A ∉ ()D 当且仅当32a ≤时,()2,1A ∉ 二.填空(9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为 。
2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数i1i-的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ). A .12B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为( ).ABC .D .5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .46.设a b ,均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,mθ变化时,d 的最大值为 (A )1 (B )2 (C )3(D )48. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈ ()B 对任意实数a ,()2,1A ∉()C 当且仅当0a <时,()2,1A ∉ ()D 当且仅当32a ≤时,()2,1A ∉ 二.填空(9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为 。
2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数i1i-的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ). A .12B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于f ,则第八个单音的频率为( ).ABC .D .5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .46.设a b ,均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,mθ变化时,d 的最大值为 (A )1 (B )2 (C )3(D )48. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈ ()B 对任意实数a ,()2,1A ∉()C 当且仅当0a <时,()2,1A ∉ ()D 当且仅当32a ≤时,()2,1A ∉ 二.填空(9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为 。
绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
学科:网第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于f ,则第八个单音的频率为(A (B(C )(D )(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2018年普通高等学校招生全国统一考试数 学(理)(卷)一.选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}|2A x x =<,{}2,0,1,2B =-,则AB =( )(A ){}0,1 (B ){}1,0,1- (C ){}2,0,1,2- (D ){}1,0,1,2-2.在复平面,复数11i-的共轭复数对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ) (A )12 (B )56 (C )76 (D )7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献。
十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122。
若第一个单音的频率为f ,则第八个单音的频率为( ) (A )32f (B )322f (C )1252f (D )1272f5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )(A )1 (B )2 (C )3 (D )46.设,a b 均为单位向量,则“|3||3|a b a b -=+”是“a b ⊥”的( ) (A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件7.在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当,m θ变化时,d 的最大值为( ) (A )1 (B )2 (C ) 3 (D )48.设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则( )(A )对任意实数a ,()2,1A ∈ (B )对任意实数a ,()2,1A ∉(C )当且仅当0a <时,()2,1A ∉ (D )当且仅当32a ≤时,()2,1A ∉ 二.填空题(共6小题,每小题5分,共30分)9.设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________。
绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回。
学科:网第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A={x||x|〈2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2}(D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 (A)32f (B )322f (C )1252f(D )1272f(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 (A)充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A)1 (B)2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A)对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2018年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A ={x ||x |<2},B ={–2,0,1,2},则A I B =( )(A ){0,1} (B ){–1,0,1} (C ){–2,0,1,2} (D ){–1,0,1,2} 1.【答案】A【解析】2x <Q ,22x ∴-<<,因此{}(){}2,0,1,22,20,1A B =--=I I ,故选A .(2)在复平面内,复数11i-的共轭复数对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 2.【答案】D【解析】()()11i 11i 1i 1i 1i 22+==+--+的共轭复数为11i 22-,对应点为11,22⎛⎫- ⎪⎝⎭,在第四象限,故选D .(3)执行如图所示的程序框图,输出的s 值为( )(A )12 (B )56 (C )76 (D )7123.【答案】B【解析】初始化数值1k =,1s = 循环结果执行如下:第一次:()1111122s =+-⋅=,2k =,23k =≥不成立;第二次:()21151236s =+-⋅=,3k =,33k =≥成立, 循环结束,输出56s =,故选B .(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为( )(A (B (C ) (D ) 4.【答案】D【解析】因为每一个单音与前一个单音频率比为,()12n n a n n -+∴=≥∈N ,,又1a f =,则7781a a q f===,故选D .(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )(A )1 (B )2 (C )3 (D )4 5.【答案】C【解析】由三视图可得四棱锥P ABCD -,在四棱锥P ABCD -中,2PD =,2AD =,2CD =,1AB =,由勾股定理可知,PA =PC =3PB =,BC =,则在四棱锥中,直角三角形有,PAD △,PCD △,PAB △共三个,故选C .(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 6.【答案】C【解析】2222223333699+6a b a b a b a b a a b b a a b b -=+⇔-=+⇔-⋅+=⋅+, 因为a ,b 均为单位向量,所以2222699+6=0a a b b a a b b a b a b -⋅+=⋅+⇔⋅⇔⊥, 即“33a b a b -=+”是“a b ⊥”的充分必要条件.故选C .(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为( )(A )1 (B )2 (C )3 (D )4 7.【答案】C【解析】22cos sin 1θθ+=Q ,P ∴为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,故选C .(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则( )(A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉8.【答案】D【解析】若()2,1A ∈,则32a >且0a ≥,即若()2,1A ∈,则32a >,此命题的逆否命题为,若32a ≤,则有()2,1A ∉,故选D .第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2018年普通高等学校招生全国统一考试数 学(理)(北京卷)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A{x ||x |<2},B{-2,0,1,2},则AB(A ){0,1} (B ){-1,0,1}(C ){-2,0,1,2} (D ){-1,0,1,2} (2)在复平面内,复数的共轭复数对应的点位于(A )第一象限 (B )第二象限(C )第三象限 (D )第四象限(3)执行如图所示的程序框图,输出的S 值为 (A ) (B )(C ) (D )(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于,若第一个单音的频率为,则第八个单音的频率为 (A ) (B )(C ) (D )(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4(6)设a ,b 均为单位向量,则“”是“a”的(A ) 充分而不必要条件此卷只装订不密封 班级 姓名 准考证号 考场号 座位号(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)在平面直角坐标系中,记d 为点到直线x 的距离,当m变化时,d的最大值为(A)1(B)2(C)3(D)4(8)设集合A,则(A)对任意实数a ,(B)对任意实数a ,(C)当且仅当a 时,(D)当且仅当a 时,第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
学科:网第一部分(选择题共40 分)8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
在复平面内,复数丄的共轭复数对应的点位于1 —i5 (B )-67(D )—12(4) “十二平均律”是通用的音律体系,明代朱载埴最早用数学方法计算出半音比例,为这个理论的发展绝密★启用前(1) 已知集合 A={x|| x|<2} , B={E , 0, 1 , 2},则 A B= (A ) {0, 1} (B ) { - , 0, 1}(C )1, 2}(D ) { - , 0, 1, 2}、选择题共 (2) (A ) 第一象限 (B )第二象限 (C ) 第三象限(D )第四象限(3) 执行如图所示的程序框图,输出的s 值为(A ) (C )2 做出了重要贡献•十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每第二部分(非选择题共110 分)一个单音的频率与它的前一个单音的频率的比都等于122 •若第一个单音的频率为 f ,则第八个单音的频率(A )32f(B ) 3 22 f(5)(C )(6) 设a , b 均为单位向量,则“a -3b 二3a b ”是“ a 丄b ”的 充分而不必要条件(B )必要而不(C ) 充分必要条件(D )既不充分也不必要条件(7) 在平面直角坐标系中,记 d 为点P (cos B, si n B)到直线x-my-2=0的距离,当0, m 变化时,d 的 最大值为 (A )(B ) 2 (D ) 4(8) 设集合 A ={( x, y) |x —y 丄1, ax y 4,x —ay 込2},则(A ) 对任意实数 a , (2,1) • A(B )对任意实数a , ( 2, 1)-' A当且仅当a<0时,(2, 1 A3(D )当且仅当^1-时,(2, 1 A(D ) 12 27 f某四棱锥的三视图如图所示,(D ) 4、填空题共6小题,每小题5分,共30分。